(大学物理)第二章守恒定律
- 格式:ppt
- 大小:2.10 MB
- 文档页数:22
第2单元 动量守恒定律序号 学号 姓名 专业、班级一 选择题[ B ]1. 力i F t 12=(SI)作用在质量m =2 kg 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A) -54i kg ⋅m ⋅s -1(B) 54i kg ⋅m ⋅s -1(C) -27i kg ⋅m ⋅s -1 (D) 27i kg ⋅m ⋅s-1[ C ]2. 如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为:(A) mv 2 (B)()()22/2v R mg mv π+(C)vRmgπ (D) 0[ A ]3 .粒子B 的质量是粒子A 的质量的4倍。
开始时粒子A 的速度为()j i ϖϖ43+,粒子B 的速度为(j i ϖϖ72-)。
由于两者的相互作用,粒子A 的速度为()j i ϖϖ47-,此时粒子B 的速度等于:(A) j i 5- (B) j i ϖϖ72- (C) 0 (D) j i ϖϖ35-[ C ]4. 水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦及空气阻力) (A )总动量守恒(B )总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒 (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒 (D )动量在任何方向的分量均不守恒二 填空题1. 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-=(SI),子弹从枪口射出的速率为3001s m -⋅。
假设子弹离开枪口时合力刚好为零,则(1) 子弹走完枪筒全长所用的时间 t = 0.003 s ,(2) 子弹在枪筒中所受的冲量 I = s N 6.0⋅ , (3) 子弹的质量 m = 2 ×10-3 kg 。
2. 质量m 为10kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示。
- ⎰ 0第二章 动量、动量守恒定律2—1 质量为 m 的子弹以速率v 0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速 度成正比,比例系数为 k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为 v ,子弹进入沙土的最大深度为 s ,由题意知,子弹所受的阻力f = - kv(1) 由牛顿第二定律f = ma = m d vd t 即 - kv == md vd t所以 d v = - kd t对等式两边积分 v m⎰v d v = - k ⎰tv 0v得lnv v 0m 0= - k tm因此(2) 由牛顿第二定律- k tv = v 0 emf = ma = md v= m d v d x = mv d v d t 即 - kv = mvd vd x 所以- kd x = d v m d x d t d x对上式两边积分k s d x = ⎰d v m 0 v 0得到 - ks = -vm 0即s = mv 0k2—2 质量为 m 的小球,在水中受到的浮力为 F ,当它从静止开始沉降时,受到水的粘滞阻力为 f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率 v 与时间的关系为mg - F ⎛ v =1 - e - kt ⎫ m ⎪ k ⎝ ⎭d tmg - kv mg + kv m kge- 1 mg 2tk m kgm kgT T v [证明] 任意时刻 t 小球的受力如图所示,取向下为 y 轴的正方向,开始沉降处为坐标原 点由牛顿第二定律即mg - F - f = ma = m d vd t mg - F - kv = ma = m d vd t整理得d vmg - F - kv =d t m对上式两边积分⎰vd v = ⎰t d t 0 mg - F - kv 0 m得lnmg - F - kv mg - F= -kt m即 v =mg - F ⎛ 1 - e - kt ⎫ m ⎪ k ⎝ ⎭2—3 跳伞运动员与装备的质量共为 m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即 F = kv 2 。