(完整版)新北师大版初二数学下册知识点总结
- 格式:doc
- 大小:241.24 KB
- 文档页数:11
八年级下册数学北师大版知识点总结一、三角形的证明。
1. 等腰三角形。
- 性质:- 等腰三角形的两腰相等,两底角相等(等边对等角)。
- 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
- 判定:- 有两边相等的三角形是等腰三角形。
- 有两角相等的三角形是等腰三角形(等角对等边)。
2. 等边三角形。
- 性质:- 等边三角形的三条边都相等,三个角都相等,且每个角都等于60°。
- 判定:- 三条边都相等的三角形是等边三角形。
- 三个角都相等的三角形是等边三角形。
- 有一个角是60°的等腰三角形是等边三角形。
3. 直角三角形。
- 性质:- 直角三角形的两个锐角互余。
- 直角三角形斜边上的中线等于斜边的一半。
- 勾股定理:直角三角形两直角边的平方和等于斜边的平方(a^2+b^2=c^2,其中a、b为直角边,c为斜边)。
- 判定:- 有一个角是直角的三角形是直角三角形。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。
4. 线段的垂直平分线。
- 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
- 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
- 三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
5. 角平分线。
- 性质:角平分线上的点到这个角的两边的距离相等。
- 判定:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
- 三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
二、不等式(组)1. 不等式的基本性质。
- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
2. 一元一次不等式。
- 定义:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式。
北师大版八年级数学下册知识点总结第一章代数初步
1.1 代数式
•代数式的定义
•代数式的分类
•代数式的运算
1.2 多项式与因式分解
•多项式的定义与分类
•多项式的加减乘除
•因式分解的概念
•因式分解的方法
第二章方程
2.1 一元一次方程
•一元一次方程的定义
•一元一次方程的基本性质
•解一元一次方程的方法
2.2 一元一次方程组
•一元一次方程组的定义
•一元一次方程组的基本性质
•解一元一次方程组的方法
2.3 一元二次方程
•一元二次方程的定义
•一元二次方程的基本性质
•解一元二次方程的方法
第三章几何初步
3.1 角
•角的定义与分类
•角的度数与弧度制
•角平分线的性质
3.2 四边形
•四边形的概念与分类
•四边形的性质
第四章圆的初步
4.1 圆的性质
•圆的定义与性质
•圆心角与圆弧的关系
•弧长公式与扇形面积公式
4.2 切线与割线
•切线与割线的定义
•切线定理与割线定理
4.3 圆的应用
•圆的运动公式
•圆的方程与判别式
第五章数据的收集与处理
5.1 数据的收集
•数据的来源与调查方法
•数据的类型与统计图表
5.2 数据的处理
•数据的中心趋势
•数据的离散程度
•数据的相关性
总结
本文档总结了北师大版八年级数学下册的主要知识点,涵盖了代数初步、方程、几何初步、圆的初步以及数据的收集与处理。
每一章都介绍了重点知识点的定义、性质、分类以及相关的运算方法和解题技巧。
希望本文档能够对八年级学生和教师有所帮助。
北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
北师大版八年级下册数学知识点必看求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些北师大版八年级下册数学知识点的学习资料,希望对大家有所帮助。
北师大版初二数学下册知识点归纳第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
八下数学知识点归纳北师大版
八下数学知识点归纳(北师大版)
1. 整式的加减运算:将同类项相加或相减,并注意合并同类项的系数。
2. 一元一次方程:解一元一次方程时,可以通过加减变换、乘除变换或移项来求解。
3. 二元一次方程组:通过消元法或代入法来求解含有两个未知数的方程组。
4. 三角形的面积:根据三角形的底和高、两边和夹角的正弦公式、两边和夹角的余弦公式来计算三角形的面积。
5. 平行线与比例:根据平行线的性质来求解问题,应用相似三角形的性质计算比例。
6. 一元二次方程:利用配方法或公式法来解一元二次方程,并注意解的情况。
7. 空间图形的计算:通过计算形体的体积或表面积来解决空间图形的问题。
8. 圆的面积和周长:通过半径、直径、弦和扇形的关系来计算圆的面积和周长。
9. 概率与统计:根据事件发生的可能性来计算概率,并通过统计数据的分析和整理来得出结论。
10. 点、直线、平面的关系:通过点和直线的位置关系来判断它们是否相交或平行。
以上是八下数学教材中的一些重要知识点,希望对你的学习有所帮助。
北师大版八年级数学下册各章知识重点总结第一章三角形的证明一、全等三角形判断定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及向来角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边平等角”)。
推论1:等腰三角形顶角的均分线均分底边而且垂直于底边,这就是说,等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合。
(三线合一)推论 2:等边三角形的各角都相等,而且每一个角都等于60°。
等腰三角形是以底边的垂直均分线为对称轴的轴对称图形;三、等腰三角形的判断1.相关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角平等边”。
)推论 1:三个角都相等的三角形是等边三角形。
推论 2:有一个角等于60°的等腰三角形是等边三角形。
推论 3:在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假定命题的结论不建立,而后推导出与定义、公义、已证定理或已知条件相矛盾的结果,从而证明命题的结论必定建立。
这类证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判断假如三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互抗命题、互逆定理在两个命题中,假如一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互抗命题,此中一个命题称为另一个命题的抗命题.假如一个定理的抗命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,此中一个定理称为另一个定理的逆定理 .五、线段的垂直均分线角均分线1 、线段的垂直均分线。
数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
最新北师大版初二下册数学知识点归纳篇一第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。
第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。
定理2 全等三角形的对应角相等。
推论1 全等三角形的面积相等。
推论2 全等三角形的周长相等。
2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。
(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。
(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。
(三线合一) 推论 2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。
【说明】①等腰直角三角形的两个底角相等且等于45°。
②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b<a <2C④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A =180°—2∠B ,∠A =∠B =2180A∠-︒2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。
定理:有两个角相等的三角形是等腰三角形。
(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。
定理2 等边三角形的三个内角都相等,并且每个角都等于60°。
推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。
2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。
定理:三个角都相等的三角形是等边三角形。
第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线角平分线1、线段的垂直平分线。
初二数学下册总结第一章三角形的证明一、全等三角形的判定定理:三边分别相等的两个三角形全等.(SSS)定理:两边及其夹角分别相等的两个三角形全等.(SAS)定理:两角及其夹边分别相等的两个三角形全等.(ASA)定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.(AAS)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)二、全等三角形的性质全等三角形对应边相等、对应角相等.三、等腰(边)三角形的性质定理:等腰三角形的两底角相等.(等边对等角)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.定理:等边三角形的三个内角都相等,并且每个角都等于60°. 四、等腰(边)三角形的判定定理:有两个角相等的三角形是等腰三角形.(等角对等边)定理:三个角都相等的三角形是等边三角形.定理:有一个角等于60°的等腰三角形是等边三角形.五、反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.六、直角三角形的性质定理:直角三角形的两个锐角互余.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.勾股定理:直角三角形两条直角边的平方和等于斜边的平方.七、直角三角形的判定定理:有两个角互余的三角形是直角三角形.定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.八、线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.九、角平分线定理:角平分线上的点到这个角的两边的距离相等.定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.十、互逆命题和互逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.备注:一个命题一定有逆命题,但一个定理不一定有逆定理.十一、尺规作图的应用已知等腰三角形的底边及底边上的高作等腰三角形.第二章一元一次不等式与一元一次不等式组一、不等关系定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.与方程的区别:方程表示的是相等的关系;不等式表示的是不相等的关系.备注:准确“翻译”不等式,正确理解“非负数”“不小于”“不大于”“至多”“至少”等数学术语.二、不等式的基本性质●不等式的两边都加(或减)同一个整式,不等号的方向不变,即如果a >b ,那么c a ±>c b ±;●不等式的两边都乘(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或c a >c b );●不等式的两边都乘(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或c a <cb ).三、不等式的解集1、能使不等式成立的未知数的值,叫做不等式的解.一个含有未知数的不等式的所有解,组成这个不等式的解集.求不等式解集的过程叫做解不等式.2、不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:(1)边界:有等号的实心圆点,无等号的空心圆圈;(2)方向:大于向右,小于向左.四、一元一次不等式定义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次是1,像这样的不等式叫做一元一次不等式.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.列不等式解应用题的基本步骤:①审,②设,③列,④解,⑤答.备注:解一元一次不等式特别要注意,当不等式两边都乘一个负数时,不等号要改变方向.五、一元一次不等式与函数设一次函数b=,则有一次函数的图像在x轴的上方⇔bkxy+kx+>0;一次函数的图像在x轴的下方⇔bkx+<0.六、一元一次不等式组解一元一次不等式组的方法:“分开解,集中判”备注:几个不等式解集的公共部分,通常是利用数轴来确定.第三章图形的平移与旋转一、平移定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移的两个要素:平移方向、平移距离.二、平移的性质1、平移不改变图形的形状和大小.2、一个图形和它经过平移所得到的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.3、一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.4、平移前后的图形全等.三、旋转定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转的三个要素:旋转中心、旋转方向、旋转角.四、旋转的性质1、旋转不改变图形的大小和形状.2、一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3、旋转前后的图形全等.五、两图成中心对称定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.备注:成中心对称的图形是两个图形.六、两个图形成中心对称的性质1、成中心对称的两个图形是全等图形;2、成中心对称的两个图形,对应点所连线段都经过对称中心,且被对称中心平分;3、成中心对称的两个图形,对应线段平行(或在同一直线上)且相等.七、中心对称图形定义:把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.例如:圆,平行四边形,长方形,正方形及边数是偶数的正多边形都是中心对称图形.八、中心对称图形的性质中心对称图形上的每一对对应点连成的线段都被对称中心平分.九、图案设计步骤1、确定设计图案的表达意图;2、分析设计图案所给定的基本图形;3、对基本图形综合运用平移、旋转、轴对称设计图案第四章因式分解一、因式分解定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解与整式乘法的区别与联系:(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个整式的积的形式.备注:因式分解与整式乘法是互逆关系二、提公因式法如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.如:)(c b a ac ab +=+.依据:)(c b a m cm bm am ++=++步骤:①找公因式:系数的最大公约数与相同字母的最低次幂的积; ②提公因式:提取公因式后的多项式,合并同类项前与原多项式的项数相同.(多项式中的某一项恰为公因式,提出后,括号中这一项为1,而不是0)三、公式法1、平方差公式:))((22b a b a b a -+=-;2、完全平方公式:222)(2b a b ab a -=+-,222)(2b a b ab a +=++.●因式分解的一般步骤:首项有“负”必先提,各项有“公”先提“公”,每项都提莫漏“1”,括号里面分到底.第五章 分式与分式方程一、分式1、定义:一般地,用A ,B 表示两个整式,A ÷B 可以表示成B A 的形式,如果B 中含有字母,那么称BA 为分式.对于任意一个分式,分母都不能为零.2、分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.3、公因式:一个分式的分子与分母都含有的因式,叫这个分式的公因式.4、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的方法:可以运用分式的基本性质,把这个分式的分子、分母同除以它们的公因式,也就是把分子、分母的公因式约去.5、最简公分母:(1)把各分式分母系数的最小公倍数作为最简公分母的系数;(2)把相同字母(或因式分解后得到的相同因式)的最高次幂作为最简公分母的一个因式;(3)把只在一个分式的分母中出现的字母连同它的指数作为最简公分母的一个因式.6、通分:把异分母的分式化为同分母的分式,这一过程称为分式的通分.7、最简分式:一个分式的分子与分母除了1以外没有其他的公因式时,叫做最简分式.二、分式的乘除法1、两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2、两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.三、分式的加减法1、同分母的分式相加减,分母不变,把分子相加减.式子表示是:CB AC B C A ±=± 2、异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.式子表示是:BDBC AD BD BC BD AD D C B A ±=±=± 备注:先对多项式进行因式分解,再确定最简公分母.四、分式方程1、定义:分母中含有未知数的方程叫做分式方程.2、解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程进行检验,也可以代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3、分式方程的增根:解分式方程的过程中所求出的使原分式方程的分母等于零的根,是原方程的增根.4、列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.备注:解分式方程可能产生增根,所以解分式方程必须检验!第六章 平行四边形一、平行四边形的性质定理:平行四边形的对边相等.定理:平行四边形的对角相等.定理:平行四边形的对角线互相平分.第 11 页 平行四边形是中心对称图形,两条对角线的交点是它的对称中心.二、平行四边形的判定定义:两组对边分别平行的四边形是平行四边形.定理:两组对边分别相等的四边形是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.定理:对角线互相平分的四边形是平行四边形.三、三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于第三边的一半. ●由三角形的三条中位线,可以得出以下结论:(1)三条中位线组成一个三角形,其周长为原三角形周长的一半;(2)三条中位线将原三角形分割成四个全等的三角形;(3)三条中位线将三角形划分出三个面积相等的平行四边形.四、多边形的内角和与外角和定理:n 边形的内角和等于)2-n (·180°.定理:多边形的外角和都等于360°.备注:n 边形共有)3(21-n n 条对角线.。