与调和点列有关的平面几何问题分解
- 格式:ppt
- 大小:697.00 KB
- 文档页数:20
调和点列在平面几何中的应用调和点列在几何证明中有着十分广泛的应用,它与梅尼劳斯定理、极线都有着十分密切的关联。
下面先给出调和点列的定义:定义:直线上依次四点A 、B 、C 、D 满足AB ADBC DC=,则称A 、B 、C 、D 四点构成调和点列。
由交比的定义:交比(A 、B 、C 、D )=AC D C D A B B: 知A 、B 、C 、D 四点构成调和点列的充要条件是交比(A 、C 、B 、D )=-1 调和点列具有以下常用性质: 性质1:在梅尼劳斯图形中,三角形ABC 被直线DEF 所截,BE 、CD 交与点G ,AG 的延长线交BC 与点H ,则B 、H 、C 、F 成调和点列证明:由塞瓦定理,1AD BH CE DB HC EA =,故BH DB EAHC AD CE=由梅尼劳斯定理,1BF CE AD FC EA DB =,故BF EA DBFC CE AD=所以BH BF HC FC =由定义知,B 、H 、C 、F 成调和点列性质2:若A 、B 、C 、D 成调和点列,O 为平面上一点,则任意一条直线截OA 、OB 、OC 、OD 得到的四个点也成调和点列。
我们称由OFB发出的4条射线OA 、OB 、OC 、OD 为调和线束。
这是调和点列的一个重要性质。
证明:如图,设直线l 交OA 、OB 、OC 、OD 于E 、F 、G 、H 过A 作l 的平行线交OB 、OC 、OD 于B 1、C 1、D 1由平行线分线段成比例知 交比(E 、G 、F 、H )=交比(A 、C 1、B 1、D 1) 由梅尼劳斯定理,1111AB OC BA B C C O CB =,1111AD OC DAD C C O CD= 所以交比(A 、C 1、B 1、D 1)=BA DACB CD:=交比(A 、C 、B 、D )=-1 故交比(E 、G 、F 、H )=-1即E 、F 、G 、H 成调和点列。
第一题、如图,F为。
0外一点,PA、PB分别切6于A、B, PCD为ST割线,CO 交CX)于另一点E, AC、EB交于点F,证明:CD平分匕ADF。
"证明方法一:如图,延长ED交CA于K,根据条件知四边形CADB为调和四边形,故ED、EC、EA、EB构成一组调和线束,进而知K、C、A、F构成一组调和点列。
而KD±CD, 故CD平分ZADFo 3证明方法二:如鼠连結OA、OE、AB、BC,因为ZAFB = ZACE-ZBEC =ZAOE-ZBOC ISCT-NAOC-NBOC 半,且PA = PB,故点P为TkABF的外心。
于是知ZPFA= ZPAC = ZPDA,所以P、A、D、F 四点共圆。
又PA= PF,故CD 平分Z A DF。
3第二题、如图,AB为©0直径,C、D为O。
上两点,且在AB同侧,。
在C、D两处的切城交于点E, BC、AD交于点F, EF交AB于证明:E、C、页、D四点共圆。
“证明:如图,延长白C、BD交于点K,则BC1AK, AD丄BK,从而知F^)AKAB的垂心。
又在圆内接六边形CCADDB中使用帕斯卡定理,知K、E、F三点共线,从而KM丄卽于価。
于是知匕CMF = ZCAF= ZCDE,所以E、C、页、D四点共圆。
K第三题、如图,AB为。
直径,C、D为伽上两点'且在AB同侧,O0在C. D两处的切线交于点E, BC、AD交于点F, EB交0。
于点G,证明;ZCEF = 2/AGF。
“证明:如图,根据条件知匕CF D =典牌=(脸-®;(i对-命)=Z CAB + / DBA = ZECF + ZEDF;且EC = ED;故点E 为△CED 外心。
于是知/EFC = ZECF = ZCAB = ZCGE,敌E、C、F、G四点共圆。
所以“ZCGF = ZCEF = 2(90° - ZECF)= 2(90° - ZCAB)= 2ZABC 二2ZAGC " 0lWZAGF = —=—,即得ZCEF = 2ZAGFo,2 2第四題、如图,AB为直径,P为AB延长线上一点,PC切于C,点C关于朋的对称点为点D, CE1AD于E, F为CE中点,AF交于K,求证:AP为ZXPCK外扬圆的切线。
C万喜人老师的几个平面几何问题潘成华万喜人老师提出了几个关于三角形内切圆的几个问题,笔者在这里做出解答如下引理已知三角形ABC内切圆切BC于D,切AB,AC分别于H,I,点E在AD上,线段BE,CE分别交圆于F,G,AD交三角形ABC内切圆于令一点J求证:线段AD,CF,BG共点,过J的切线,直线HI,FG,BC交于一点证明设BC交过J点的切线于K,则HI必过K,易知D,K调和分割BC因为B,C,D,K是调和点列,设CF交AD因此EB,EC,ED,EK是调和线束,设BL于S,根据调和性质,点S在EC上,AD是点K极线,因此S点在圆上,所以S,G重合,因此结论得证图1问题1:已知:如图,△ABC的内切圆I与边BC,CA,AB分别切于D,E,F。
联AD,在AD上有两点M,N,CN,BN分别交圆I于G,H,直线FM,EM分别交圆I于L,Q,过L,Q作圆I切线交BC于R,S联GR、HS,求证:RH,GS交点在AD上证明:根据引理得:EF,GH,CB共点,设为P,M在P的极线AD上,于是直线LQ必过P根据Desargues定理:在三角形GLR,HQS中,设GL,HQ交点Z,GR,HS交点Y, LR,QS交点PCX,则X,Y ,Z 共线,根据Maclaurin 定理,圆内接四边形ELQF,点A,M,X,D 共线,圆内接四边形GLQH, GQ,LH 的交点(必在AD 上),X,Z 共线,且这条直线就是点P 的极线是AD , X,Z,必在点P 极线AD 上,GY ,YH,YN,YP 是调和线束, 因此RH,GS,交点在AD 上问题2:已知:如图,△ABC 的内切圆I 与边BC,CA,AB 分别切于D,E,F 。
联AD ,在AD 上有两点M,N,CN,BN 分别交圆I 于G ,H,直线FM,EM 分别交圆I 于L,Q,连接EL,FQ 交BC 于R,S 联HR 、GS,求证:RH,GS,交点在AD 上证明 必过根据设为图3XPCPCA问题3:已知:如图,△ABC 的内切圆I 与边BC,CA,AB 分别切于D,E,F 。
调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB |=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.类型3:证明直线过定点或三点共线【例4】如图, 过直线l:5x-7y-70=0上的点P作椭圆x225+y29=1的切线PM和PN, 切点分别为M,N, 连结MN.(1)当点P在直线l上运动时, 证明:直线MN恒过定点Q;(2)当MN⎳l时, 定点Q平分线段MN.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.类型4:证明两直线垂直【例6】已知A (-2,0),B (2,0), 点C 是动点, 且直线AC 和直线BC 的斜率之积为-34.(1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ 为定值.类型6:与斜率有关的定值问题【例8】设P x0,y0为桞圆x24+y2=1内一定点(不在坐标轴上), 过点P的两条直线分别与椭圆交于点A,C和B、D, 且AB⎳CD.(1)证明:直线AB的斜率为定值;(2)过点P作AB的平行线, 与椭圆交于E、F两点, 证明:点P平分线段EF.【例9】如图, 椭圆E:x2a2+y2b2=1(a>b>0 的离心率为22, 直线l:y=12x与椭圆E相交于A、B两点, AB=25,C、D是椭圆E上异于A、B的任意两点, 且直线AC、BD相交于点M, 直线AD、BC相交于点N, 连结MN.(1)求椭圆E的方程;(2)求证:直线MN的斜率为定值.【例10】四边形ABCD是椭圆x23+y22=1的内接四边形, AB经过左焦点F1,AC,BD交于右焦点F2, 直线AB与直线CD的斜率分别为k1,k2.(1)证明:k1k2为定值;(2)证明:直线CD过定点, 并求出该定点的坐标.类型7:等角问题【例11】设椭圆C:x22+y2=1的右焦点为F, 过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时, 求直线AM的方程;(2)设O为坐标原点, 证明:∠OMA=∠O MB.【例12】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点-1,32在椭圆C上, 过原点O的直线与椭圆C相交于M、N两点, 且|MF|+|NF|=4.(1)求椭圆C的方程;(2)设P(1,0),Q(4,0), 过点Q且斜率不为零的直线与椭圆C相交于A、B两点, 证明:∠APO=∠BPQ类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ上, PQ与O点关于曲线C的极线交于点R. 曲线C上有两动点A,B, 且直线AO、BO分别交曲线Γ于点C, D, 直线AB,CD分别交PQ于点M,N. 则M,O,N,R成调和点列.【证明】延长XO交BC于点E, 由定理5可知:B,E,C,Y成调和点列(完全四边形中的调和点列), 故M,O,N,R也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C:x2a2+y2b2=1,P的坐标是x0,0,Q点在P关于椭圆的极线x=a2x0上. 过P作直线交椭圆于点A,B. 求证:直线AQ,PQ,BQ的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q点在x轴上时, 就是等角线, 此时PQ斜率为0 , PQ平分∠AQB.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【例15】如下图, 椭圆x2a2+y2b2=1(a>b>0)的左右顶点为A1,B1,Q为直线x=m上一点, QA1,QB1分别于椭圆交于点A,B, 过点P作直线交桞圆于A,B两点, 直线AB与x轴交于点P, 与直线x=m交于点M, 记直线QA1,QB1,QP的斜率分别为k1,k2,k0, 则:(1)k1,k0,k2成等差数列;(2)x P x Q=a2.【例16】椭圆x2a2+y2b2=1(a>b>0)经过点M1,32, 离心率e=12.(1)求椭圆的方程;(2)设P是直线x=4上任意一点, AB是经过椭圆右焦点F的一条弦(不经过点M). 记直线PA,PF,PB的斜率依次为k1,k2,k3. 问:是否存在常数λ, 使得k1+k3=λk2. 若存在, 求λ的值;若不存在, 说明理由.调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B .【解析】因为 ax +by =1 是圆 x 2+y 2=1 的切点弦方程, 所以直线与圆相交, 故选 B .类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【答案】 x9+y 2=1.【解析】该题实质上就是求椭圆 x 29+y 25=1 内一点 M (1,2) 对应的极线方程,答案为 x9+y 2=1.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB|=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.【答案】 (1)x 24+y 22=1;(2) 见解析.【解析】(1)由题意得:c 2=22a 2+1b 2=1c 2=a 2-b 2 ,解得a 2=4b 2=2 ,所求椭圆方程为x24+y 22=1.(2) 解法 1: 定比点差法设点 Q 、A 、B 的坐标分别为 (x ,y ),x 1,y 1 ,x 2,y 2由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |, 则 λ>0 且 λ≠1又 A ,P ,B ,Q 四点共线, 从而 AP =-λPB ,AQ=λQB 于是 4=x 1-λx 21-λ,1=y 1-λy 21-λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ,从而:4x =x 21-λ2x 221-λ2⋯⋯⋯⋯(1)y =y 21-λ2y 221-λ2⋯⋯⋯.. (2)又点 A 、B 在椭圆 C 上,即:。
几何中的调和分割及应用郑皎月(安康学院数学系 陕西 安康 725000)摘要: “调和分割”又称“调和共轭”,它是交比研究中的一个重要特例,也是 贯穿大学《高等几何》课程的一个重要概念,应用它解决初等几何中有关平分角、平分线段以及高等几何中有关对合的性质、完全四点型的调和分割、完全四线型调和分割以及拉盖尔定理的推广等性质有着积极的意义。
关键字:调和分割 高等几何 应用 性质若C 点分割线段AB 的比值和D 点分割AB 的比值只差一个符号(因而一个是内分点,另一个是外分点),这时我们说C 、D 两点调和分割AB,或C 与D 对于线段AB 成调和共轭点偶,用符号1),(-=CD AB 表示。
在调和分割中,两对点的关系是完全对等的,这意思是说,当C 与D 调和分AB 时, A 与B 也调和分割CD,因而我们已知道,若1),(-=CD AB ,便也有1),(-=AB CD .一、几何中的调和分割 1.关于平分角中的调和分割三角形中一个角的内角和外角的平分线,将对边分成两线段的比值,都和两邻边成证明:由三角形中一个角的内角和外角的平分线,将对边分成两线段的比值,都和两临边成比例有EB AEDB DA CB AC EB AE ==, 即 DB DACB AC = 1=**CBDA DBAC则1-=**BCAD BDAC因此 1),(-=CD AB2、关于线段的调和分割一线段被它的中点和这直线上的无穷远点所调和分割,即证明:1),(-=∞CP AB证: ∞∞∞∞∞*=**=AP BP BC AC BC AP BP AC CP AB ),(因为 CB AC = 所以 1-=BCAC即1-=**∞∞BC AP BP AC则 1),(-=∞CP AB 3、关于对合的调和分割对合有两个二重元素,这两个元素是不重合的,可能是共轭复元素,并且这两个二重元素调和分割任意一对对应元素。
证明:由于对合的表达式是),0(,0)(2''≠-=+++b ad d u u b auu 所以决定二重元素的方程022=++d bs as不能有等根,所以两根1s 和2s 或者是不等式实根(双曲型对合),或者是共轭复根(椭圆型对合).由于对合是射影变换,因此保留交比,即),(),('21'21u u s s uu s s =,利用交比性质,此式可写作),(1),('21'21uu s s uu s s =从而1),('21=uu s s 或1),('21-=uu s s ,但1),('21=uu s s 将导致u 与'u 重合,这与对合不是恒同变换的假设抵触,从而1),('21-=uu s s . 4、关于完全四点形和完全四线形的调和分割完全四点形 完全四点形通过每一个对角点有一组调和线束,即通过这对角点的两边和对角三角形的两边。
高联难度平面几何100题第一题分析与解答第一题:证明角平分已知PE 、PF 是⊙O 的切线,A 、B 是一组对径点,PB 交⊙O 于另一点C ,直线AF 、BE 交于D 点。
求证:PCE PCD ∠=∠。
法一、调和路线()1(2):(3):⎧⎪⇒⇒⎨⎪⎩方向:对边乘积相等两切一割调和四边形方向圆上再取一点与调和四顶点相连,得新的调和线束方向一组对顶点处的切线与另一组对角线,三线共点123⎧⎪⎪⎪⇔⎨⎪⎧⎪⎨⎪⎩⎩方向:用直线截得调和点列调和线束方向:用圆截得调和四边形垂直,角平分方向:特殊的调和线束平行,中点证明:由于PE ,PF 圆O 的切线,PBC 是圆O 的切线,所以四边形EBFC 是调和四边形.又因为,A 在圆O 上,所以,(AE ,AF ;AB ,AC )是调和线束 设直线AC 与DE 交于点K ,则直线截调和线束(AE ,AF ;AB ,AC )于点E ,D ,B ,K . 于是(E ,D ,;B ,K )是调和点列,所以,(CE ,CD ,;CB ,CK )是调和线束.又因为AB 是圆O 的直径,所以,CK ⊥CB ,所以,CB 平分角ECD ,结论得证。
法二、角和边的推导1.整体思路:=EB AF D AB E F O P D C E F P PBO C =⎫⎧⎪⇒⇒⇔⎨⎬⇒=⎪⎩⎭图形基础,,,圆、、的关系结论切线切线2.关键步骤: ,,,.=EB AF DA B E F D P E F P PB O C =⎫⇒⎬⇒=⎭把的边和角的关系,推到至、切线切线3.难点突破:寻找点P 、D 的关系.证明过程:定调:,,90ABE ABF AEB AFB αβ∠=∠=∠=∠=︒.推演:+90BDF EBF BFD αβ∠=∠-∠=-︒90,90PEB PFB αβ∠=︒-∠=︒-,2+2180EPF EBF PEB PFB αβ∠=∠-∠-∠=-︒.突破:2,EPF EDF PE PF P ∠=∠=⇒是△EDF 的外心,所以,PDE PED ECP ∠=∠=∠,所以,P ,D ,E ,C 四点共圆.而PD =PE ,所以,PC 平分∠ECD . 结论:PCE PCD ∠=∠法三、角元塞瓦定理整体思路:AB E F P BEF CBA O D ⎫⎧⎪⇒⇒⇔⎨⎬⎪⎩⎭图形基础,,对圆周角元塞瓦对圆,圆圆转移角度联系两个赛周元塞瓦瓦角结论关键步骤:写出两个赛瓦定理,并选对点和三角形.难点突破:用圆连结两个塞瓦定理.证明过程:定调:设,ABE ABF αβ∠=∠=.由于AB 是圆的直径,所以,PEC EBA α∠=∠=. 推演:P 对△BEF 用赛瓦定理:()()sin 90sin sin sin cos sin sin sin sin 90cos PBE PEB PFE PBF PEF PFB ααββ︒-∠∠∠===∠∠∠︒- D 对ABC ∆用塞瓦定理:sin sin sin sin sin sin DCB DBC DAB DCA DBA DAC ∠∠∠=∠∠∠ 所以,()()sin 90sin tan sin 180sin DBC DCB DACβα︒-∠∠=︒-∠ 突破:因为,DBC PBE DCA PBF ∠=∠∠=∠,所以,sin cos cos costan cotsin sin cos sinPBEDCBDACβαβααβα∠∠===∠.结论:所以,PCE PCD∠=∠小结:角度一从调和角度,用全局的目光审视,是基于某个几何模型的做法,这需要一定的几何积累;方法二和方法三,都是从局部的观点去推到,结合综合法和分析法,按照作图的顺序逐步分析以及要证的结论逐步逆推,这就非常考验分析和发现能力,但是其更接近几何的本质.。
调和点列知二推二【原创版】目录1.调和点列的定义和性质2.调和点列的应用3.调和点列的推广和发展正文调和点列是指在平面直角坐标系中,满足如下条件的点集:对于任意一个点 P(x, y) 在该点列中,总存在另外两个点 Q(x1, y1) 和 R(x2, y2),使得 P、Q、R 三点共线,且 PR 的斜率为 -1。
这个性质使得调和点列在几何学、计算机图形学等领域有着广泛的应用。
首先,我们来介绍一下调和点列的定义和性质。
调和点列最早由法国数学家 Poncelet 在 19 世纪提出,他发现在满足一定条件下,可以通过三个共线的点来描述一个调和点列。
具体来说,如果点 P(x, y) 在调和点列中,那么可以通过以下公式来描述另外两个点 Q 和 R 的坐标:x1 = 2x - xy, y1 = 2y - xyx2 = 2x + xy, y2 = 2y + xy其中,x1、y1、x2、y2 分别为点 Q 和 R 的坐标。
可以看出,Q 和R 的坐标是关于 x 和 y 的一次函数,因此 P、Q、R 三点共线。
另外,根据斜率公式,可以证明 PR 的斜率为 -1,满足调和点列的定义。
接下来,我们来介绍一下调和点列的应用。
在计算机图形学中,调和点列常常用于生成平滑的曲线和曲面。
通过在起点和终点之间选择适当的点,可以得到一个近似于所需曲线或曲面的调和点列。
另外,在图像处理和模式识别领域,调和点列也有着广泛的应用,例如用于图像的缩放和插值等。
最后,我们来介绍一下调和点列的推广和发展。
随着调和点列研究的深入,人们逐渐发现了一些新的性质和应用。
例如,可以通过对调和点列进行推广,得到高维调和点列,用于描述空间中的曲线和曲面。
另外,调和点列还可以与其他数学概念相结合,如代数几何、拓扑学等,从而得到更深入的理论和应用。
总之,调和点列作为一种重要的数学概念,在几何学、计算机图形学等领域有着广泛的应用。