假设检验的两类错误
- 格式:ppt
- 大小:153.50 KB
- 文档页数:8
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
知识点8.2假设检验的两类错误由于样本具有随机性, 小概率事件也可能发生, 所以假设检验所得出的决策并不总是正确的.原假设H 0为真客观事实决策结果原假设H 0为假拒绝H 0接受H 0拒绝H 0接受H 0错误这种错误称为第一类错误又称“弃真”错误.犯第一类错误的概率记为α.错误这种错误称为第二类错误又称“取伪”错误.犯第二类错误的概率记为β.正确正确理想1:α和β的关系α和β都是0.现实:那不可能!理想2:α和β都很小.现实:如果样本容量n固定, 那也不可能!大↑↓小固定的样本容量nαβα和β真的不能都变小?除非样本容量够大!为了检验火柴的质量, 把火柴厂一天生产的所有火柴都划一遍?!经常在影视中看到的“地毯式搜索”意义何在?如果有人告诉你,本课程所有的考试题均来自于某一本习题集,但不知具体是哪几道,你将怎样复习?哪种错误的后果更严重?“宁可错杀一千,不可放过一个”又是什么意思?显著性检验方法:对犯第一类错误的概率严格加以控制.显著性检验体现了“保护原假设”的原则:只有当小概率事件发生时, 才会拒绝原假设, 所以原假设很难被拒绝.此外, 无论是原假设还是备择假设, 都应该是不可证明的命题, 否则就无需使用假设检验方法了.(2)在H0成立的前提下选取检验统计量W, 确定其概率分布;(1)提出原假设H0与备择假设H1;假设检验问题的基本步骤(3)选取显著性水平α及样本容量n;(4)确定临界值及H的拒绝域;(5)计算W的观测值, 作出拒绝H0还是接受H的决策.。
第三章 假设检验3.1 假设检验 两类错误(1)假设检验(hypothesis test ) 假设检验是统计推断的另一类重要问题,是概率意义下的一种反证法。
一般,当母体X 的分布完全未知,或只知其形式而不知其参数时,为推断母体的有关特性,提出针对母体的某项假设;再对母体进行抽样,依据子样值对所提假设做出接受或拒绝的决策。
(2)决策依据——实际推断原理 小概率事件在一次试验中几乎不发生。
若抽样结果是小概率事件在这一次试验中发生了,就有理由怀疑假设的正确性,从而做出拒绝原假设的决策;否则接受原假设。
例 3.1.1 某饮料厂在自动流水线上装饮料,每瓶的重量(单位:克))10,(~2μN X ,正常生产情况下500=μ,一段时间后,为检查机器工作是否正常,抽取9个样品,称重后算得494=x ,试问:此时自动流水线的工作是否正常?解:①提出假设母体)10,(~2μN X ,其中μ未知,在母体上作原假设0H 和备择假设(或称对立假设)1H 如下:↔==500:00μμH 500:01=≠μμH ②构造检验统计量X ∴的值应与μ很接近,想到用X 的值来检验原假设0H .当原假设成立时,10),,(~0200=σσμN X ,故),(~200n N X σμ,从而)1,0(~/10500/000N n X n X U H -=-=σμ(3-1)③给定小概率,找出拒绝域取小概率02.0=α,则有2αu 使}{2αα=≥u U P (3-2)}{2αu U ≥是一个小概率事件,如果一次抽样的结果是这一小概率事件发生了,则认为原假设不合理,应予拒绝。
即应取拒绝域}),,,{(221αu U x x x W n ≥= }),,,{(221ασμu n X x x x n ≥-= (3-3)④做出决策 这时,494=x ,5000=μ,9,100==n σ,8.1=∴U ;02.0=α,33.201.02==u u α,故2αu U <,∴应接受0H ,即认为机器工作正常.注:①假设检验又称为差异显著性检验;②假设检验是具有概率性质的反证法;③拒绝H的说服力强,接受0H的说服力不强;④α越小,拒绝H的说服力越强。
假设检验中的两类错误及其控制方法假设检验是统计学中常用的一种推断方法,用于判断关于总体参数的假设是否成立。
在进行假设检验时,我们一般会面临两类错误,即第一类错误和第二类错误。
本文将介绍这两类错误的含义、造成原因以及控制方法。
一、第一类错误的含义及控制方法第一类错误,也被称为α错误,指的是当原假设为真时,却错误地拒绝了原假设的情况。
换句话说,第一类错误意味着我们得出了一个错误的结论,即在事实上不存在的关系。
控制第一类错误的方法主要是通过控制显著性水平α来实现。
1. 显著性水平的控制显著性水平α定义了我们在进行假设检验时拒绝原假设的临界值。
通常情况下,α的取值为0.05或0.01,代表了我们容忍犯第一类错误的概率。
较小的α值会降低犯第一类错误的风险,但同时也增加了犯第二类错误的概率。
2. 样本容量的控制样本容量对于控制第一类错误也至关重要。
较大的样本容量可以提供更多的信息,从而降低犯第一类错误的概率。
因此,在进行假设检验时,我们应尽可能选择足够大的样本容量来增加推断的准确性。
二、第二类错误的含义及控制方法第二类错误,也被称为β错误,指的是当原假设为假时,却错误地接受了原假设的情况。
换句话说,第二类错误意味着我们未能发现事实上存在的关系。
控制第二类错误的方法主要是通过改进实验设计或增大样本容量来实现。
1. 实验设计的改进良好的实验设计可以降低发生第二类错误的概率。
例如,在两组样本进行比较时,我们可以增加处理组与对照组的差异,从而提高检测到显著差异的能力。
此外,合理的随机分组和对照设计也能够有效地控制第二类错误。
2. 样本容量的增大与控制第一类错误类似,增大样本容量也是控制第二类错误的一种方法。
较大的样本容量可以提高检测到真实差异的概率,从而减少第二类错误的发生。
在做出假设检验计划时,我们应考虑到研究资金、时间和实验设计等方面的限制,尽可能选择足够大的样本容量。
总结:在假设检验中,我们需要控制两类错误,即第一类错误和第二类错误。
3、方差不齐时两样本均数差别的统计意义检验(t '检验)用以上t 检验检验两样本均数的差别有无统计意义的另一前提条件为两总体的方差(variance)相等。
如果被检验的两个样本方差相差较大,则需先检验两样本方差的差别是否有统计意义。
如果差别有统计意义,则需要用校正t 检验(t '检验)。
检验两样本方差的差别有无统计意义可用方差齐性检验,即把两方差求一比值F (较大方差作分子,较小方差作分母),用公式表示:1 ,1 22112221-=-==n n S S F νν如果两个方差之比仅是抽样误差的影响,它一般不会离1太远,F 分布就是反映这个概率的分布。
注意:方差齐性检验本为双侧检验,但由于规定以较大方差作分子,F 值必然会大于1,故附表单侧0.025的界值,实对应双侧检验P=0.05.当两总体方差不齐时,用t 检验法就不近合理了。
据数理统计研究结果,可按下式求出均数之差的标准误及t '值(即作t '检验)。
')(21222121')(2121x x x x S x x t n S n S S ---='+=然后用下列公式求出作统计判断用的临界值(校正):22)0.05(2)0.05(205.0212211t ,t , x x x x S S S S t ++='νν有了t ' 值和校正界值,就可以得出P 值,作出推断结论。
例如:某医生测试了25例正常人和32例喉癌患者的血清铁蛋白(SF )平均浓度(ug/L ),试问:喉癌患者的血清铁蛋白浓度是否不同于正常人?组 别 例数 s x ±- 正 常 人 25 64.0±24.40厚爱患者 32 244.2±57.611、 进行方差齐性检验:21.257.540.2461.57)24.30(025.022===F FF > )24.30(025.0F P<0.052、9569.153261.572540.242.2440.642222212121=+-=+-='nSnSxxt0445.23261.572540.24040.23261.57064.22540.24tt222222)0.05(2)0.05(205.0212211=+⨯+⨯=++='xxxxSSSStννt'〉05.0t'P < 0.05可以认为:正常人与喉癌患者的血清铁蛋白总体平均浓度不同,喉癌患者的血清铁蛋白高于正常人。
浅谈假设检验中的两类错误及样本含量的关系作者:孙成霖来源:《价值工程》2010年第06期摘要:假设检验是统计推断的内容之一,统计推断在体育统计学中的地位也十分重要。
在假设检验中存在两类错误。
在很多时候,我们往往只注意第一类错误的控制,而对于第二类错误经常不考虑。
其实,对于第二类错误的控制也是十分必要的。
本文对于两类错误的成因以及如何控制第二类错误进行了探讨,希望对于第二类错误的控制提出一些解决的方法。
Abstract: The hypothesis test is one of the elements of statistical inference, statistical inference has a very important status in sports. there are two types of errors in the hypothesis test . In many cases, we tend to only pay attention to the control of the first type of error, while the second type of error often being not considered. In fact, the second type of error control is also essential.Causes of the two types of errors and how to control Type II error are discussed and solution is proposed for reference.关键词:假设检验;两类错误;概率Key words: hypothesis testing;two types of errors;probability中图分类号:C81文献标识码:A文章编号:1006-4311(2010)06-0039-010引言假设检验是统计推断的内容之一,统计推断在体育统计学中的地位也十分重要。
第六章 假设检验基础四、假设检验的功效假设检验的两类错误n第Ⅰ类错误:实际情况与H一致时,却根据统计量数值拒,这样的错误称为第Ⅰ类错误;绝H出现第Ⅰ类错误的概率用α 表示。
n第Ⅱ类错误:实际情况与H不一致时,却根据统计量数值,这样的错误称为第Ⅱ类错误;不拒绝H出现第Ⅱ类错误的概率用β 表示。
图1 两类错误示意图从图可见,对于某一具体的检验来说,当样本量n 一定时, α 越小 β 越大, α 越大 β 越小。
当样本均数超过这条线时,拒绝H 0 这个小尾巴就是犯第I 类错误的概率这个小尾巴就是犯第II 类错误的概率检验的功效n H 0 实际上不成立时,根据统计量的数值拒绝H 0,做对了! 这样的概率,称为检验功效(power of test),记为 1 β 。
n 检验功效的意义:当两个总体参数的确存在差异时,所使 用的统计检验能够发现这种差异的概率。
n 例 如果1β = 0.90,则意味着当H 0实际上不成立时,理论 上在每100次检验中,平均有90次能拒绝H 0 。
1. 单样本设计资料t 检验的功效 例1 已知北方地区一般儿童前囟门闭合月龄的均值为14.1,某 研究人员从东北某缺钙地区抽取36名儿童,得前囟门闭合月 龄均值为14.3,标准差为5.08。
问该县儿童前囟门闭合月龄是 否大于一般儿童的前囟门闭合月龄?经 t 假设,得t =0.236,P >0.05,不拒绝H 0。
试计算该检验的功效1β 根据医学专业知识,缺钙 地区不会闭合得更快,但有可能闭合得慢些,故可作单侧检验可能的确和一般地区没差别; 但也可能样本量小, 功效不够大 ?!首先按下式计算 n : 样本量δ : 欲发现的最小差异(或容许误差)σ : 总体标准差;: 标准正态分布的临界值。
单侧检验时取单侧临界值;双侧 检验时取双侧临界值: 标准正态分布的单侧临界值 a Z b Z ab s dZ n Z - = 算得 b Z 后,反查标准正态分布表来确定 β,进而得到 1β。
假设检验16.2假设检验问题的两类错误和p 值假设检验两类错误原假设成立原假设不成立接受√第二类错误(受伪)拒绝第一类错误(拒真)√第一类错误即为显著性水平()()W X P H H P ∈==αθ为真拒绝00|,第二类错误的概率表达为()()W X P H H P ∈==βθ为真接受10|,1Θ∈θ。
**********************************************************假设检验中,两类错误的概率不能同时减小,二者相互制约。
犯第一类错误的概率越小,则犯第二类错误的概率越大,犯第二类错误的概率越小,则犯第一类错误的概率越大。
原假设和备择假设不能随意互换位置,原假设是人们经验上认为正常的假设。
理想的检验应该是在控制犯第一类错误的基础上,尽量少犯第二类错误。
显著性检验具有“保护原假设”的特点,显著性水平α也不是越小越好。
固定第一类错误的概率,可通过增加样本量降低犯第二类错误的概率。
**********************************************************例16.2.1某厂生产一种标准长度35mm的螺钉,实际生产的产品长度服从正态分布()2,3N μ。
做假设检验,样本容量36n =,0:35H μ=,1:35H μ≠,拒绝域为{}:351W x x =->。
(1)犯第一类错误的概率。
(2)μ=36时,犯第二类错误的概率。
解(1)检验统计量X 的分布为~,212X N μ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,第一类错误的概率为{}35135P X αμ=->={}135135P X μ=--≤=351223512X P μ⎧⎫-=--<>=⎨⎬⎩⎭()()()1222220.0455=-Φ+Φ-=-Φ=。
(2)第二类错误的概率为{}35136P X βμ=-≤=()|135136P X μ=-≤-≤=|36403612X P μ⎛⎫ ⎪-=-≤≤= ⎪ ⎪⎝⎭()()()()040410.5=Φ-Φ-=Φ+Φ-=。
3、方差不齐时两样本均数差别的统计意义检验(t '检验)用以上t 检验检验两样本均数的差别有无统计意义的另一前提条件为两总体的方差(variance)相等。
如果被检验的两个样本方差相差较大,则需先检验两样本方差的差别是否有统计意义。
如果差别有统计意义,则需要用校正t 检验(t '检验)。
检验两样本方差的差别有无统计意义可用方差齐性检验,即把两方差求一比值F (较大方差作分子,较小方差作分母),用公式表示:1 ,1 22112221-=-==n n S S F νν如果两个方差之比仅是抽样误差的影响,它一般不会离1太远,F 分布就是反映这个概率的分布。
注意:方差齐性检验本为双侧检验,但由于规定以较大方差作分子,F 值必然会大于1,故附表单侧0.025的界值,实对应双侧检验P=0.05.当两总体方差不齐时,用t 检验法就不近合理了。
据数理统计研究结果,可按下式求出均数之差的标准误及t '值(即作t '检验)。
')(21222121')(2121x x x x S x x t n S n S S ---='+=然后用下列公式求出作统计判断用的临界值(校正):22)0.05(2)0.05(205.0212211t ,t , x x x x S S S S t ++='νν有了t ' 值和校正界值,就可以得出P 值,作出推断结论。
例如:某医生测试了25例正常人和32例喉癌患者的血清铁蛋白(SF )平均浓度(ug/L ),试问:喉癌患者的血清铁蛋白浓度是否不同于正常人?组 别 例数 s x ±- 正 常 人 25 64.0±24.40厚爱患者 32 244.2±57.611、 进行方差齐性检验:21.257.540.2461.57)24.30(025.022===F FF > )24.30(025.0F P<0.052、9569.153261.572540.242.2440.642222212121=+-=+-='nSnSxxt0445.23261.572540.24040.23261.57064.22540.24tt222222)0.05(2)0.05(205.0212211=+⨯+⨯=++='xxxxSSSStννt'〉05.0t'P < 0.05可以认为:正常人与喉癌患者的血清铁蛋白总体平均浓度不同,喉癌患者的血清铁蛋白高于正常人。
假设检验中两种类型错误之间的关系(一) α与β是在两个前提下的概率。
α是拒绝H0时犯错误的概率(这时前提是“H0为真”);β是接受H0时犯错误的概率(这时“H0为假”是前提),所以α+β不一定等于1。
结合图7—2分析如下:图7-2 α与β的关系示意图如果H0:μ1=μ0为真,关于与μ0的差异就要在图7—2中左边的正态分布中讨论。
对于某一显着性水平α其临界点为。
(将两端各α/2放在同一端)。
右边表示H0的拒绝区,面积比率为α;左边表示H0的接受区,面积比率为1-α。
在“H0为真”的前提下随机得到的落到拒绝区时我们拒绝H0是犯了错误的。
由于落到拒绝区的概率为α,因此拒绝“H0为真”时所犯错误(I型)的概率等于α。
而落到H0的接受区时,由于前提仍是“H0为真”,因此接受H0是正确决定,落在接受区的概率为1-α,那么正确接受H0的概率就等于1-α。
如α=0.05则1-α=0.95,这0.05和0.95均为“H0为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。
但讨论β错误时前提就改变了,要在“H0为假”这一前提下讨论。
对于H0是真是假我们事先并不能确定,如果H0为假、等价于H l为真,这时需要在图7—2中右边的正态分布中讨论·(H1:μ1>μ0),它与在“H0为真”的前提下所讨论的相似,落在临界点左边时要拒绝H l (即接受H0),而前提H l为真,因而犯了错误,这就是II型错误,其概率为β。
很显然,当α=0.05时,β不一定等于0.95。
(二)在其他条件不变的情况下,α与β不可能同时减小或增大。
这一点从图7—2也可以清楚看到。
当临界点向右移时,α减小,但此时β一定增大;反之向左移则α增大β减小。
一般在差异检验中主要关心的是能否有充分理由拒绝H0,从而证实H l,所以在统计中规定得较严。
至于β往往就不予重视了,其实许多情况需要在规定的同时尽量减小β。
2020年公卫执业医师《卫生统计学》试题及答案(卷八)一、A11、假设检验时所犯的两类错误的关系是A、n一定时,α减小则β减小B、n一定时,α减小则β增大C、α值改变与β无关D、检验中犯一类错误则不会犯二类错误E、α等于1-β2、假设检验的一类错误是指A、拒绝了实际上成立的H0B、不拒绝实际上不成立的H0C、拒绝了实际上不成立的H0D、接受实际上错误的H0E、拒绝H0时所犯的错误3、比较某地区15岁儿童平均体重是否高于一般,宜采用A、u检验B、t检验C、F检验D、χ2检验E、以上都不是4、关于t界值表错误的一项是A、双侧t0.10,20=单侧t0.05,20B、单侧t0.05,20<双侧t0.05,20C、双侧t0.05,20<双侧t0.01,20D、单侧t0.05,20>单侧t0.05,15E、单侧t0.05,20<单侧t0.05,155、同类定量资料下列指标,反映样本均数对总体均数代表性的是A、四分位数间距B、标准误C、变异系数D、百分位数E、中位数6、关于可信区间,正确的说法是A、可信区间是总体中大多数个体值的估计范围B、95%可信区间比99%可信区间更好C、不管资料呈什么分布,总体均数的95%的可信区间计算公式是一致的D、可信区间也可用于回答假设检验的问题E、可信区间仅有双侧估计7、下列关于均数的标准误的叙述,错误的是A、是样本均数的标准差B、反映样本均数抽样误差大小C、与总体标准差成正比,与根号n成反比D、增加样本含量可以减少标准误E、其值越大,用样本均数估计总体均数的可靠性越好8、假设检验中,P与α的关系是A、P越大,α越大B、P越小,α越大C、二者均需事先确定D、二者均需通过计算确定E、P的大小与α无直接关系9、有关假设检验,下列说法正确的是A、检验假设针对的是总体,而不是样本B、进行假设检验时,既可只写出H0或H1,也可同时写出H0和H1C、H0为对立假设D、H0的内容反映了检验的单双侧E、都需先计算出检验统计量后再获得P值10、下列关于t分布特征的叙述,错误的是A、t分布为单峰分布B、t分布曲线是一簇曲线C、以0为中心,左右对称D、自由度越大,t分布曲线的峰部越低,尾部越高E、自由度为无穷大时,t分布就是标准正态分布11、在对两个样本均数作假设检验时,若P>0.1,则统计推断为。
假设检验两类错误假设检验是统计学中常用的一种方法,用于确定与一个或多个总体参数有关的假设能否得到支持。
在进行假设检验时,我们通常假设一个原假设(null hypothesis,简称H0)和一个备择假设(alternative hypothesis,简称H1),并使用样本数据对它们进行比较。
在进行假设检验时,我们可能会犯两类错误,分别为类型I错误(Type I error)和类型II错误(Type II error)。
下面将详细介绍这两类错误。
1. 类型I错误类型I错误是指在原假设为真的情况下,我们错误地拒绝原假设的概率。
通常将类型I错误的概率称为显著性水平(significance level),用符号α表示。
显著性水平是在进行假设检验前,由研究者事先设定的,用于控制拒绝原假设的错误率。
假设我们在一个假设检验中将显著性水平设置为0.05,即α=0.05。
如果我们在进行假设检验时得到的p值小于0.05,就会拒绝原假设。
但是当原假设为真时,我们有5%的概率犯下类型I错误,即错误地拒绝了原假设。
类型I错误的概率是由显著性水平决定的,通常会在实验设计和分析过程中充分考虑。
如果我们希望降低类型I错误的概率,可以将显著性水平设置为更小的值。
2. 类型II错误类型II错误是指在备择假设为真的情况下,我们错误地接受原假设的概率。
通常将类型II错误的概率称为β错误概率,用符号β表示。
类型II错误的概率与样本量大小、效应大小和样本方差等因素有关。
当样本量过小或者效应较小时,类型II错误的概率会增加。
在进行假设检验时,我们通常希望将类型II错误控制在一个可接受的水平。
与类型I错误不同,我们无法直接控制类型II错误的概率。
通常,我们通过计算样本量,确保实验具有足够的功效(power)来减少类型II错误的概率。
3. 控制类型I和类型II错误的权衡在进行假设检验时,类型I和类型II错误是我们需要权衡的两个因素。
通常,我们无法同时将两者的错误概率降到最低。
假设检验中的两类错误及其控制方法在统计学中,假设检验是一种常用的分析方法,用于判断某个假设是否成立。
然而,进行假设检验时会存在两类错误,即第一类错误和第二类错误。
了解并掌握如何控制这两类错误是进行可靠假设检验的关键。
本文将介绍两类错误的概念以及控制方法。
一、第一类错误第一类错误,也称为α错误,是指当原假设为真时,拒绝原假设的错误。
这种错误将导致我们错误地得出结论,即拒绝了一个事实上是真实的假设。
为了控制第一类错误,我们可以通过设置显著性水平来进行调控。
显著性水平(α)是指在假设检验中所容忍的第一类错误的最大概率。
常见的显著性水平有0.05和0.01,分别表示一类错误的容忍程度为5%和1%。
设定更严格的显著性水平会减少第一类错误的发生概率,但同时也增加了第二类错误的风险。
二、第二类错误第二类错误,也称为β错误,是指当原假设不真实时,不能拒绝原假设的错误。
这种错误将导致我们未能发现一个实际上是错误的假设。
相比于第一类错误,控制第二类错误要更具挑战性。
通常,我们无法直接控制第二类错误的概率,但可以通过增加样本容量或改变检验方法来降低第二类错误的风险。
增加样本容量是一种常见的控制第二类错误的方法。
样本容量的增加意味着我们会有更多的观察值用于分析,从而提高检验的灵敏度。
通过增加样本容量,我们可以更容易地检测到真实效应,减少第二类错误的概率。
另一种控制第二类错误的方法是改变检验方法。
例如,可以选择更合适的统计检验方法,或者调整假设检验的参数,以提高检验的效力和准确性。
然而,改变检验方法需要在实践中进行谨慎考虑,并且需要充分了解不同方法的优缺点。
综上所述,假设检验中存在两类错误,即第一类错误和第二类错误。
为了控制第一类错误,可以通过设置显著性水平来调控。
而控制第二类错误则需要采取增加样本容量和改变检验方法等措施。
在进行假设检验时,我们应该充分考虑两类错误的控制方法,确保得出准确可靠的结论。
(文章长度:520字)。