第八章原子吸收分析法.
- 格式:ppt
- 大小:3.01 MB
- 文档页数:39
原子吸收分析法的发展概况原子吸收光谱法是20世纪50年代中期出现并在以后逐渐发展起来的一种仪器分析方法。
它是基于被测元素的基态原子在蒸汽状态下对其原子共振线的吸收来进行元素定量分析的方法。
早在1802年,伍朗斯顿(W.H. Wollaston)在研究太阳光的连续光谱时,发现有暗线存在。
1817年,福劳霍费(J.Fraunhofer)再次发现这样的暗线,但不明其原因和来源,于是把这些暗线称为福氏线。
直到1860年本生(R.Bunson)和基尔霍夫(G.Kirchhoff)在研究碱金属和碱土金属元素的光谱时,发现钠蒸汽发射的谱线会被处于较低温度的钠蒸汽所吸收,而这些吸收线与太阳光连续光谱中的暗线的位置相一致,这一事实说明了福氏线是太阳外围大气圈中存在的Na原子对太阳光中所对应的钠辐射线吸收的结果,解开了原子吸收的面纱。
到了20世纪30年代,工业上汞的使用逐渐增多,汞蒸汽毒性强,而测定大气中的汞蒸汽较为困难,则有人利用原子吸收的原理设计了测汞仪,这是AAS法的最好应用。
AAS法作为一种实用的分析方法是从1955年才开始的。
澳大利亚的瓦尔西(A.Walsh)发表了他的著名论文"原子吸收光谱在化学分析中的应用",奠定了原子吸收光谱法的理论基础。
随着原子吸收光谱商品化仪器的出现,到了20世纪60年代中期,原子吸收光谱法步入迅速发展的阶段。
尤其是非火焰原子器的发明和使用,使方法的灵敏度有了较大的提高,应用更为广泛。
科学技术的进步,为原子吸收技术的发展、仪器的不断更新和发展提供了技术和物质基础。
近十几年来,使用连续光源和中阶梯光谱,结合用光导摄像管,二极管阵列的多元素分析检测器,设计出微机控制的原子吸收分光光度计,为解决多元素的同时测定开辟了新的前景。
微机引入原子吸收光谱,使这个仪器分析方法的面貌发生了重大的变化,而与现代分离技术的结合,联机技术的应用,更开辟这个方法更为广阔的应用前景。
原子吸收光谱法的分析过程首先把分析试样经适当的化学处理后变为试液,然后把试液引入原子化器中(对于火焰原子化器,需先经雾化器把试液雾化变成细雾,再与燃气混合由助燃器载入燃烧器)进行蒸发离解及原子化,使被测组成变成气态基态原子。
原子吸收分析方法原子吸收光谱仪是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业。
原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法。
既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Al、Cd、Pb、Ad;原材料、铁合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些纯金属(如Al、Cu)中残余元素的检测。
光谱仪器的产生原子吸收光谱作为一种实用的分析方法是从1955年开始的。
这一年澳大利亚的瓦尔什(A.Walsh)发表了他的著名论文‘原子吸收光谱在化学分析中的应用’奠定了原子吸收光谱法的基础。
50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。
到了60年代中期,原子吸收光谱开始进入迅速发展的时期。
电热原子吸收光谱仪器的产生1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。
电热原子吸收光谱法的绝对灵敏度可达到10-10g,使原子吸收光谱法向前发展了一步。
原子吸收分析仪器的发展随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。
近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。
微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。
光谱法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。
该法具有检出限低准确度高,选择性好,分析速度快等优点。
度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。