面面垂直推线面垂直定理
- 格式:docx
- 大小:36.77 KB
- 文档页数:1
证明线面垂直问题是高考数学试题中的常见题型之一,主要考查同学们的空间想象能力和数学运算能力.对于简单的证明线面垂直问题,通常可直接运用直线与平面垂直的定义进行证明,对于一些较为复杂的证明线面垂直问题,利用定义法无法证明结论,此时需利用转化思想,把线面垂直问题转化为线线垂直问题、面面垂直问题、空间向量问题来求解.下面重点探讨一下如何证明线面垂直.一、利用线面垂直的判定定理进行证明线面垂直的判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么这条直线与此平面垂直.运用线面垂直的判定定理,需通过证明线线垂直来推出线面垂直.而证明线线垂直的常用手段有:(1)利用等腰三角形的三线合一性质(或等腰梯形上下底的中点连线与上下底垂直);(2)利用菱形的对角线互相垂直;(3)利用勾股定理;(4)利用圆的性质:圆的直径所对的圆周角是直角.例1.在直三棱柱ABC-A1B1C1中,M为棱AC的中点,AB=BC,AC=2,AA1=2.求证:BM⊥平面ACC1A1.证明:∵点M为棱AC的中点,AB=BC,∴BM⊥AC,∵AA1⊥底面ABC,BM⊂平面ABC,∴AA1⊥BM,∵AA1⋂AC=A,AA1⊂平面ACC1A1,AC⊂平面ACC1A1,∴BM⊥平面ACC1A1.要证BM⊥平面ACC1A1,需要在平面ACC1A1内找到两条与BM垂直的相交直线,即AC与AA1.再利用线面垂直的判定定理加以证明.在证明BM⊥AC时,需要用到等腰三角形的三线合一性质,而证明AA1⊥BM 时,需用到直棱柱的侧棱与底面垂直的性质.例2.如图1,六面体ABCD-A1B1C1D1的底面ABCD是菱形,AA1//BB1//CC1//DD1,且BB1⊥平面ABCD,AA1=CC1, AE=λ AA1, CF=λ CC1()0<λ≤1,平面BEF 与平面ABCD的交线为l.求证:直线l⊥平面B1BDD1.证明:如图1所示,连接AC、BD,∵AA1=CC1,AA1//CC1, AE=λ AA1, CF=λ CC1(0<λ≤1),∴ AE= CF,∴AE=CF,AE//CF,∴四边形AEFC为平行四边形,∴AC//EF,∵EF⊂平面BEF,AC⊄平面BEF,∴AC//平面BEF,∵平面BEF⋂平面ABCD=l,AC⊂平面ABCD,∴AC//l,∵四边形ABCD是菱形,∴AC⊥BD,∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,∵BD⋂BB1=B,BD⊂平面B1BDD1,BB1⊂平面B1BDD1,∴AC⊥平面B1BDD1,∵AC//l,∴l⊥平面B1BDD1.要证明l⊥平面B1BDD1,需先根据菱形的对角线互相垂直的性质证明AC⊥BD,以及线面垂直的性质证明AC⊥BB1,从而根据线面垂直的判定定理证明AC⊥平面B1BDD1;最后根据平行线的性质证明结论.例3.如图2,在四棱锥P-ABCD中,AB//CD,BC⊥CD,侧面PAB为等边三角形,AB=BC=4,CD=PD=2,求证:PD⊥平面PAB.证明:如图2所示,过点D作DE⊥AB于点E,连接BD,∵AB//CD,BC⊥CD,∴四边形BEDC为矩形,在RtΔAED中,DE=BC=4,AE=2,∴AD=AE2+DE2=25,∵ΔPAB为等边三角形,∴PA=PB=AB=4,∵在ΔPAD中,PD=2,∴PA2+PD2=20=AD2,∴PD⊥PA,在RtΔBCD中,BC=4,CD=2,∴BD=BC2+CD2=25,∴在ΔPBD中,PB2+PD2=20=BD2,∴PD⊥PB,而PA⋂PB=P,PA⊂平面PAB,PB⊂平面PAB,∴PD⊥平面PAB.我们利用勾股定理、等边三角形的性质、矩形的性质,在平面PAB中找到与PD垂直的两条相交直线PA、PB,证明PD⊥PA、PD⊥PB,便可根据线面垂直的判定定理证明PD⊥平面PAB.图2解题宝典图1 36二、利用面面垂直的性质定理进行证明面面垂直的性质定理:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.在解题时,往往要先根据面面垂直的定义证明两个平面互相垂直;然后确定两个平面的交线,运用面面垂直的性质定理证明线面垂直.例4.如图3,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA=PD,AB//CD,CD⊥AD,AD=CD=2,AB=3,E,H分别是棱AD,PB的中点,求证:BC⊥平面PCE.证明:如图3所示,在棱AB上取点F,使得AF=2BF=2,连接CF,BE,∵AB//CD,CD⊥AD,AD=CD=2=AF,∴四边形AFCD是正方形,∴∠BAE=∠CDE=∠CFB=90°,且CF=AD=2,∵E是棱AD的中点,∴AE=DE=1,∵AB=3,∴BC=CF2+BF2=5,CE=CD2+DE2=5,BE=AE2+AB2=10,∴BE2=BC2+CE2,∴BC⊥CE,∵PA=PD,E是棱AD的中点,∴PE⊥AD,∵平面PAD⊥平面ABCD,平面PAD⋂平面ABCD=AD,∴PE⊥平面ABCD,∵BC⊂平面ABCD,∴PE⊥BC,∵PE⊂平面PCE,CE⊂平面PCE,PE⋂CE=E,∴BC⊥平面PCE.先结合图形确定平面PAD与平面ABCD的交线,根据等腰三角形三项合一的性质证明PE⊥AD,进而证明PE⊥平面ABCD,便可根据面面垂直的性质定理证明PE⊥BC;然后由勾股定理和正方形的性质可证明BC⊥CE,即可根据线面垂直的判定定理证明BC⊥平面PCE.三、利用空间向量法进行证明当几何体中出现(或可以构造)两两互相垂直的三条线时,可以考虑建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,通过空间向量运算,来证明直线的方向向量与平面的法向量平行,即可证明直线与平面垂直.例5.如图4,在四棱锥P-ABCD中,PA⊥平面ABCD,正方形ABCD的边长为2,E是PA的中点.若PA=2,线段PC上是否存在一点F,使AF⊥平面BDE?若存在,求出PF的长度;若不存在,请说明理由.解:存在.理由如下:因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为ABCD为正方形,所以CD⊥DA.PA⋂DA=A,PA⊂平面ADP,DA⊂平面ADP,所以CD⊥平面ADP.以D为原点,建立空间直角坐标系D-xyz,如图4所示.则D()0,0,0,A()0,2,0,B()0,2,2,C()0,0,2,P(2,2,0),则DB=()0,2,2,而E为PA中点,所以E()1,2,0,DE=()1,2,0,设PF=λPC()0≤λ≤1,而PC=()-2,-2,2,则PF=()-2λ,-2λ,2λ,所以F()2-2λ,2-2λ,2λ,得AF=()2-2λ,-2λ,2λ,设平面BDE的法向量为n =()x,y,z,则ìíîn ∙DB=2y+2z=0,n ∙DE=x+2y=0,取y=1,则{x=-2,z=-1,得n =()-2,1,-1,当AF⊥平面BDE时,AF//n ,则2-2λ-2=-2λ,解得λ=13,所以Fæèöø23,23,23,故PF=.首先根据线面垂直的性质定理、正方形的性质及线面垂直的判定定理证明CD⊥平面ADP,即可确定两两互相垂直的三条线,据此建立空间直角坐标系;然后求出所需的各点的坐标、直线的方向向量AF、平面BDE的法向量n ;再根据AF//n ,计算出λ的值,最终求出PF的长度.在证明线面垂直时,通常要用到线面垂直的判定定理来寻找垂直关系,即便是采用空间向量法,也需要根据线面垂直的判定定理证明几何体中存在两两互相垂直的三条线,才能建立空间直角坐标系.同学们在解题受阻时,要学会灵活运用转化思想,将问题进行合理的转化,以拓宽解题的思路.本文系黑龙江省教育科学“十四五”规划教研专项重点课题《信息技术环境下的高中数学直观想象核心素养的培养研究》(课题编号:JYB1422308)研究成果.(作者单位:黑龙江省大庆铁人中学)图3F图4解题宝典37。
线线垂直,线面垂直,面面垂直的关系稿子一:嘿,朋友!今天咱们来聊聊线线垂直、线面垂直还有面面垂直的那些事儿。
你看哈,线线垂直就像是两个小伙伴在打架,谁也不让谁,非要争个上下。
比如说,一条直线直直地站着,另一条直线冲过来和它成了直角,这就是线线垂直啦,简单直接!那线面垂直呢,就像是一个勇敢的战士面对着一堵墙,直直地站在那,和墙面成了直角。
而且不管墙面怎么变化,这个战士都坚定不移,这就是线面垂直哦。
面面垂直可就更有趣啦!想象一下两个大板子,一个板子立得直直的,另一个板子和它碰到一起,还形成了直角,这就是面面垂直。
你说它们之间有没有关系呢?当然有啦!线线垂直可以推出线面垂直,就好像是一个小小的胜利积累成了大的成功。
而线面垂直又能推出面面垂直,就像一步一步升级打怪一样。
这三者的关系就像一个有趣的链条,一环扣一环,是不是很有意思呀?稿子二:亲爱的小伙伴,咱们来唠唠线线垂直、线面垂直、面面垂直的关系呗!先说线线垂直,这就好比两根针,针尖对着针尖,谁也不退缩,这就是垂直啦,多干脆!线面垂直呢,就像是一根旗杆立在地面上,直直的,和地面成了直角,稳稳当当。
不管刮多大风,它都不会歪。
面面垂直呢,你就想想两块大木板,相互靠在一起,还成直角,是不是感觉很结实?其实呀,它们之间的关系可密切啦!如果线线垂直了,那么就有可能出现线面垂直的情况。
就好像是积累了足够多的小胜利,终于迎来了大突破。
而线面垂直一旦成立,面面垂直也就不远啦。
这就像多米诺骨牌,一个接着一个倒,顺理成章。
比如说,在一个房间里,墙面和地面就是面面垂直的,这都是因为线线垂直和线面垂直在背后起作用呢。
怎么样,是不是觉得这三者的关系很神奇,也很有趣呀?。
面面垂直推线面垂直定理
面面垂直,一面内有一直线垂直于这两面交线,得到线面垂直。
已知α⊥β,
α∩β=l,O∈l,OP⊥l,OP?α。
求OP⊥β。
过O在β内作OQ⊥l,由二面角知识可知
∠POQ是二面角α-l-β的平面角。
因为α⊥β所以∠POQ=90°,即OP⊥OQ,因为OP⊥l,l∩OQ=O,l?β,OQ?β,所以OP⊥β。
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
直线与平面垂直定义:如果一条直线与一个平面内的任意一条直线都垂直,就说这条
直线与此平面互相垂直。
是将“三维”问题转化为“二维”解决是一种重要的立体几何数
学思想方法。
在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论
入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”。
性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。
性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。
性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线
也垂直于这个平面。
性质定理4:垂直于同一平面的两条直线平行。
推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。
该推论意味
着平行线的传递性不仅在平面几何上,在空间几何上也成立。
由性质定理2可知,过空间内一点无论是否在已知平面上,有且只有一条直线与平面
垂直。
下面就讨论如何作出这条唯一的直线。
感谢您的阅读,祝您生活愉快。