应用一元一次方程-打折销售
- 格式:doc
- 大小:72.00 KB
- 文档页数:6
应用一元一次方程——打折销售教学内容应用一元一次方程——打折销售教学目标1.分析实际问题中关于打折销售的数量关系,建立方程解决问题。
2.进一步经历运用方程解决实际问题的过程,体会数学的应用价值。
教学重难点本节的重难点在与让学生在针对实际生活中的打折问题中,运用方程来解决,引导学生发现问题中的变量,以及根据变量来确定等量关系。
教学过程设计本节进一步让学生熟悉用方程解决实际问题的步骤和方法,选择的问题是销售问题,等量关系不再那么直接,需要结合具体问题寻找。
“打折销售”虽是生活中的常见现象,但学生这方面的经验不一定很多。
因此,学习本节内容之前,教师可提前一周布置学生去商场进行调查,了解商品打折的有关情况,以及商品利润等有关知识,这样既为本课的学习积累丰富的感性经验,又为课后练习打下坚实的基础,同时培养学生走向社会,适应社会的能力。
本节课开始播放了一些商家打折的图片,来引入本节课的主题。
学生在探索销售打折类的问题中,一般需要涉及成本、售价、标价、利润、利润率,他们之间的等量关系:利润=售价—成本,%100⨯=成本利润利润率往往是我们建立等量关系的关键。
通过本例题,教学过程中,教师引导学生发现其中的变量,并且根据变量构建等量关系:利润=售价—成本,通过小组探究的方式,让学生学会利用等量关系,建立数学模型来解决实际生活中,我们面临的问题,在教学时,我们可以让学生在读懂题意的基础上思考:本例中涉及那些量,那些是已知量,那些是未知量?这些量具有怎么样的等量关系?我们怎么样来设置未知数呢?在本节课的最后,教师一定需要对本节课的知识进行深华,本节课我们的经历了从实际问题中抽象出数学问题,并通过分析其中的已知量、未知量、等量关系来构建方程。
目标检测设计:1.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( ).A .不盈不亏B .盈利10元C .亏损10元D .盈利50元 2.某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x 元,根据题意,可得到的方程是( )A .()150%90%135x +⨯=B .()150%90%135x x +⨯=-C .()150%90%135x +⨯=D .()150%90%135x x +⨯=-3.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T 恤衫,按照8折销售仍可获利10元,设这件T 恤的成本为x 元,根据题意,下面所列的方程正确的是( )A .600.810x ⨯-=B .60810x ⨯-=C .600.810x ⨯=-D .60810x ⨯=-4.请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,鸭有多少请算清.根据诗的内容,设共有x只鸭子,可列方程:________________,得合并同类项,得________,两边乘________,得x ________.5.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.6.某服装每件进价为150元,由于换季滞销,若按标价打九折后,再降价6元销售,仍获利10%,则该服装每件的标价为________元.7.某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:(1)辣椒和蒜苗各批发了多少kg?(2)他当天卖完这些辣椒和蒜苗能赚多少钱?8.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.。
5.4应用一元一次方程——打折销售一、教学目标(一)知识与技能:1、理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系。
2、能根据商品销售中的数量关系找出等量关系列出方程,利用一元一次方程解决商品销售中的实际问题。
(二)过程与方法:学生亲历和体验运用一元一次方程解决实际问题的过程,培养学生建立方程模型将实际问题转化为数学问题的化归能力。
能利用所学的知识解决生活中的打折销售问题,发展应用意识。
(三)情感态度与价值观:体会数学与生活的密切联系,激发学生研究数学的兴趣;体验与人交流的重要性,培养学生合作交流的意识和能力。
二、重难点教学重点:应用一元一次方程解决打折销售问题。
教学难点:找出相等关系,建立方程。
三、教学过程1、创设情境,导入新课活动每当节日或换季时,会看到各种打折销售活动,教师利用大屏幕播放从学生的生活中出现的销售的广告,提出问题:你们见过哪些打折方式?从商场里打折销售的图片入手创设提问:商家打折会亏本吗?面对五花八门的销售方式,学生观看图片,激发其兴趣进入情境,回答问题。
本节课,大家就来一起探索一下打折销售的奥妙吧!2、设身处地,探究新知活动学校门口有一阳光文具店,一种计算器进价为10元,提高50%标价,标价为15元,每个可赚5元。
为了削减库存,按原标价的8折销售,此时的售价是多少元?利润为多少元?利润率为多少?提问学生黑板板书:解:此时售价:15×0.8=12(元)利润:12-10=2(元)利润率:2÷10×100%=20%答:此时的售价是12元,利润为2元,利润率为20%。
设计意图:通过实际问题的解决展示新的课时探究,探索打折销售的特点,学会找出问题中的各个数学基本量,初步了解打折销售问题。
3、小组合作,展示成果活动(1)小组合作共同探讨进价、标价、实际售价和利润之间有怎样的关系?总结出常用公式。
学生自主探究分组讨论回答,教师对问题的回答进行评价。
北师大版七年级数学上册《应用一元一次方程——打折销售售》典型例题(含答案)例1:一种蔬菜加工后出售,单价可提40%,但重量要降低20%,现有未加工的这种蔬菜1000千克,加工后共卖了1568元,问不加工每千克可卖多少钱?1000千克能卖多少钱?比加工后少卖多少钱?解析:本题的关键在于第一问,求出其他问题就解决。
由题意可知如下相等关系:加工后的蔬菜重量×加工后的蔬菜单价=1568元。
而加工后的蔬菜重量=1000×(1-20%),如果设加工前这种蔬菜每千克可卖x元,则加工后这种蔬菜每千克为(1+40%)x元,故可得方程。
解答:设不加工每千克可卖x元,依题意,得1000(1-20%)(1+40%)x=1568.解方程得:x=1.4.所以1000x=1400,1568-1400=168.答:不加工每千克可卖1.4元,1000千克能卖1400元,比加工后少卖168元。
例2:某企业生产一种产品,每件成本价400元,销售价510元,为了进一步扩大市场,该企业决定降低销售价的同时降低生产成本.经过市场调研,预计下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件的成本价应降低多少元?解析:由已知可得如下相等关系:调整成本前的销售利润=调整成本后的销售利润。
若设该产品每件的成本价应降低x 元,假定调整前可卖m件这种产品,则调整前的销售利润是(510-400)m,而调整后的销售价为510(1-4%),调整后的成本价为400-x。
调整后的销售数量m(1+10%),所以调整后的销售利润是:[510(1-4%)-(400-x)]×(1+10%)m,由相等关系可得方程:[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
解答:设该产品每件的成本价应降低x元,降价前可销售该产品m件,依题意,得[510(1-4%)-(400-x)]×(1+10%)m=(510-400)m。
北师大版七年级上册数学5.4《应用一元一次方程——打折销售》说课稿一. 教材分析《应用一元一次方程——打折销售》这一节的内容,是北师大版七年级上册数学的第五章第四节。
这部分内容是在学生已经掌握了方程的解法的基础上,引导学生运用一元一次方程解决实际问题,特别是打折销售问题。
教材通过具体的案例,让学生了解和掌握一元一次方程在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
二. 学情分析面对七年级的学生,他们在数学学习方面已经有了一定的基础,对于方程的解法已经有了一定的了解和掌握。
但是,对于如何将数学知识运用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生将理论知识与实际问题相结合,提高他们解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解打折销售的概念,掌握一元一次方程在打折销售问题中的应用。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:学生能够理解打折销售的问题模型,熟练运用一元一次方程解决打折销售问题。
2.教学难点:如何引导学生将实际问题转化为数学模型,并运用一元一次方程解决。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例教学法和小组合作学习法。
通过讲解打折销售的概念,让学生理解一元一次方程在实际问题中的应用;通过案例分析,让学生掌握解决打折销售问题的方法;通过小组合作学习,让学生在讨论中提高解决问题的能力。
六. 说教学过程1.导入:通过引入生活中的打折销售实例,激发学生的学习兴趣,引出本节课的主题。
2.讲解:讲解打折销售的概念,引导学生理解打折销售问题中的一元一次方程模型。
3.案例分析:分析具体的打折销售案例,让学生掌握解决打折销售问题的方法。
4.小组讨论:学生分组讨论,共同解决打折销售问题,提高学生解决问题的能力。
一、打折销售一元一次方程应用题的相关概念1.1 打折销售的概念在日常生活中,我们经常会遇到各种各样的打折销售活动。
打折销售是商家为了促进产品的销售而采取的一种促销手段,通过给予用户一定比例的折抠,来吸引用户购物商品。
1.2 一元一次方程的概念一元一次方程是指一个未知数的一次方程,通常可以用类似“ax+b=c”的形式来表示,其中a、b、c分别代表已知的系数或常数,x代表未知数。
解一元一次方程就是求出这个未知数的值,使得方程等号成立。
1.3 打折销售一元一次方程的应用在打折销售中,经常会涉及到一元一次方程的应用。
用户在购物商品时,商家通常会给出原价和折抠率,用户需要根据这些信息来计算最终的价格。
而这个过程就可以用一元一次方程来进行建模和求解。
二、打折销售一元一次方程应用题的解题步骤2.1 理清题意,假设原价为x在遇到打折销售一元一次方程应用题时,首先要理清题意,明确原价和折抠率等信息。
然后假设原价为x,根据折抠率可以得到折抠后的价格为x*(1-折抠率),这就是我们需要求解的最终价格。
2.2 起一个未知数,建立方程接下来,我们可以起一个未知数,通常用y来表示折抠后的价格。
然后根据题目给出的信息,建立一元一次方程。
如果题目给出了原价为x,折抠率为p,折抠后的价格为d,那么我们就可以建立方程x-p*x=d,然后求解方程得到最终的价格。
2.3 检验解答是否合理我们要对求解出的结果进行检验,看看是否符合实际情况。
通常可以将求解出的y值代入原方程中,再用折抠率计算实际的折抠后价格,看两者是否相符。
如果相符,则说明求解无误。
三、打折销售一元一次方程应用题的实例3.1 实例一某商场举行打折促销活动,一件原价为200元的商品打八五折,求打折后的价格是多少?3.1.1 确定未知数和建立方程我们可以假设折抠后的价格为y,原价为200元,折抠率为85。
根据折抠率公式,可以得到打折后的价格的方程为200*0.85=y。
3.1.2 求解方程带入原方程计算可得y=170,所以打折后的价格为170元。
第五章一元一次方程第四节打折销售一.学习目标:1.进一步经历运用方程解决实际问题,体会运用方程解决实际问题的一般过程.2.掌握销售过程中的等量关系.3.提高学生找等量关系列方程的能力;培养学生的抽象、概括、分析和解决问题的能力;学会用数学的眼光去看待、分析现实生活中的情景.二.教学重点:1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.2.解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题.三.自主学习1.请举例说明打折、利润、利润率、提价及降价的含义分别是什么?利润计算公式:利润= .2.学习内容:课本145-146页的内容预习课本145页的引例,逐项完成课本上的填空四、展示解疑点拨提升算一算:(1)原价100元的商品,打8折后价格为元;(2)原价100元的商品,提价40%后的价格为元;(3)进价100元的商品,以150元卖出,利润是元.2.一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?分析:这15元的利润是怎么来的?即等量关系式是:.解:设这种服装每件的成本是x元.根据题意,得方程为:答:.归纳总结:用一元一次方程解决实际问题的一般步骤:五、课堂检测:4.一件夹克按成本价提高50%后标价,后来因为季节关系又以标价的8 折优惠卖出,结果每件以300元卖出,这批夹克每件的成本是多少元?5.一件商品按成本价提高20%后标价,后来又以标价的9折优惠卖出,结果每件仍获利20元,这件商品的成本是多少元?6.某件商品提价25%后,欲恢复原价,则应该降价的百分率是多少?7.某商店两种不同的计算机都卖64元,其中一个盈利60% ,另一个亏本20%,在这次买卖中这家商店()A.不赔不赚B.赔8元C.赚8元D.赚32元8.某商场的电视机原价为2500元,现以8折销售,如果想使得降价前后的销售额都为10万元,那么销售量应该增加多少台?六、课后反思回顾本节课的内容,你有哪些收获?你还有哪些不明白的地方?。
一元一次方程打折销售应用题1.某商店新开张,为了吸引顾客,所有商品都按八折优惠出售。
已知一种皮鞋进价为60元一双,商家按八折出售后获利润率为40%。
问这种皮鞋的标价和优惠价分别是多少元?解:设这种皮鞋标价为x元,根据题意得到方程8/10x=60×(1+40%),解得x=105.因此,这种皮鞋的标价是105元,优惠价是84元。
2.一家商店将某种服装按进价提高40%后标价,然后以八折优惠卖出,结果每件仍获利15元。
问这种服装每件的进价是多少元?解:设进价为X元,根据题意得到方程80%X(1+40%)—X=15,解得X=125.因此,这种服装每件的进价是125元。
3.一家商店将一种自行车按进价提高45%后标价,然后以八折优惠卖出,结果每辆仍获利50元。
问这种自行车每辆的进价是多少元?解:设这种自行车每辆的进价是x元,根据题意得到方程80%×(1+45%)x - x = 50.解得x=200.因此,这种自行车每辆的进价是200元。
4.某商品的进价为800元,出售时标价为1200元。
由于该商品积压,商店准备打折出售,但要保持利润率不低于5%。
则至多打几折?解:设最多打折为x折,则有(1-x)×1200=800×(1+5%)。
解得x≤20%。
因此,至多打2折。
5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。
经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。
求每台彩电的原售价。
解:设每台彩电的原价格是x元,根据题意得到方程(1+40%)x×0.8-x=270.解得x=2250.因此,每台彩电的原售价是2250元。
第五章一元一次方程
第4节打折销售
一、教材分析:
本节课以“打折销售问题”为例展开探索,关键在于搞清成本、售价、标价、利润、利润率等术语的含义.分析“打折销售问题”中的数量关系,建立数学模型,列出方程,并用方程最终解决实际问题.使学生进一步领悟到方程解实际问题的关键是找到“等量关系”.由于打折销售问题是学生日常生活中常见的问题,可以在课前安排学生深入超市、商场等地,感受有关打折销售的现实情景,了解成本、售价、标价、利润、利润率等之间的关系.通过举具体事例说明“利润=售价-成本”,“利润率=利润÷本金”等基本关系.要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义.
二、学情分析:
打折问题,学生在小学阶段已有所接触和认识,学生已知“几折”所表示的意义,而且学过用算术方法计算一些简单的打折销售问题.但对于绝大多数学生来说,通过建立等量关系来分析一些较复杂的打折销售问题还存在一定的困难.
通过前两节课的学习,学生已经经历运用方程解决实际问题的过程,知道寻找等量关系是解决问题的关键.打折销售是学生学习了代数式,简易方程即一元一次方程的解法后的一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.打折销售是生活中常见的但不是很熟悉的一个问题,学生缺少丰富的生活体验,因此让学生进行课前调查很有必要.学生根据切身体会和实践经验进行总结,应用一元一次方程解决实际问题的一般步骤,体会更加深刻.
三、教学目标:
(一)知识与技能:
1.了解商品销售中相关概念的含义,理解成本、售价、利润、利润率之间的数量关系;
2. 在具体打折问题中通过分析打折销售中的数量关系,,准确找出等量关系列出方程并求解,
(二)过程与方法
通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活
中的打折现象,理性消费。
(三)情感、态度与价值观
在学习数学过程中,体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学生热爱数学的热情及与人合作、交流的能力.
四、教学过程设计:
(一)课前准备
布置社会调查任务:学生利用周末深入超市或者商场了解打折活动,记录获得的信息和问题。
设计目的:亲身体验,感受数学与社会生活的联系,了解打折销售的基本概念,为上课作知识铺垫和感性经验,为课后练习打下坚实的基础,同时培养学生走向社会、适应社会的能力.
(二)情境引入
这节课学习“打折销售”,通过课前调查,同学们对本节课产生了浓厚的兴趣,非常想弄清楚打折销售到底给消费者带来了多少实惠,商家到底还有多少利可赚.要想弄清楚这些问题,就要弄明白打折销售的一些相关概念,以及它们之间的内在联系.所以,课前先来欣赏一段和打折销售有关的小品。
情景剧:
商家:卖衣服咯!走过路过不要错过!买的越多,实惠越多!
路人甲:老板这件衣服咋卖?
商家:原价1000,现在打八折!
路人甲:八折还要800,太贵了,有便宜一点的吗?
商家:这件便宜,只要500元.
路人甲:这件也不错,那我就要这件吧。
路人乙:老板,这件衣服怎么卖?
商家:这件500元.
路人乙:那这件呢?
商家:这件原价1000,现在打八折!
路人乙:我算一下,打八折是800元,那我就要这件吧!
商家:好嘞!
商家:(指A )这件100元的进价,卖了500元,赚了400元,(指B )这件原价1000元,打八折后,也赚400元,这两件衣服都这么火,不压货,看来以后要多进这个(指A )。
设计目的:为学生更好的掌握这些基本概念以及它们之间的内在联系提供直观的感性素材,激发学生强烈的好奇心和求知欲,让抽象的数学概念具体化,让学生通过观看形象直观的表演来感受和体会.
(三)概念梳理
通过小组内讨论交流,明确情境剧中涉及各量的含义,理顺各量之间的关系,形成知识体系,为解决实际问题作好铺垫.
成本价:进货时商品的价格(有时也叫进价)
标价:商品所标明的价格(有时称原价)
售价:商品出售时的实际价格
打折:打几折就是按照标价乘十分之几
利润:售价与成本之间的差值
利润率:利润÷成本 100%
思考:为什么商家最后说下次应该多进A 种衣服?
A 衣服:成本100元,售价500元,利润400元
B 衣服:成本400元,售价800元,利润400元
分析:在利润相同的情况下,商家要获利更多就要去考虑其它因素,什么因素?成本(对,成本低就表示在本金一定的情况下多进货,多进货还不压货肯定赚得多)。
也可以看其利润率,因为利润率=利润÷成本,哪个利润率高商家就应该选择哪个.
基础演练:
1.一件衣服的售价为130元,成本价为80元,则利润为_____元
2.一件商品的成本价为45元,利润为10元,则售价应为_____元
3.一件商品的标价为50元,现以八折销售,售价为_____元;如果成本价为32元,则它的利润为___元,利润率为_____
4.一件商品的标价为 元,六折后出售,则售价为______元;如果进价为55元,则它的利润为___________元
设计目的:教师参与学生交流,根据学生生活经验和课前调查的感性积累,⨯⨯
学生不难理解打折销售的基本概念,而对于它们之间的内在联系的建立,学生存在个体差异,教师可对部分学生可单独进行指导,概念的梳理为应用题解题确定已知量和未知量的等量关系排忧解难.
(四)例题讲解
例1:这件衣服是按成本价提高40%后标的价,你按8折销售,我已算过了,每件可赚15元。
成本价是多少?
分析:由于学生第一次接触这种复杂的数量关系,所以在分析数量关系时必然要遇到一些困难,这时,教师可出示表格,让学生尝试用填写表格的形式理清数量之间的关系,解决问题的关键就是列出等量关系,本题的等量关系是:利润= 售价-成本价.
解:如果设每件服装的成本价为x元
列出方程(1+40%)x-80% - x = 15.
解方程得x = 125
答:这种服装每件成本为125元.
设计目的:教材中的例题,要求学生思考解答、完整解答、教师点评。
此处主要是想起到示范作用.让学生经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型.
变式1:这件衣服成本是150元,按成本价提高60%后标价,为了吸引顾客这件衣服又进行了打折销售,如果每件还能赚66元。
打了几折?
变式2:这件衣服成本是150元,将成本价加价后标价,为了吸引顾客这件衣服又打8折销售,如果每件衣服还能赚30元。
标价是多少?
设计目的:这两道变式题的分析是重点,在此过程中,首先让学生分小组读题,讨论,思考题目的已知和未知,考虑思路,在学生遇到困难时,教师给予适当的指导。
两道题从不同角度领会利润的计算方法,掌握“打折销售”问题的常见类型。
由未知找已知,执果索因,再由已知找未知,由因导果。
这样有利于解决学生“不知如何思考”的问题,提高解题能力,养成良好的解题习惯.
思考:用一元一次方程解决实际问题的一般步骤是什么?
审、找、设、列、解、验、答.
设计目的:将问题进行升华,总结一般一元一次方程解决实际问题的一般步骤,使知识系统化,提高学生归纳总结的能力.
(四)课堂小结
1、本节课你学到了哪些知识和方法?
(1)知道了打折、利润的含义,了解了利润、售价、成本价之间的关系,学会了利润率的计算方法.
(2)对于一些实际问题,可以选设未知数,并表示其他未知量,利用一般等量关系(如公式等)构建一元一次方程求解.
2、用一元一次方程解决实际问题的一般步骤是什么?
审、找、设、列、解、验、答.
3、你还有什么收获和体会?
用方程模型可以帮助我们解决商品营销中的打折问题,数学来源于生活,服务于生活等.
送给学生的话——
“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。
因此,一旦解决了方程问题,一切问题就可以迎刃而解。
”
笛卡尔的这段话虽然夸大了方程的作用,但却说明了方程作为数学的一个重要分支,是刻画现实世界数量关系的一个有效数学模型。
方程在日常生活,工农业生产,城市规划乃至国防等领域都有广泛的应用。
同时,它也是学习数学乃至物理,化学等其他学科知识的一个重要基础。
(五)作业布置
1.请同学们到商场了解打折销售的情况,选择一个自己感兴趣的商品,列出其销售分析图,标出每个量的具体数值,并计算利润率.
2.课本146页2,3题.
(六)评价与反思
这堂课在学生进行商场调查,有一定感性认识的基础上,以情景剧引入,激发学生学习兴趣,从最简单的问题着手,让学生理解打折销售中常见的名称及相
互关系,为后续的学习打下坚实的基础.通过适当改变实际背景让学生从多方面体会打折销售中的各种数量关系,逐步领悟运用一元一次方程解决实际问题的一般步骤,教学效果较好.
肯定的方面:教学过程中学生通过体验商业活动、提出数学问题、解决实际问题,感受到数学来源于生活、数学服务于生活,数学与社会生活的密切联系.教学过程各环节环环相扣、层层递进,每一个教学环节都是下一个环节的有力铺垫.改进的方面:在小组讨论之前,应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.。