贝塞尔函数 柱函数
- 格式:pdf
- 大小:384.01 KB
- 文档页数:9
贝塞尔函数
贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。
通常单说的贝塞尔函数指第一类贝塞尔函数(Bessel function of the first kind)。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:
这类方程的解是无法用初等函数系统地表示。
由于贝塞尔微分方程是二阶常微分方程,因此需要两个独立的函数来表示其标准解函数。
通常,第一种贝塞尔函数和第二种贝塞尔函数用于表示标准解函数:
注意,由于在x=0 时候是发散的(无穷),当取x=0 时,相关系数必须为0时,才能获得有物理意义的结果。
贝塞尔函数的特定形式随上述方程式中的任何实数或复数α发生变化(相应地,α称为相应贝塞尔函数的阶数)。
实际应用中最常见的情况是α为整数n,相应的解称为n阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。
贝塞尔函数也被称为柱谐函数、圆柱函数或圆柱谐波,因为他们是于拉普拉斯方程在圆柱坐标上的求解过程中被发现的。
贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。
丹尼尔的叔叔雅各布·伯努利,欧拉、拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家贝塞尔在研究开普勒提出的三体引力系统的运动问题时,第一次系统地提出了贝塞尔函数的总体理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数渐进表达式贝塞尔函数 (Bessel Function) 是一类重要的特殊函数,它在许多领域都有广泛的应用,如物理学、工程学、数学等等。
贝塞尔函数的渐进表达式在各种文献和教材中都有不同的表述和推导,其中最常见的是第一类和第二类柱函数的渐近表达式。
第一类柱函数,即贝塞尔函数 (Bessel Function)Jnu(x),在 x 趋近于正无穷时,其渐进表达式为:$$J_{u}(x)simfrac{1}{x}expleft(-x^{2}ight)left(frac{2x}{pi}ight)^{frac{u}{2}}$$其中 $u$ 是贝塞尔函数的阶数,$sim$ 表示当 $xightarrowinfty$ 时的极限。
第二类柱函数,即诺伊曼函数 (Neumann Function)Nnu(x),在 x 趋近于正无穷时,其渐进表达式为:$$N_{u}(x)simfrac{2}{pi x}expleft(-x^{2}ight)sum_{k=0}^{infty}frac{left(frac{x}{2}ight)^{2k}}{Gamma(u k+1)}$$其中 $u$ 是贝塞尔函数的阶数,$sim$ 表示当 $xightarrowinfty$ 时的极限。
第三类柱函数,即汉克尔函数 (Hankel Function)H${}_{u}$(x),在 x 趋近于正无穷时,其渐进表达式为:$$H_{u}(x)simfrac{1}{x}expleft(-x^{2}ight)left(frac{2x}{pi}ight)^{frac{u+1}{2}}$$其中 $u$ 是汉克尔函数的阶数,$sim$ 表示当 $xightarrowinfty$ 时的极限。
需要注意的是,这些渐近表达式仅仅是贝塞尔函数在一些特定的条件下的渐进表达式,并不是贝塞尔函数的所有渐进表达式。
此外,贝塞尔函数还有很多其他的定义和性质,都可以通过不同的数学工具和方法进行研究和探究。
6-2 贝塞尔函数柱函数在用分离变量法一章介绍了拉普拉斯方程在柱坐标系下分离变量得到了一种特殊类型的常微分方程:贝塞尔方程.通过幂级数解法得到了另一类特殊函数,称为贝塞尔函数.贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用贝塞尔函数的正交完备性.6.1 贝塞尔方程及其解6.1.1 贝塞尔方程拉普拉斯方程在柱坐标系下的分离变量得出了一般的贝塞尔方程。
考虑固定边界的圆膜振动,可以归结为下述定解问题222222200() (0,0)|0 (0)(,,)|(,)(,,)|(,)tt xx yy x y l t tt u a u u x y l t u t u x y t x y u x y t x y ϕψ+===⎧=+≤+<>⎪=≥⎪⎨=⎪⎪=⎩(6.1.1)其中l 为已知正数,(,),(,)x y x y ϕψ为已知函数.这个定解问题宜于使用柱坐标,从而构成柱面问题.(由于是二维问题,即退化为极坐标)设(,,)(,,)()(,)u x y t u t T t U ρϕρϕ==)得220a T =(6.1.2)22100 U U k U ρϕρ′′′++=(6.1.3)再令(,)()()U R ρϕρϕ=Φ,得到2ν′′Φ+Φ=(6.1.4)2222()0R R k R ρρρν′′++−=(6.1.5)于是(6.1.5)得到22d ()0d y x x y xν+−=(6.1.6)边界条件为()|()0l y k y kl ρρ===方程(6.1.6)称为ν阶贝塞尔微分方程.这里νx和可以为任意数.6.1.2贝塞尔方程的解通过数学物理方程的幂级数求解方法可以得出结论:(1)当ν≠整数时,贝塞尔方程(6.1.6)的通解为()J ()J ()y x A x B x νν−=+(6.1.7)其中,A B 为任意常数,J ()x ν定义为ν阶第一类贝塞尔函数但是当n ν=整数时,有J ()(1)J ()nn n x x −=−故上述解中的J ()n x 与J ()n x −是线性相关的,所以(6.1.7)成为通解必须是ν≠整数.(2)当ν取任意值时:定义第二类贝塞尔函数N ()x ν,这样贝塞尔方程的通解可表示为()J ()N ()y x A x B x νν=+(6.1.8)(3) 当ν取任意值时:由第一、二类贝塞尔函数还可以构成线性独立的第三类贝塞尔函数H ()x ν,又称为汉克尔函数.(1)(2)H ()J ()iN ()H ()J ()iN ()x x x x x x νννννν⎧=+⎨=−⎩(6.1.9)分别将(1)(2)H ,H νν称为第一种和第二种汉克尔函数.于是贝塞尔方程的通解又可以表示为(1)(2)(H ()H ()y x A x B x νν=+(6.1.10)最后,总结ν阶贝塞尔方程的通解通常有下列三种形式:(i )()J ()J () (y x A x B x ννν−=+≠整数)(ii )()J ()N ()(y x A x B x ννν=+可以取任意数)(iii )(1)(2)()H ()H ()(y x A x B x ννν=+可以取任意数)6.2 三类贝塞尔函数的表示式及性质6.2.1 第一类贝塞尔函数的表示式第一类贝塞尔函数J ()x ν的级数表示式为2201()1)2()!(1)2kkkk x x k k ννν∞+−+=Γ−++∑∑(6.2.1)伽马函数.满足关系()(1)(2)(1)(1)k k ννννν++−++Γ+"当ν为正整数或零时,(1)()!k k ννΓ++=+当ν取整数时(1),(0,1,2,,1)k k ννΓ−++=∞=⋅⋅⋅−所以当n ν=整数时,上述的级数实际上是从k n=的项开始,即, (0)n ≥(6.2.2)22011)()!(1)21(1)(), ()!(1)2kn kln lx k n k x l k n l n l −+∞+=Γ−++−=−Γ++∑(6.2.3)所以J ()(1)J ()nn n x x −=−(6.2.4)同理可证J ()J ()n n x x −=−(6.2.5)因此有重要关系J ()(1)J ()nx x −=−(6.2.6)贝塞尔函数表示式246223511()()()2(2!)2(3!)211()()2!22!3!2x x x x x −+−+−+−""当x 很小时(0)x →,保留级数中前几项,可得1J ()(),(1,2,3,)2(1)x x νννν≈≠−−−⋅⋅⋅Γ+(6.2.7)特别是0J (0)1,J (0)0 (=1,2,3,)n n ==⋅⋅⋅(6.2.8)32π)()π42o x x ν−−+(6.2.9)试证半奇阶贝塞尔函数122J ()s in πx x x=(6.2.1)有而13135(21)()π22k k k +⋅⋅⋅⋅+Γ+="(21)!k +2sin πx x122J ()cos πx xx−=121212220J ()(1)12!(1)2k kk k x x k k +∞+==−Γ++∑6.3 贝塞尔函数的基本性质6.3.1 贝塞尔函数的递推公式由贝塞尔函数的级数表达式(6.2.1)容易推出1J ()J ()d []v x x ν+=−(6.3.1))(6.3.2)以上两式都是贝塞尔函数的线性关系式.诺伊曼函数N()v x 也应该满足上述递推关系若用()v Z x 代表v阶的第一或第二或第三类函数,总是有1d [()]()d v vv v x Z x x Z x x−=(6.3.3)d [()]()v vx Z x x Z x −−=−(6.3.4)1)()()v v vx Z x Z x x+−=−(6.3.5)1()()v v vZ x Z x x−=(6.3.6)从(6.3.5)和(6.3.6)消去Z ν或消去Z ν′可得11()()2()v v v Z x Z x Z x +−′=−112()()()v v v vZ x Z x Z x x+−=−+即为从)(x Z 和)(x Z 推算)(1x Z v +的递推公式.1()2()v v vZ x Z x x++=(6.3.7)1)()2()v Z x Z x ν+′−=(6.3.8)任一满足一组递推关系的函数)(x Z v 统称为柱函数例6.3.1证明柱函数满足贝塞尔方程【证明】以满足(6.3.7)和(6.3.8)这一组递推公式来进行证明:将(6.3.7)与(6.3.8)相加或相减消去1Z ν+或1Z ν−分别得到()()()Z x Z x Z x ν′+=(6.3.9)x(6.3.10)换成1ν+,得到ν111()()x Z x x νν+++′+(6.3.11)将(6.3.10)代入上式,立即得到()Z x ν满足ν阶贝塞尔方程.例6.3.2 求2J ()d x x x∫【解】根据公式(6.3.8)11()()2()v v Z x Z x Z x ν−+′−=有201J ()J ()2J ()x x x ′=−20111111010J ()d J ()d 2J ()d J ()2[J ()J ()d ]J ()2[J ()J ()d ]J ()2J ()x x x x x x x x x x x x x x x x x x x x x x x x c′=−=−−′=−+=−−+∫∫∫∫∫例6.3.3 证明下式成立1110J ()d J ()xm m m m x x x x x +++=∫(6.3.17)特别是22J ()d J ()xx x x x x =∫(6.3.18)】利用递推公式(6.3.2)即1J ()vv x x −=,令1m ν=+则两边积分,故得到111d [J ()]J ()d m m m m x x x x x+++=1J ()d m x x∫1,即为(22.3.18)式。