第六章,胶体化学物理化学
- 格式:ppt
- 大小:3.96 MB
- 文档页数:101
第8章 表面化学与胶体8.1 重要概念和规律1.比表面能与表面张力物质的表面是指约几个分子厚度的一层。
由于表面两侧分子作用力不同,所以在表面上存在一个不对称力场,即处在表面上的分子都受到一个指向体相内部的合力,从而使表面分子具有比内部分子更多的能量。
单位表面上的分子比同样数量的内部分子多出的能量称为比表面能(也称比表面Gibbs函数)。
表面张力是在表面上的相邻两部分之间单位长度上的相互牵引力,它总是作用在表面上,并且促使表面积缩小。
表面张力与比表面能都是表面上不对称力场的宏观表现,即二者是相通的,它们都是表面不对称力场的度量。
它们是两个物理意义不同,单位不同,但数值相同,量纲相同的物理量。
2.具有巨大界面积的系统是热力学不稳定系统物质表面所多余出的能量γA称表面能(亦叫表面Gibbs函数),它是系统Gibbs函数的一部分,表面积A越大,系统的G值越高。
所以在热力学上这种系统是不稳定的。
根据热力学第二定律,在一定温度和压力下,为了使G值减少,系统总是自发地通过以下两种(或其中的一种)方式降低表面能γA:①在一定条件下使表面积最小。
例如液滴呈球形,液面呈平面;②降低表面张力。
例如溶液自发地将其中能使表面张力降低的物质相对浓集到表面上(即溶液的表面吸附),而固体表面则从其外部把气体或溶质的分子吸附到表面上,从而改变表面结构,致使表面张力降低。
3.润湿与铺展的区别润湿和铺展是两种与固—液界面有关的界面过程。
两者虽有联系,但意义不同。
润湿是液体表面与固体表面相互接触的过程1因此所发生的变化是由固—液界面取代了原来的液体表面和固体表面。
润湿程度通常用接触角表示,它反映液、固两个表面的亲密程度。
当θ值最小(θ=0o)时,润湿程度最大,称完全润湿。
铺展是指将液体滴洒在固体表面上时,液滴自动在表面上展开并形成一层液膜的过程,因此所发生的变化是由固—液界面和液体表面取代原来的固体表面。
铺展的判据是上述过程的∆G:若∆G<0,则能发生铺展;若∆G≥0,则不能铺展。
物理化学及胶体化学知识点 -回复
物理化学:
1. 物理化学是研究物质性质、能量变化和它们之间的关系的学科。
2. 原子结构:原子由原子核和绕核运动的电子组成,原子核由质子和中子构成。
3. 化学键:共价键是通过原子之间的电子共享形成的,离子键是由电子转移形成的,金属键是由自由电子在金属晶体中形成的。
4. 物态:常见的物态有固态、液态和气态,转变的条件包括温度和压力等。
5. 反应速率:反应速率受到温度、浓度、催化剂和反应物性质等因素的影响。
6. 化学平衡:在闭合系统中,反应物和生成物的浓度达到动态平衡时,称为化学平衡。
7. 热力学:研究物质能量转换和分布的学科,包括热力学定律、热力学函数和热力
学循环等。
8. 电化学:研究物质的电性质,包括电解质溶液的电导性、电解过程中的氧化还原
反应等。
胶体化学:
1. 胶体是介于溶液和悬浮液之间的一种物质状态,具有介于分子和宏观颗粒之间的
特征。
2. 胶体颗粒尺寸范围一般在1纳米至1微米之间,可形成胶体稳定的分散系统。
3. 胶体的稳定性:胶体稳定的关键在于表面活性剂或电解质的存在,可以形成电双
层或生成吸附层来防止胶体的聚集。
4. 高分子胶体:高分子物质形成的胶体称为高分子胶体,例如胶状物质、凝胶等。
5. 胶体的应用:胶体在润滑、化妆品、油墨、医药、陶瓷等领域有广泛的应用,同
时也用于环境修复、纳米材料制备等领域。
以上是物理化学及胶体化学的一些知识点,通过学习和掌握这些知识,可以更好地理
解物质和化学反应的本质,进一步应用于实际科学研究和工程应用中。
生物胶体的物理化学性质及其应用胶体是介于溶液和悬浮液之间的一种分散体系,它的特殊性质使得它在工业生产和科学研究中得到广泛应用。
生物胶体作为一种特殊的胶体,它的物理化学性质和应用也具有独特性。
本文将从生物胶体的基本概念入手,论述其物理化学性质及其应用。
一、生物胶体的基本概念生物胶体是指由生物高分子在水相中形成的胶体。
这些高分子通常是蛋白质、多糖和核酸等。
与其他胶体相比,生物胶体具有一些特殊的物理化学性质:(1)生物胶体具有较高的分子量。
生物高分子的分子量通常在百万量级以上,因此生物胶体的分子量也很大。
(2)生物胶体具有强烈的水合作用。
生物高分子中的许多官能团能与水分子形成氢键和离子键,从而使得生物胶体具有强烈的水合作用。
(3)生物胶体具有较高的黏滞度。
由于生物高分子的分子量很大,因此生物胶体通常具有较高的黏滞度,这也是生物胶体在实际应用中的一个重要问题。
二、生物胶体的物理化学性质生物胶体的物理化学性质包括以下几个方面:(1)溶胀性生物胶体的溶胀性是指在不同温度、pH值和离子强度等条件下,生物胶体对溶剂的吸水能力。
生物胶体的溶胀性与生物高分子的结构和特性密切相关。
例如,酸性多糖的溶胀性受到pH值的影响较大。
(2)凝胶性生物胶体在一定条件下能够形成凝胶。
凝胶是由一些高分子链交联而成的三维聚合物网络。
这种结构赋予了生物凝胶一些特殊的物理化学性质,如黏弹性和过滤性。
(3)表面活性生物胶体在水/油界面处会表现出一些特殊的表面活性,如乳化和稳定液滴的能力。
这些表面活性与蛋白质和多糖的表面结构和电荷密切相关。
(4)生物胶体的黏滞度生物胶体的黏滞度是指流体通过生物胶体时所遇到的阻力。
生物胶体的黏滞度随分子量和溶液浓度的增加而增加。
此外,温度、pH值和离子强度等因素也会影响生物胶体的黏滞度。
三、生物胶体的应用生物胶体在医药、食品、化妆品等领域都有广泛应用。
(1)医药领域生物胶体在医药领域有着重要的应用。
例如,血浆蛋白是一种生物胶体,它在体内起到了运输和调节物质浓度的作用。
表面化学-胶体化学表面化学-胶体化学表面化学是研究物质表面的性质和现象的一门学科,而胶体化学则是表面化学的一个重要分支,研究胶体溶液中物质的性质和行为。
胶体化学的研究内容涉及到胶体的形成、稳定性、表面性质、胶体颗粒的相互作用以及胶体溶液的性质等。
本文将介绍表面化学和胶体化学的基本概念、研究方法以及应用领域。
表面化学最早起源于对溶液表面现象的研究,如水的表面张力、液滴的形成和液体的湿润性等。
表面化学研究的对象是固体和液体的界面以及液体和气体的界面,主要涉及到界面上的吸附现象、界面能和界面活性物质等。
固体-液体界面上的吸附现象包括离子吸附、分子吸附和表面电荷等,而液体-气体界面上的吸附现象则涉及到液滴形成和表面张力等。
胶体化学研究的是胶体溶液中胶体颗粒的性质和行为。
胶体是一种介于溶液和悬浮液之间的物质,其特点是颗粒很小,约为1纳米到1微米大小,并且能够在溶液中均匀分散。
胶体的稳定性是胶体化学研究的重要内容,稳定性的源于胶体颗粒表面的电荷,正负电荷的平衡使得颗粒之间相互排斥,从而保持胶体溶液的稳定性。
此外,胶体溶液中还包含着胶体的吸附、吸附剂的选择、界面张力、胶体性质的测定以及胶体与其他物质的相互作用等方面的研究内容。
表面化学和胶体化学的研究方法主要包括物理化学方法和化学方法两种。
物理化学方法包括表面张力测定、界面能测定、电化学方法、X射线衍射、电子显微镜等。
而化学方法包括有机合成、溶胶-凝胶法、聚合法、共沉淀法等多种方法。
表面化学和胶体化学在许多领域中都有重要的应用。
在光学领域中,胶体颗粒可以通过改变其尺寸和组成来调控其光学性质,从而应用于光学传感器、太阳能电池、红外吸收材料等。
在材料科学领域中,胶体颗粒可以通过自组装形成多孔材料和有序结构,具有较大的比表面积和孔径,被广泛用于催化剂、分离膜和储能材料等。
此外,表面化学和胶体化学还在生物医学、环境污染治理、油水分离、食品加工等领域发挥着重要的作用。
综上所述,表面化学和胶体化学是研究物质表面性质和胶体溶液行为的学科,涉及到物质界面的吸附现象、界面能、表面张力等。
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
实验35 胶体的制备及性质研究预习要求:1、了解溶胶的各种制备方法;明确本实验Fe(OH)3溶胶的制备方法。
2、本实验中溶胶粒子带电的原因。
3、溶胶纯化的目的;溶胶纯化时先在热水中渗析几遍的原因。
4、了解棉胶液的组成;棉胶液形成半透膜的原因。
实验目的1.掌握Fe(OH)3溶胶的制备方法和纯化方法。
2.观察溶胶的电泳现象并了解其电学性质。
3.掌握电泳法测定胶粒电泳速度和溶胶电动电位(ζ电位)的方法。
4.了解溶胶的光学性质及不同电解质对溶胶的聚沉作用。
实验原理溶胶是一个多相系统,胶粒(分散相)大小在1~1000 nm之间,是热力学不稳定系统。
溶胶的制备方法分为两大类:把较大的物质颗粒变为胶体大小质点的分散法,以及把物质的分子或离子聚集成胶体大小质点的凝聚法。
本实验中Fe(OH)3溶胶的制备采用化学反应凝聚法,即通过化学反应使生成物呈过饱和状态,然后粒子再结合为溶胶。
新制的溶胶中常有杂质存在而影响其稳定性,因此必须纯化。
常用的纯化方法是半透膜渗析法。
半透膜的特点是其孔径只允许电解质离子及小分子透过,而胶粒不能透过。
提高渗析温度或搅拌渗析液,均可提高渗析效率。
固体粒子由于自身电离或选择性吸附某种离子及其他原因而带电,带电的固体粒子称为胶核。
在胶核周围的分散介质中分布着与胶核电性相反、电量相等的反离子。
部分反离子由于静电引力紧密吸附在胶核表面,形成紧密层;剩余的反离子由于热运动,分布于紧密层外至溶液本体的扩散层中。
扩散层的厚度随外界条件(温度、系统中电解质浓度、及离子价态)而改变。
由于离子的溶剂化作用,紧密层结合有一定量的溶剂分子,在外加电场作用下,紧密层与胶核作为一个整体(胶粒)移动,扩散层中的反离子向相反电极方向移动。
这种分散相粒子在电场作用下相对于分散介质的运动称为电泳。
带电的胶粒与带有反离子的扩散层发生相对移动的分界面,称为滑动面。
滑动面与液体内部的电位差称为电动电位(或ζ电位)。
电动电位是描述溶胶特性的重要物理量。
《物理化学》课程教学大纲(供高职药学、中药类专业使用)一、前言物理化学是药学、中药类的专业基础课。
本课程是在学生已经学过高等数学、物理学、无机化学、分析化学和有机化学的基础上,进一步系统地阐明化学变化的基本规律。
要求学生系统地掌握物理化学的基本原理、基本方法与基本技能,通过各个教学环节培养学生独立思考、独立分析和创新的能力,使之具有一定的分析和解决药学方面实际问题的能力,从而为进一步学好专业课程及今后从事药学、药物制剂工作和科学研究,奠定良好的化学理论基础。
物理化学内容非常丰富。
根据药学、药物制剂等专业的要求,本课程的任务是学习化学热力学、化学动力学、电化学、表面现象和胶体等基本内容。
本课程理论讲授共36学时,2学分。
物理化学实验在实验化学课程中进行。
理论教学主要通过课堂讲授,多媒体影视课件、习题课(或课堂讨论)、演算习题、自学及实验等教学形式,达到学习本课程的目的。
二、教学内容与要求绪论(一)教学目的与要求1、熟悉物理化学课程的研究对象、任务、内容及发展趋势。
2、了解物理化学在化学与药学中的地位和作用。
3、掌握物理化学的研究方法与学习方法。
(二)教学内容1、概述物理化学的研究对象和任务、内容和特点及发展趋势。
2、物理化学在化学与药学中的地位和作用(重点)。
3、物理化学的研究方法与学习方法(重点)。
(三)教学形式与方法采用课堂讲授、多媒体影视课件、讨论、自学等教学形式。
第一章热力学第一定律(一)教学目的与要求1、熟悉热力学的一些基本概念和可逆过程的意义及特点。
2、掌握热力学第一定律、内能和焓的概念。
掌握状态函数的定义和特性。
3、掌握热力学第一定律的常用计算Q、W、U∆和H∆的方法。
4、了解节流膨胀的概念和意义。
5、掌握应用生成焓及燃烧焓计算反应热的方法。
6.熟悉反应热与温度的关系。
(二)教学内容1、热力学概论,热力学研究的对象、内容,方法和特点。
2、热力学基本概念,体系与环境,体系的性质,状态与状态函数,过程与途径。
1.胶体的定义及分类胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。
分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1~100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系。
按照分散剂状态不同分为:气溶胶——以气体作为分散剂的分散体系。
其分散质可以是液态或固态.(如烟、雾等)液溶胶—-以液体作为分散剂的分散体系.其分散质可以是气态、液态或固态。
(如Fe(OH)3胶体)固溶胶-—以固体作为分散剂的分散体系.其分散质可以是气态、液态或固态。
(如有色玻璃、烟水晶)按分散质的不同可分为:粒子胶体、分子胶体。
如:烟,云,雾是气溶胶,烟水晶,有色玻璃、水晶是固溶胶,蛋白溶液,淀粉溶液是液溶胶;淀粉胶体,蛋白质胶体是分子胶体,土壤是粒子胶体.2.胶体的不同表征方式胶体分散体系分为单分散体系和多分散体系。
单分散系表征可以用分散度、比表面积法(不规则形状包括单参数法,双参数法和多参数法)多分散体系可以用列表法、作图法,如粒子分布图,粒子累计分布图。
用激光粒度分析仪测定.胶体的稳定性一般用zeta电位来表征。
zeta电位为正,则胶粒带正电荷,zeta电位为负,则胶粒带负电荷。
zeta电位绝对值越高,稳定性越好,分散度越好,一般绝对值〉30mV说明分散程度很好。
胶体的流变性表征-黏度。
可用毛细管黏度计,转筒黏度计测定。
3.有两种利用光学性质测定胶体溶液浓度的仪器;比色计和浊度仪,分别说明它们的检测原理比色计它是一种测量材料彩色特征的仪器.比色计主要用途是对所测材料的颜色、色调、色值进行测定及分析.工作原理:仪器自身带有一套从淡色到深色,分为红黄蓝三个颜色系列的标准滤色片.仪器的工作原理是基于颜色相减混合匹配原理。
罗维朋比色计目镜筒的光学系统将光线折射成90°并将观察视场分成可同时观察的左右两个部分,其中一部分是观察样品色的视场;另一部分是观察参比色(即罗维朋色度单位标准滤色片)的视场。