概率统计的matlab求解
- 格式:ppt
- 大小:877.00 KB
- 文档页数:41
实验八matlab在概率统计中的应用一、实验目的1、掌握利用MATLAB处理简单的概率问题;2、掌握利用MATLAB处理简单的数理统计问题。
二、实验内容1、对下列问题,请分别用专用函数和通用函数实现。
(1)X服从[3, 10]上均匀分布,计算P{X≤4},P{X>8};已知P{X>a}=0.4,求a。
(2) X服从正态分布N(2, 9),计算P{|X|≤1},P{|X|>5};已知P{X<b}=0.9,求b。
(3) X服从自由度为9的t分布,计算P{-2<X≤1};已知P{X<c}=P{X>c},求c。
2、绘制下列图形,并比较参数变化对图形的影响。
(1)()2μσ,为(-1,1),(0,0.4),(0,6),(1,1)时正态分布的概率密度函数图形;(2)参数n为1,2,3,4,5时2χ分布的概率密度函数图形。
3、设样本数据为110.1,25.2,39.8,65.4,50.0,98.1,48.3,32.2,60.4,40.3,求该样本的均值、方差、标准差、中位数、几何均值、最大值、最小值、极差并绘出数据的直方图及圆饼图。
4、下表一列出某高校自动化专业研究生招生规模及生源情况请用常用的MATLAB统计作图函数,分析表一中的数据,能否得出近四年招生规模缩小, 总体生源质量下降的结论?5、某高校自动化学院现有教师80人。
其中,教授24人,副教授32人;博士生导师18人,硕士生导师40人;教师队伍中具有博士学位的39人。
请用三维圆饼图描述教师的组成,并在图中显示相应的人数及所占比例。
6、有两组(每组100个元素)正态随机数据,其均值为10,均方差为2,求95%的置信区间和参数估计值。
7、分别使用金球和铂球测定引力常数。
(1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672;(2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664。
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
Matlab中的概率统计分析概率统计分析是一门重要的统计学分支,可应用于各行各业。
在数据科学领域中,通过概率统计分析,我们可以对数据集进行探索性分析、建模以及预测。
Matlab作为一种流行的科学计算软件,提供了丰富的工具和函数来进行概率统计分析。
本文将介绍一些常见的概率统计分析方法以及它们在Matlab中的应用。
一、描述统计分析描述统计分析是通过对数据进行总结和可视化,来了解数据的分布和特征。
Matlab提供了多种函数和工具来进行描述统计分析。
例如,我们可以使用`mean`函数来计算数据的均值,使用`std`函数计算标准差。
此外,还可以通过`histogram`函数绘制直方图、通过`boxplot`函数绘制箱线图等。
二、概率分布及参数估计在概率统计分析中,概率分布是描述随机变量的函数。
在Matlab中,我们可以使用各种内置的概率分布函数,如正态分布、二项分布、泊松分布等。
这些函数可以用来计算随机变量在给定参数下的概率密度函数、累积分布函数等。
参数估计是概率统计分析的重要内容之一。
根据已有的样本数据,我们可以通过最大似然估计等方法来估计概率分布的参数。
在Matlab中,可以使用`fitdist`函数进行参数估计。
该函数可以根据给定的数据和概率分布类型,自动计算出最佳的参数估计结果。
三、假设检验假设检验用于验证关于总体参数的假设,并对观察到的样本数据进行统计推断。
Matlab提供了一系列的函数来进行假设检验。
例如,`ttest`函数可以用于t检验,`chi2gof`函数可以用于卡方检验等。
四、参数估计的抽样分布参数估计的抽样分布是概率统计分析中的重要概念之一。
通过对参数估计结果进行大量次数的模拟重复,可以得到参数估计的分布情况。
在Matlab中,通过使用`random`函数,我们可以生成服从特定概率分布的随机数。
结合循环语句,可以进行大量次数的模拟实验,进而得到参数估计的抽样分布。
五、相关性分析相关性分析用于研究两个或多个变量之间的相关关系。
第7章 MATLAB在概率统计中的应用一、统计量的数字特征<一)简单的数学期望和几种均值●mean(x> 平均值函数当x 为向量时,得到它的元素平均值;当x 为矩阵时,得到一列向量,每一行值为矩阵行元素的平均值,举例1:求矩阵A的平均值。
D=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]Mean(d>举例22的值E(x>的值●E(x>的值:x=[-2 0 2],pk=[0.4 0.3 0.3]sum(x.*pk>●E(3x2+5>的值。
x=[-2 0 2],pk=[0.4 0.3 0.3]z=3*x.^2+5sum(z.*pk><二)数据比较⏹max 最大值⏹min 最小值⏹median 中值⏹sort 由小到大排序<三)求和与积⏹ sum 求向量或矩阵的元素累和 ⏹ prod : 求当前元素与所有前面元素的积 举例:下面的程序用来求向量各元素的之和prod=1 varx=[2 3 4] for x=varx prod=prod*x end<四)方差和标准差为了反映随机变量与其均值的偏离程度 方差表示为标准差表示为: 样本方差为: 样本标准差为: ● 方差函数Var①Var(x> x 为向量,返回向量的样本方差;x 为矩阵,则返回矩阵各列的方差。
②Var(x,1> 返回向量<矩阵x )的简单方差<即置前因子为n1的方差) ③Var(x,w> 返回向量<矩阵)x 即以w 为权的方差。
● Std 标准差函数Std(x> 返回向量或矩阵x 的样本标准差<置前因子为11n ) Std(x,1> 返回向量或矩阵x 的标准差<置前因子为n1)举例: d=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]mean(d>var(d,1> %方差 var(d> %样本方差 std(d,1> %标准差 std(d> %样本标准差<五)协方差和相关系数cov(x>:x 为向量,返回向量的方差,x 为矩阵时返回矩阵的协方差矩阵,其中协方差矩阵的对角元素是x 矩阵的列向量的方差值。
MATLAB概率统计1. 概述概率统计是数学中的一个重要分支,用于研究随机现象的规律性和不确定性。
MATLAB作为一种强大的数值计算和数据可视化工具,提供了丰富的函数和工具箱,使得概率统计分析变得简单而高效。
本文将介绍MATLAB中常用的概率统计函数和方法,并结合实例进行详细说明。
2. 概率分布2.1 常见概率分布函数在概率统计中,常见的概率分布函数有正态分布、均匀分布、二项分布等。
MATLAB 提供了相应的函数来生成这些概率分布。
•正态分布:normrnd函数用于生成服从正态分布的随机数。
x = normrnd(mu, sigma, [m, n]);其中,mu表示均值,sigma表示标准差,[m, n]表示生成随机数矩阵的大小。
•均匀分布:unifrnd函数用于生成服从均匀分布的随机数。
x = unifrnd(a, b, [m, n]);其中,a和b表示均匀分布区间的上下界。
•二项分布:binornd函数用于生成服从二项分布的随机数。
x = binornd(n, p, [m, n]);其中,n表示试验次数,p表示成功的概率。
2.2 概率密度函数和累积分布函数除了生成随机数,MATLAB还提供了计算概率密度函数(PDF)和累积分布函数(CDF)的函数。
•概率密度函数:对于连续型随机变量,可以使用normpdf、unifpdf等函数计算其概率密度函数值。
y = normpdf(x, mu, sigma);其中,x表示自变量的取值,mu和sigma表示正态分布的均值和标准差。
•累积分布函数:使用normcdf、unifcdf等函数可以计算连续型随机变量的累积分布函数值。
y = normcdf(x, mu, sigma);其中,参数的含义同上。
对于离散型随机变量,可以使用相应的离散型概率分布函数来计算其概率质量函数(PMF)和累积分布函数(CDF)。
3. 统计描述3.1 均值与方差均值和方差是统计学中常用的描述统计量,MATLAB提供了相应的函数来计算均值和方差。
Matlab 第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA 的正态分布的随机数据,R可以是向量或矩阵。
R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。
R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。
matlab中对一维数据进行计算概率分布的方法在Matlab中,有多种方法可以计算一维数据的概率分布。
以下是一些常用的方法:1. 直方图:直方图是一种常用的概率分布计算方法,它将数据划分成若干个小区间,然后统计每个区间中数据出现的频次。
Matlab提供了histogram函数,可以直接使用该函数计算一维数据的概率分布。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];edges = 0:1:5; % 设置直方图的区间counts = histogram(data, edges, 'Normalization', 'probability');```counts变量将包含每个区间的概率分布值。
2. 核密度估计:核密度估计是一种非参数方法,它通过使用核函数在数据点周围生成一定数量的带宽,从而估计数据的概率密度。
Matlab中的ksdensity函数可以用来计算一维数据的核密度估计。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];[f,xi] = ksdensity(data);plot(xi, f);```这将生成一条概率密度估计曲线。
3. 概率分布拟合:如果已知数据属于特定的概率分布类型,可以使用概率分布拟合方法来计算数据的概率分布。
Matlab提供了fitdist函数,可以使用各种概率分布类型(如正态分布、指数分布、伽马分布等)进行拟合。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];pd = fitdist(data', 'Normal');x = linspace(min(data), max(data), 100);y = pdf(pd, x);plot(x, y);```这将绘制数据的概率密度函数。
第3章概率统计实例分析及MatlAb求解3.1 随机变量分布与数字特征实例及MATLAB求解3.1.1 MATLAB实现用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。
利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。
MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。
随机数生成函数:rand( )和randn( )两个函数伪随机数生成函数:A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵B=raylrnd(b,n,m) %生成rayleigh的伪随机数3.1.2 相关实例求解例2-1计算服从二维正态分布的随机变量在指定范围内的累积分布函数值并绘图。
程序:%二维正态分布的随机变量在指定范围内的累积分布函数图形mu=[0 0];sigma=[0.25 0.3;0.3 1];%协方差阵x=-3:0.1:3;y=-3:0.2:3;[x1,y1]=meshgrid(x,y);%将平面区域网格化取值f=mvncdf([x1(:) y1(:)],mu,sigma);%计算累积分布函数值F=reshape(f,numel(y),numel(x));%矩阵重塑surf(x,y,F);caxis([min(F(:))-0.5*range(F(:)),max(F(:))]);%range(x)表示最大值与最小值的差,即极差。
axis([-3 3 -3 3 0 0.5]);xlabel('x'); ylabel('y');zlabel('Probability Density');图1 二维正太分布累积分布函数值图例2-2 设X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-≤≤=其他。
MATLAB计算概率在MATLAB中,计算概率可以使用MATLAB的概率和统计工具箱。
概率是一个数学领域,主要研究随机事件发生的可能性。
在计算概率时,常见的方法包括使用概率分布函数、概率密度函数和累积分布函数等。
1.概率分布函数概率分布函数(Probability Distribution Function, PDF)用于描述随机变量的取值概率分布。
MATLAB中提供了多种常见的概率分布函数,如正态分布、均匀分布、泊松分布等。
计算概率分布函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。
- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。
- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。
其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。
2.概率密度函数概率密度函数(Probability Density Function, PDF)用于描述随机变量取一些特定值的概率密度。
计算概率密度函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。
- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。
- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。
其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。
3.累积分布函数累积分布函数(Cumulative Distribution Function, CDF)用于描述随机变量取值小于或等于一些特定值的概率。
计算累积分布函数可以使用相应的函数,例如:- 正态分布:normcdf(x, mu, sigma)计算正态分布的累积分布函数值。
- 均匀分布:unifcdf(x, a, b)计算均匀分布的累积分布函数值。
概率统计在MATLAB中的实现方法解析概率统计是一门研究随机现象的规律性和不确定性的学科,广泛应用于各个领域。
而MATLAB是一种强大的科学计算软件,可以在概率统计领域中提供很多实用的工具和方法。
本文将探讨概率统计在MATLAB中的实现方法,帮助读者更好地理解和应用于实践。
一、概率分布的生成和拟合在概率统计中,对于一些已知的概率分布,我们常常需要生成符合该分布的随机数,或者通过已有的样本数据对分布进行拟合。
在MATLAB中,可以使用一些函数来实现这些操作。
首先,对于已知的概率分布,例如正态分布(高斯分布),可以使用normrnd()函数生成符合该分布的随机数。
该函数的输入参数包括均值和标准差,输出为符合正态分布的随机数。
例如,我们可以生成100个符合均值为0,标准差为1的正态分布随机数:```MATLABx = normrnd(0, 1, 100, 1);```对于已有的样本数据,我们可以使用fitdist()函数对数据进行概率分布的拟合。
该函数可以自动选择合适的分布类型,并给出对应的参数估计值。
例如,我们有一组样本数据x,需要对其进行正态分布的拟合:```MATLABdist = fitdist(x, 'Normal');```通过fitdist()函数返回的dist对象,我们可以获取该分布的参数估计值、置信区间等信息。
二、假设检验和置信区间估计假设检验和置信区间估计是概率统计中常用的分析方法,用于判断样本数据是否符合某个假设、计算参数估计的可信度等。
在MATLAB中,可以使用一些函数来实现假设检验和置信区间估计。
对于假设检验,MATLAB提供了ttest2()和chi2gof()等函数,用于分别进行两样本t检验和卡方检验。
例如,我们有两组样本数据x和y,需要进行两样本t检验:```MATLAB[h, p] = ttest2(x, y);```通过ttest2()函数返回的h值可以判断是否拒绝原假设,p值则表示检验结果的显著性。
使用Matlab进行概率统计分析的方法概率统计是一门研究随机现象的规律性的数学学科,广泛应用于各个领域。
而Matlab作为一种高效的数值计算工具,也可以用来进行概率统计分析。
本文将介绍使用Matlab进行概率统计分析的一些常用方法和技巧。
一、概率统计的基本概念在介绍使用Matlab进行概率统计分析方法之前,首先需要了解一些基本概念。
概率是表示事件发生可能性的数值,通常用概率分布来描述。
而统计是通过收集、整理和分析数据来研究问题的一种方法,通过统计推断可以得到总体的一些特征。
二、Matlab中的概率统计函数在Matlab中,有许多内置的概率统计函数,可以直接调用来进行分析。
常用的概率统计函数有:1. 随机数生成函数:可以用来生成服从不同概率分布的随机数,如正态分布、均匀分布等。
2. 描述统计函数:可以用来计算数据的统计特征,如均值、方差、标准差等。
3. 概率分布函数:可以用来计算不同概率分布的概率密度函数、累积分布函数、分位点等。
4. 线性回归和非线性回归函数:可以用来拟合数据并进行回归分析。
5. 假设检验函数:可以用来进行参数估计和假设检验,如t检验、方差分析等。
这些函数可以通过Matlab的帮助文档来查找具体的使用方法和示例。
三、随机数生成和分布拟合随机数生成是概率统计分析的基础,Matlab提供了多种随机数生成函数。
例如,可以使用rand函数生成服从均匀分布的随机数,使用randn函数生成服从标准正态分布的随机数。
通过设置不同的参数,可以生成不同分布的随机数。
分布拟合是将实际数据与理论概率分布进行对比的方法,可以帮助我们判断数据是否符合某种分布。
Matlab提供了fitdist函数用于对数据进行分布拟合,可以根据数据自动选择合适的概率分布进行拟合,并返回相应的参数估计结果。
通过对数据拟合后的分布进行分析,可以更好地了解数据的性质。
四、描述统计和数据可视化描述统计是在数据收集和整理之后,对数据进行总结和分析的过程。
Matlab概率论与数理统计一、 matlab 基本操作1.画图【例】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b' );【例】填充,二维平均随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on ;plot(x,y0,'r',y0,x,'r',x,y60,'r' ,y60,x,'r' );plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');2.排列组合C=nchoosek(n,k) :C C n k,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2) :从 n1 到 n2 的连乘【例】最少有两个人寿辰相同的概率n!C N nN !( N n)!N(N1)(N n1)公式计算 p 111N nN n N n365 364 (365rs1)365364365rs 1 1365rs1365365365rs=[20,25,30,35,40,45,50];%每班的人数p1=ones(1,length(rs));p2=ones(1,length(rs));%用连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i);end%用公式计算(改进)for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;endp1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365));endp_r1=1-p1;p_r2=1-p2;Rs =[20253035404550 ]P_r=[0.4114 0.5687 0.7063 0.8144 0.8912 0.9410 0.9704]二、随机数的生成3.平均分布随机数rand(m,n); 产生 m 行 n 列的 (0,1) 平均分布的随机数rand(n); 产生 n 行 n 列的 (0,1)平均分布的随机数【练习】生成(a,b)上的平均分布4.正态分布随机数randn(m,n); 产生 m 行 n 列的标准正态分布的随机数【练习】生成N(nu,sigma.^2) 上的正态分布5.其他分布随机数函数名调用形式注释Unidrnd unid rnd (N,m,n)平均分布(失散)随机数binornd bino rnd (N,P,m,n)参数为 N, p的二项分布随机数Poissrnd poiss rnd (Lambda,m,n)参数为 Lambda的泊松分布随机数geornd geornd (P,m,n)参数为 p 的几何分布随机数hygernd hygernd (M,K,N,m,n)参数为 M, K, N 的超几何分布随机数Normrnd normrnd (MU,SIGMA,m,n)参数为 MU, SIGMA的正态分布随机数,SIGMA是标准差Unifrnd unif rnd ( A,B,m,n)[A,B] 上平均分布 ( 连续 ) 随机数Exprnd exprnd (MU,m,n)参数为 MU的指数分布随机数chi2rnd chi2 rnd(N,m,n)自由度为 N 的卡方分布随机数Trnd t rnd(N,m,n)自由度为 N 的 t分布随机数Frnd f rnd(N1, N2,m,n)第一自由度为N1, 第二自由度为 N2 的 F 分布随机数gamrnd gamrnd(A, B,m,n)参数为 A, B的分布随机数betarnd betarnd(A, B,m,n)参数为 A, B的分布随机数lognrnd lognrnd(MU, SIGMA,m,n)参数为 MU, SIGMA的对数正态分布随机数nbinrnd nbinrnd(R, P,m,n)参数为 R,P 的负二项式分布随机数ncfrnd ncfrnd(N1, N2, delta,m,n)参数为 N1, N2, delta 的非中心 F 分布随机数nctrnd nctrnd(N, delta,m,n)参数为 N,delta的非中心 t 分布随机数ncx2rnd ncx2rnd(N, delta,m,n)参数为 N,delta的非中心卡方分布随机数raylrnd raylrnd(B,m,n)参数为 B 的瑞利分布随机数weibrnd weibrnd(A, B,m,n)参数为 A, B的韦伯分布随机数三、一维随机变量的概率分布1.失散型随机变量的分布率(1)0-1 分布(2)平均分布(3) 二项分布: binopdf(x,n,p) ,若X ~ B(n, p),则P{ X k} C n k p k (1p) n k,x=0:9;n=9;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当 n 较大时二项分布近似为正态分布x=0:100;n=100;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')(4) 泊松分布: piosspdf(x, lambda) ,若X ~k e ( ) ,则 P{ X k}k !x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ](5) 几何分布: geopdf (x, p),则P{ X k} p(1p) k 1y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]C M k C N n k Mx=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数1a x b(1)平均分布: unifpdf(x,a,b) ,f ( x)b a0其他a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);112(2)正态分布: normpdf(x,mu,sigma) ,f ( x)e2 2 ( x)2x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产生 10000 个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;% 以 a 为横轴,求出 10000 个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3) 指数分布: exppdf(x,mu) ,f (x)1 e1xa x by= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n1(4)2分布: chi2pdf(x,n) , f (x; n)2n 2x2( n 2)hold on x=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(( n 1) 2) x 2(5) t 分布: tpdf(x,n) , f (x; n)(n 2)1nnhold on x=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue e 2n 1 2x 0x 0n=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');n1n1 2n1n222(6) F 分布: fpdf(x,n1,n2) ,f ( x; n1, n2)(( n1n2 ) 2) n1x 21n1x x 0 (n1 2)(n2 2) n2n20x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数 F (x) P{ X x}【例】求正态分布的累积概率值设 X ~ N(3,22),求P{2X 5},P{ 4 X 10},P{ X 2}, P{X3} ,4.逆分布函数,临界值y F (x) P{ X x} , x F 1 ( y) , x 称之为临界值【例】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例】求2 (9) 分布的累积概率值hold offy=[0.025,0.975];x=chi2inv(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0,n);plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n);x2=x(2):0.1:30;y2=chi2pdf(x2,n);hold onfill([x1, x(1)],[y1,0],'b');fill([x(2),x2],[0,y2],'b');5. 数字特色函数名调用形式注释sort sort(x),sort(A)排序 ,x 是向量, A 是矩阵,按各列排序sortrows sortrows(A) A 是矩阵,按各行排序mean mean(x)向量 x 的样本均值var var(x)向量 x 的样本方差std std(x)向量 x 的样本标准差median median(x)向量 x 的样本中位数geomean geomean(x)向量 x 的样本几何平均值harmmean harmmean(x)向量 x 的样本调停平均值skewness skewness(x)向量 x 的样本偏度max max(x)向量 x 的最大值min min(x)向量 x 的最小值cov cov(x), cov(x,y)向量 x 的方差,向量x,y 的协方差矩阵corrcoef corrcoef(x,y)向量 x,y 的相关系数矩阵【练习】二项分布、泊松分布、正态分布( 1)对n10, p 0.2 二项分布,画出 b(n, p) 的分布律点和折线;( 2)对np ,画出泊松分布( ) 的分布律点和折线;( 3)对np,2np(1 p) ,画出正态分布N ( , 2 )的密度函数曲线;( 4)调整 n, p ,观察折线与曲线的变化趋势。
第1章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
1.1 随机数的产生产生随机数时初始种子数的设定方法s = RandStream('mcg16807','Seed',0)RandStream.setDefaultStream(s)另一种形式seed = 0;randn('state', seed);rand ('state', seed);1.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数 binornd格式 R = binornd(N, P) % N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N, P, [m]) % m指定随机数的个数,产生m×m 维的随机数矩阵R。
R = binornd(N, P, [m, n]) % m, n分别表示R的行数和列数R = binornd(N, P, [m, n, k]) % m, n, k分别表示R的行数和列数和层数其中的[]可以省略。
例1-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 11.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数 normrnd格式 R = normrnd(MU,SIGMA) % 返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。