新人教版初中数学[中考冲刺:数形结合问题--重点题型巩固练习](提高)
- 格式:doc
- 大小:266.00 KB
- 文档页数:11
中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通.现要向甲池中注水,若单位时间内的注水量不变,那么,从注水开始,水池乙水面上升的高度h与注水时间t之间的函数关系的图象可能是()2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.如下图所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1,……所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上的数字a与数轴上的数5对应,则a= ;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示).5.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的_________点.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.8.探索研究:如图,在直角坐标系xOy 中,点P 为函数y =14x 2在第一象限内的图象上的任一点,点A 的坐标为12 122 123124 … (图1)(图2)(0,1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R . (1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形; (3)除P 点外,直线PH 与抛物线y =14x 2有无其它公共点?并说明理由.9.阅读材料,解答问题.利用图象法解一元二次不等式:x 2﹣2x ﹣3>0.解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0.∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3<0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米. ①如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为 FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?x lQC PA OB HRy②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂直平分线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.4.【答案】(1)2 (2)3n+1;【解析】(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2;(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.故答案为:a=2;3n+1.5.【答案】点Q.三、解答题6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应;(2)10; a=10; b=9; c=6.(3)由题意可知C点的坐标为(45,9),D点的坐标为(53,10),设直线CD的函数关系式为h=kt+b,∴945, 1053k bk b =+⎧⎨=+⎩解得1,8.278 kb⎧=⎪⎪⎨⎪=⎪⎩∴直线CD的函数关系式为h=127 88t+;(4)石块的体积为abc=540cm3,根据图4和图6可得:10540(106)535321s s--=-. 解得S=160(cm ).7.【答案与解析】(1)设总面积为:1,最后余下的面积为:12n , 故几何图形的值为:23411111+++++22222n …的值为112n -.故答案为:112n -.8.【答案与解析】(1)证明:∵A(0,1),B (0,﹣1),∴OA=OB. 又BQ∥x 轴, ∴HA=HQ;(2)证明:①由(1)可知AH=QH ,∠AHR=∠QHP,∵AR∥PQ,∴∠RAH=∠PQH, ∴△RAH≌△PQH. ∴AR=PQ, 又AR∥PQ,∴四边形APQR 为平行四边形; ②设P (m ,m 2),∵PQ∥y 轴,则Q (m ,﹣1),则PQ=1+m 2. 过P 作PG⊥y 轴,垂足为G .在Rt△APG中,AP=+1=PQ,∴平行四边形APQR为菱形;(3)解:设直线PR为y=kx+b,由OH=CH,得H(,0),P(m,m2).代入得:,∴,∴直线PR为.设直线PR与抛物线的公共点为(x,x2),代入直线PR关系式得:x2﹣x+m2=0,(x﹣m)2=0,解得x=m.得公共点为(m,m2).所以直线PH与抛物线y=x2只有一个公共点P.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t, ∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.。
中考数学之数形结合问题—巩固练习一、 选择题1.如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下四个结论: ①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B .2个C .3个D .4个2.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A 、222b)-a (=b -aB 、222b +ab 2+a =)b +a (C 、222b +ab 2-a =)b -a (D 、22-b ()(-b)a a b a =+二、 填空题3. 实数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的序号为____________.①b+c >0 ②a+b>a+c ③ac <bc ④ab >ac4.(2016•通辽)如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出以下结论: ①abc <0 ②b 2﹣4ac >0 ③4b+c <0④若B (﹣,y 1)、C (﹣,y 2)为函数图象上的两点,则y 1>y 2 ⑤当﹣3≤x ≤1时,y ≥0,其中正确的结论是(填写代表正确结论的序号).三、解答题5.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y 与x 的函数解析式;(2)如果每毫升血液中含量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间有 多长?y x O 236106.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于 _____;(2)请用两种不同的方法求图2中阴影部分的面积.① ______②_______; (3)观察图2你能写出下列三个代数式之间的等量关系吗?(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n )2的值.(5)用完全平方公式和非负数的性质求代数式x 2+2x+y 2-4y+7的最小值.7.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.8.如图,一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(2,1),点B的坐标(﹣1,n).(1)分别求两个函数的解析式;(2)求△AOB的面积.9.请同学们仔细阅读如图所示的计算机程序框架图,回答下列问题:(1)如果输入值为2,那么输出值是多少?(2)若要使输入的x的值只经过一次运行就能输出结果,求x的取值范围;(3)若要使开始输入的x的值经过两次运行才能输出结果,那么x的取值范围又是多少?10.观察如图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形.S1,S2,S3,…S n依次表示正方形的面积,每个正方形边长与它左边相邻的直角三角形斜边相等),再回答下列问题.(1)填表:直角边A1B1A2B2A3B3A4B4…A n B n长度 1 …1234n11.某报社为了了解读者对该报社一种报纸四个版面的认可情况,对读者做了一次问卷凋查,要求读者选出自己最喜欢的一个版面,并将调查结果绘制成如下的统计图,请你根据图中提供的信息解答下列问题.(1)在这次活动中一共调查了多少读者?(2)在扇形统计图中,计算第一版所在扇形的圆心角度数;(3)请你求出喜欢第四版的人数,并将条形统计图补充完整.【答案与解析】一、选择题1.【答案】C;【解析】∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上可得,正确结论有3个:①③④.2.【答案】D;二、填空题3.【答案】②③④;4.【答案】②③⑤;【解析】由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,﹣=﹣1,∴b=2a,c=﹣3a,∴4b+c=8a﹣3a=5a<0,故③正确.∵B(52-,y1)、C(12-,y2)为函数图象上的两点,点C离对称轴近,∴y1<y2,故④错误,由图象可知,﹣3≤x≤1时,y≥0,故⑤正确.∴②③⑤正确.三、解答题5.【答案与解析】解:(1)当x≤2时,设y=kx,把(2,6)代入上式,得k=3,∴x≤2时,y=3x;当x≥2时,设y=kx+b,把(2,6),(10,3)代入上式,得k=38-,b=274∴x≥2时,y=38-x+274(2)把y=4代入y=3x,得x1=4 3把y=4代入y=38-x+274得x2=223则x2-x1=6(小时).答:这个有效时间为6小时.解:(1)由图可知,阴影部分小正方形的边长为:m-n;(2)根据正方形的面积公式,阴影部分的面积为(m-n)2,还可以表示为(m+n)2-4mn;(3)根据阴影部分的面积相等,(m-n)2=(m+n)2-4mn;(4)∵mn=-2,m-n=4,∴(m+n)2=(m-n)2+4mn=42+4×(-2)=16-8=8;(5)x2+2x+y2-4y+7,=x2+2x+1+y2-4y+4+2,=(x+1)2+(y-2)2+2,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2≥2,∴当x=-1,y=2时,代数式x2+2x+y2-4y+7的最小值是2.故答案为:(1)m-n;(2)(m-n)2,(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.(4) 8 (5) 最小值是2.7.【答案与解析】解:(1)设y1=kx+b,将(0,29),(30,35)代入,解得k=15,b=29,∴y1=15x+29,又24×60×30=43200(min)(属于隐含条件)∴y1=15x+29 (0≤x≤43200),同样求得y2=12x (0≤x≤43200);(2)当y1=y2时,1 5x+29=12x,x=2 963;当y1<y2时,1 5x+29<12x, x>2963.所以,当通话时间等于2963min时,两种卡的收费一致,当通话时间小于2963min时,“如意卡便宜”,当通话时间大于2963min时,“便民卡”便宜.8.【答案与解析】解:(1)一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为(2,1),,解得一次函数的解析式是y=x ﹣1, 反比例函数的解析式是y=; (2)当x=0时,y=﹣1, S 三角形AOB =|﹣1|×2+|﹣1|×|﹣1|=1+ =.9.【答案与解析】 解:(1)依据题中的计算程序列出算式:3×2+1,∵3×2+1=7,7<9,∴应该按照计算程序继续计算,3×7+1=22>9, ∴如果输入值为2,那么输出值是22. (2)依题意,有3x+1>9,解得x >83; (3)依题意,有3193(31)19x x +≤⎧⎨++⎩f解得59<x ≤83. 10.【答案与解析】 解:(1)22221122112;(2)13A B A B =+==+=,2233n (3)142;n A B A B n =+===由此可以推断:,直角边 A 1B 1 A 2B 2 A 3B 3 A 4B 4 … A n B n 长度12 32…n(2)S 1=(2)2=2,S 2=(3)2=3,S 3=22=4,S 4=(5)2=5,……..n )2=n+1;S n=(1由s1+s2+s3+s4+…+s n=465可得:1+2+3+4+5+…+n=465,1(1+n)×n=4652解得:n=-31(不合题意舍去)或n=30,故:n=30.11.【答案与解析】解:(1)这次活动中一共调查了500÷10%=5000(人);(2)第一版所在扇形的圆心角度数=360°×(1-20%-40%-10%)=108°;(3)喜欢第四版的人数是:5000×20%=1000(人),如下图所示:。
中考冲刺:数形结合问题【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律例1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S举一反三:【变式】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y 轴正半轴上,则点B n的坐标是.类型二、利用数形结合解决数与式的问题例2.已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.类型三、利用数形结合解决代数式的恒等变形问题例3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
2019-2020年中考数学解题能力训练三-运用数形结合的思想来提高解题能力(含详细解题技巧)一、选择题1.在四个数0,-2,-1,2中,最小的数是( ) A .0 B .-2 C .-1 D .22.一次函数y =-2x +4图象与y 轴的交点坐标是( )A .(0,4)B .(4,0)C .(2,0)D .(0,2)3.实数a 、b 在轴上的位置如图所示,且|a |>|b |,则化简2a 2+|a +b |的结果为( )第3题图A .a +bB .-a +bC .-3a -bD .a -b第4题图 第9题图4.线段MN 在直角坐标系中的位置如图所示,线段M 1N 1与MN 关于y 轴对称,则点M 的对应的点M 1的坐标为( )A .(4,2);B .(-4,2);C .(-4,-2);D .(4,-2)5.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )第5题图A.⎩⎪⎨⎪⎧ x >2x ≤-1B.⎩⎪⎨⎪⎧ x <2x >-1C.⎩⎪⎨⎪⎧ x <2x ≥-1D.⎩⎪⎨⎪⎧x <2x ≤-1 6.已知长方形的面积为20cm 2,设该长方形一边长为y cm ,另一边的长为x cm ,则y 与x 之间的函数图象大致是( )A ;B ;C ; D7.菱形的周长为16cm ,高为23cm ,则该菱形两邻角度数比为( )A .3∶1B .4∶1C .5∶1D .2∶18.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是( )A.14B.13C.12D.239.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( ) A .30°; B .45°; C .60°; D .90°二、填空题10.如图,x 和5分别是天平上两边的砝码,请你用大于号“>”或小于号“<”填空:x ________5.第10题图11.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x -1)2+1的图象上,若x 1>x 2>1,则y 1________y 2.三、解答题12.如图,在平面直角坐标系xOy 中,函数y =4x (x >0)的图象与一次函数y =kx -k 的图象的交点为A (m,2).(1)求一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出点P 的坐标.第12题图13.如图,抛物线y =-x 2+bx +c与x 轴交于A 、B 两点,与y 轴交于点C ,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF =2,EF =3,(1)求抛物线所对应的函数解析式;(2)求△ABD 的面积;(3)将△AOC 绕点C 逆时针旋转90°,点A 对应点为点G ,问点G 是否在该抛物线上?请说明理由. 第13题图14.(xx•成都第28题)如图,已知抛物线y =(x +2)(x ﹣4)(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与x 轴交于点C ,经过点B 的直线y =﹣x +b 与抛物线的另一交点为D .(1)若点D 的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P为顶点的三角形与△ABC 相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?一、选择题1.B 【分析】 画出数轴,在数轴上标出各点,再根据数轴上右边的数总比左边的数大的特点进行解答,如图所示:第1题图∵四个数中-2在最左边,∴-2最小.故选B.2.A 【分析】 在解析式中令x =0,即可求得与y 轴的交点的纵坐标:y =-2×0+4=4,则函数与y 轴的交点坐标是(0,4).故选A.3.C 【分析】 根据数轴可知,a <0,b >0,|a |>|b |,∴a 2=-a ,a +b <0,|a +b |=-(a +b ),∴2a 2+|a +b |=-2a -a -b =-3a -b .故选C.4.D 【分析】 关于y 轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,从而点M (-4,-2)关于y 轴对称的点M 1的坐标是(4,-2).故选D.5.C 【分析】 不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(≥向右画;≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x ≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x <2,所以这个不等式组的解集为-1≤x<2,即:⎩⎪⎨⎪⎧x <2x ≥-1.故选C. 6.B 【分析】 ∵根据题意,得xy =20,∴y =20x (x >0,y >0).故选B.7.D 【分析】 如图所示,根据已知可得到菱形的边长为4cm ,从而可得到高所对的角为60°,相邻的角为120°,则该菱形两邻角度数比为2∶1.故选D. 第7题图8.A 【分析】 画树状图得:第8题图 ∵共有4种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是14.故选A. 9.A 【分析】 如图,当点P 运动到点P ′,即AP ′与⊙O 相切时,∠OAP 最大.第9题图连接OP ′,则AP ′⊥OP ′,即△AOP ′是直角三角形.∵OB =AB ,OB =OP ′,∴OA =2OP ′.∴sin ∠OAP ′=OP ′OA =12,∴∠OAP ′=30°,即∠OAP 的最大值是=30°.故选A. 二、填空题10.< 【分析】 托盘天平是支点在中间的等臂杠杆,天平平衡时砝码的质量等于被测物体的质量,根据图示知被测物体x 的质量小于砝码的质量,即x <5.11.> 【分析】 由二次函数y =(x -1)2+1知,其对称轴为x =1,∵x 1>x 2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大,∵x 1>x 2>1,∴y 1>y 2.三、解答题12.【解】 (1)将A (m,2)代入y =4x(x >0)得,m =2,则A 点坐标为A (2,2),将A (2,2)代入y =kx -k 得,2k -k =2,解得k =2,∴一次函数解析式为y =2x -2(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加:∵一次函数y =2x -2与x 轴的交点为C (1,0),与y 轴的交点为B (0,-2),∴12·2·CP +12·2·CP =4,解得CP =2.∴P 点坐标为(3,0),(-1,0). 第12题图第13题图13.【解】 (1)∵四边形OCEF 为矩形,OF =2,EF =3,∴点C 的坐标为(0,3),点E 的坐标为(2,3).把x 1=0,y 1=3;x 2=2,y 2=3分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ c =3-4+2b +c =3,解得⎩⎪⎨⎪⎧b =2c =3.∴抛物线所对应的函数解析式为y =-x 2+2x +3. (2)∵y =-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点坐标为D (1,4),∴△ABD 中AB 边的高为4.令y =0,得-x 2+2x +3=0,解得x 1=-1,x 2=3.∴AB =3-(-1)=4.∴△ABD 的面积=12×4×4=8. (3)如图,△AOC 绕点C 逆时针旋转90°,CO 落在CE 所在的直线上,由(1)(2)可知OA =1,OC =3,∵点A 对应点G 的坐标为(3,2).∵当x =3时,y =-32+2×3+3=0≠2,∴点G 不在该抛物线上.14.解:(1)抛物线y =(x +2)(x ﹣4),令y =0,解得x =﹣2或x =4,∴A (﹣2,0),B (4,0).∵直线y =﹣x +b 经过点B (4,0),∴﹣×4+b =0,解得b =,∴直线BD 解析式为:y =﹣x +. 当x =﹣5时,y =3,∴D (﹣5,3).∵点D (﹣5,3)在抛物线y =(x +2)(x ﹣4)上, ∴(﹣5+2)(﹣5﹣4)=3,∴k =.(2)由抛物线解析式,令x =0,得y =k ,∴C (0,﹣k ),OC =k .因为点P 在第一象限内的抛物线上,所以∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△APB 或△ABC ∽△ABP .①若△ABC ∽△APB ,则有∠BAC =∠P AB ,如答图2﹣1所示. 设P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON =x ,PN =y .tan ∠BAC =tan ∠P AB ,即:,∴y =x +k . ∴D (x , x +k ),代入抛物线解析式y =(x +2)(x ﹣4),得(x +2)(x ﹣4)=x +k ,整理得:x 2﹣6x ﹣16=0,解得:x =8或x =2(与点A 重合,舍去),∴P (8,5k ).∵△ABC ∽△APB ,∴,即, 解得:k =.②若△ABC ∽△ABP ,则有∠ABC =∠P AB ,如答图2﹣2所示.与①同理,可求得:k =. 综上所述,k =或k =.(3)由(1)知:D (﹣5,3),如答图2﹣2,过点D 作DN ⊥x 轴于点N ,则DN =3,ON =5,BN =4+5=9,∴tan ∠DBA ===,∴∠DBA =30°.过点D 作DK ∥x 轴,则∠KDF =∠DBA =30°.过点F 作FG ⊥DK 于点G ,则FG =DF .由题意,动点M 运动的路径为折线AF +DF ,运动时间:t =AF +DF ,∴t =AF +FG ,即运动时间等于折线AF +FG 的长度.由垂线段最短可知,折线AF +FG 的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少. w38199 9537 锷34181 8585 薅R36329 8DE9 跩 39539 9A73 驳 Is26144 6620 映。
中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•黄冈模拟)如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()A.注水的速度为每分钟注入cm高水位的水B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟D.此长方体的体积为此容器的体积的2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.(2015秋•江阴市期中)如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是.5.(2016•鄂州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图(2),当t= 时,△ABE与△BQP相似.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来; (2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.12 122 123124 … (图1)(图2)8.(2015秋•北京校级期中)如图所示,在平面直角坐标系xOy中,△ABC的顶点B是y轴正半轴上一个定点,D是BO的中点.点C在x轴上,A在第一象限,且满足AB=AO,N是x轴负半轴上一点,∠BCN=∠BAO=α.(1)当点C在x轴正半轴上移动时,求∠BCA;(结果用含α的式子表示)(2)当某一时刻A(20,17)时,求OC+BC的值;(3)当点C沿x轴负方向移动且与点O重合时,α= ,此时以AO为斜边在坐标平面内作一个Rt△AOE(E不与D重合),则∠AED的度数的所有可能值有.(直接写出结果)9.阅读材料,解答问题.利用图象法解一元二次不等式:x2﹣2x﹣3>0.解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3<0的解集是_________ ;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t 的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;【解析】设AB的解析式为y=k1t+b1,BC的解析式为y=k2t+b2,由题意得,,解得:,,∴y=,A、当0≤t≤3时,注水的速度为每分钟注入cm高水位的水,当3<t≤21时,注水的速度为每分钟注入cm高水位的水;B、由图象知,那样放置在圆柱体容器内的长方体的高为50﹣30=20cm;C、令y=0,则﹣x+35=0,解得:x=21,∴该容器注满水的时间为21秒.D、设每秒钟的注水量为mcm3.则下底面中未被长方体覆盖部分的面积是:m÷=(cm2),圆柱体的底面积为:m÷=cm2.二者比为:=1:4,∴长方体底面积:圆柱体底面积=3:4.∵圆柱高:长方体高=20:50=2:5,∴长方体体积:圆柱体体积=6:20=3:10,∴圆柱体的体积为长方体容器体积的;故选C.2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD ∥BE ∥AF ,ED ∥FC ∥AB ,EF ∥AD ∥BC ,EC ∥FB ,AE ∥BD ,AC ∥FD ,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE 、BD 与AB 垂直,其中垂直平分线必与AB 平行,故无交点.故直线AB 上会发出警报的点P 有:CD 、ED 、EF 、EC 、AC 的垂直平分线与直线AB 的交点,共五个.4.【答案】m ;【解析】解:∵由题意可得,q 、m 、n 、p 第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,即每四个为一个循环, ∴2014÷4=503 (2)∴数轴上表示﹣2014的点与圆周上重合的点对应的字母是m . 故答案为:m . 5.【答案】294秒; 【解析】由图象可知,BC=BE=5,AB=4,AE=3,DE=2,∵△ABE 与△BQP 相似,∴点E 只有在CD 上,且满足=,∴=,∴CQ=.∴t=(BE+ED+DQ )÷1=5+2+(4﹣)=.三、解答题 6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应; (2)10; a=10; b=9; c=6.(3)由题意可知C 点的坐标为(45,9),D 点的坐标为(53,10), 设直线CD 的函数关系式为h=kt+b , ∴945,1053k b k b =+⎧⎨=+⎩解得 1,8.278k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线CD 的函数关系式为h=12788t +; (4)石块的体积为abc=540cm 3,根据图4和图6可得:10540(106)535321s s--=-.解得S=160(cm 2). 7.【答案与解析】(1)设总面积为:1,最后余下的面积为:12n, 故几何图形的值为:23411111+++++22222n …的值为112n -. 故答案为:112n -.8.【答案与解析】解:(1)过A 分别作AM ⊥BC 于E ,AF ⊥x 轴于F ,则∠AMB=∠AFO=90°,设AO 与BC 交于点P ,在△ABP 和△COP 中,∠BAO=∠BCN ,∠BPA=∠CPO ,∴∠ABP=∠COP,即∠ABM=∠AOF,在△ABM和△AOF中,∴△ABM≌△AOF(AAS),∴AM=AF,∴CA平分∠BCF,∴.∵∠BCN=α,∴∠BCM=180°﹣α,∴;(2)∵△ABM≌△AOF,△ACM≌△ACF,∴BM=OF,CM=CF,∵OC+BC=OC+BM+CM,∴OC+BC=OC+OF+CF=2OF,∵A(20,17),∴OF=20,∴OC+BC=40;(3)当点C沿x轴负方向移动且与点O重合时,∵x轴与y轴垂直,∴α=90°,此时以AO为斜边在坐标平面内作一个Rt△AOE(E不与D重合),则∠AED的度数的所有可能值有∠AED=45°或135°.故答案为:90°;45°或135°.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t,∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R, ∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.11。
授课类型C数形结合基本应用 C 几何与函数中的应用T 综合应用授课日期及时段教学内容专题透析数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法.运用这一数学思想解题,要熟练掌握一些概念和运算的几何意义及常见图形中的代数特征.一、专题精讲题型1在数与式中的应用:例1、文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在() A.玩具店B.文具店C.文具店西边40米D.玩具店东边-60米【答案】 B例2.已知实数a,b在数轴上的对应点依次在原点的右边和左边,那么()A.ab<b B.ab>b C.a+b>0 D.a-b>0【答案】D例3、实数a、b在数轴上的位置如图所示,化简2||a a b+-=_________。
【答案】b例4、如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据a b两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为 A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+【答案】B题型2. 在方程、不等式中的应用例1、已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是____________。
【答案】-1≤x <0例2、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .203210x y x y +-=⎧⎨--=⎩,B .2103210x y x y --=⎧⎨--=⎩,C .2103250x y x y --=⎧⎨+-=⎩,D .20210x y x y +-=⎧⎨--=⎩,【答案】D题型3 在实际问题中的应用例1:某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的? (3)果你是推销员,应如何选择付费方案?图1· P (1,1)1 12 23 3-1 -1Ox y【答案】 解:(1)y 1=20x ,y 2=10x+300.(2)y 1是不推销产品没有推销费,每推销10件产品得推销费200元,y 2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y 1的付费方案;否则,选择y 2的付费方案. 【小结】图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2、如图,四边形 ABCD 是边长为 60 cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使 A ,B ,C ,D 四个点重合于点 P ,正好形成一个底面是正方形的长方体包装盒 (1)若折叠后长方体底面正方形的面积为 1 250 cm2,求长方体包装盒的高;(2)设剪掉的等腰直角三角形的直角边长为 x(单位:cm),长方体的侧面积为 S(单位:cm2),求 S 与 x 的函数关系式,并求 x 为何值时,S 的值最大.【答案】解:(1)如图Z3-2,设剪掉阴影部分的每个等腰直角三角形的腰长为x cm ,则NP =2x cm ,DP =60-2x2cm ,QM =PW =2×60-2x 2cm.由题意,得60-2x2×22=1250.解得x 1=52,x 2=552(不符合题意舍去).答:长方体包装盒的高为52cm.(2)由题意,得S =4×2×60-2x 2×x =-4x 2+1202x .∵a =-4<0,∴当x =152时,S 有最大值.变式1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.【答案】解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.【小结】可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.题型4 在概率统计中的应用例、某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。
人教版九年级数综合复习形结合题专项训练几何问题常常融入二次函数中,借助数来阐述图形,借助图形来说数,在这一过程中综合运用了平移,旋转,轴对称等全等变换。
在探究存在问题时,充分运用了分类思想,考查学生的思维严谨性,全面性。
解这类题要求学生得有良好的思维品质,全面掌握学过的几何代数知识,能在复杂的图形中识别出基本的图形;能借助函数解析式,建立方程组求点的坐标,能把坐标转化为相应线段的长,通过全等,相似,解直角三角形,得出相应的数量关系。
1.(2019.眉山)如图,在平面直角坐标系中,抛物线y=-94x 2+bx+c 经过点A(-5,0)和点B (1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE ⊥x 轴于点F ,当矩形PEFG 的周长最大时,求点P 的横坐标;(3)如图连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作∠DMN=∠DBA ,MN 交线段AD 于点N ,是否存在这样点M ,使得△DMN 为等腰三角形?若存在,求AN 的长;若不存在,请说明理由2.(2019南充)如图,抛物线y=ax2+bx+c 与x 轴交于点A (-1,0),点B (-3,0),且OB=OC 。
(1)求抛物线的解析式;(2)点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m,点N 的横坐标为m+4点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E 。
①求DE 的最大值②点D 关于点E 的对称点为F 。
当m 为何值时,四边形MDNF 为矩形?3.(2019.攀枝花)已知抛物线y =-x 2+bx+c 对称轴为直线x=1,其图像与x 轴相交于A 、B 两点,与y 轴交于点C (0,3).(1)求b 、c 的值;(2)直线l 与x 轴交于点P 。
①如图1,若l ∥y 轴,且与线段AC 及抛物线分别相交于点E 、F ,点C 关于直线x=1的对称点为D ,求四边形CEDF 的面积的最大值;②如图2,若直线l 与线段BC 相交于点Q ,当△PCQ ∽△CPA 时,求直线l 的表达式。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•黄冈模拟)如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()A.注水的速度为每分钟注入cm高水位的水B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟D.此长方体的体积为此容器的体积的2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.(2015秋•江阴市期中)如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是.5.(2016•鄂州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图(2),当t= 时,△ABE与△BQP相似.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.8.(2015秋•北京校级期中)如图所示,在平面直角坐标系xOy 中,△ABC 的顶点B 是y 轴正半轴上一个定点,D 是BO 的中点.点C 在x 轴上,A 在第一象限,且满足AB=AO ,N 是x 轴负半轴上一点,∠BCN=∠BAO=α.12 122 123124 … (图1)(图2)(1)当点C在x轴正半轴上移动时,求∠BCA;(结果用含α的式子表示)(2)当某一时刻A(20,17)时,求OC+BC的值;(3)当点C沿x轴负方向移动且与点O重合时,α=,此时以AO为斜边在坐标平面内作一个Rt△AOE(E不与D重合),则∠AED的度数的所有可能值有.(直接写出结果)9.阅读材料,解答问题.利用图象法解一元二次不等式:x2﹣2x﹣3>0.解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3<0的解集是_________ ;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;【解析】设AB的解析式为y=k1t+b1,BC的解析式为y=k2t+b2,由题意得,,解得:,,∴y=,A、当0≤t≤3时,注水的速度为每分钟注入cm高水位的水,当3<t≤21时,注水的速度为每分钟注入cm高水位的水;B、由图象知,那样放置在圆柱体容器内的长方体的高为50﹣30=20cm;C、令y=0,则﹣x+35=0,解得:x=21,∴该容器注满水的时间为21秒.D、设每秒钟的注水量为mcm3.则下底面中未被长方体覆盖部分的面积是:m÷=(cm2),圆柱体的底面积为:m÷=cm2.二者比为:=1:4,∴长方体底面积:圆柱体底面积=3:4.∵圆柱高:长方体高=20:50=2:5,∴长方体体积:圆柱体体积=6:20=3:10,∴圆柱体的体积为长方体容器体积的;故选C.2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂直平分线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.4.【答案】m;【解析】解:∵由题意可得,q、m、n、p第一次在数轴上对应的点为﹣1、﹣2、﹣3、﹣4,即每四个为一个循环,∴2014÷4=503 (2)∴数轴上表示﹣2014的点与圆周上重合的点对应的字母是m.故答案为:m.5.【答案】294秒;【解析】由图象可知,BC=BE=5,AB=4,AE=3,DE=2,∵△ABE与△BQP相似,∴点E只有在CD 上,且满足=,∴=,∴CQ=.∴t=(BE+ED+DQ)÷1=5+2+(4﹣)=.三、解答题6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应;(2)10; a=10; b=9; c=6.解得S=160(cm).8.【答案与解析】解:(1)过A分别作AM⊥BC于E,AF⊥x轴于F,则∠AMB=∠AFO=90°,设AO与BC交于点P,在△ABP和△COP中,∠BAO=∠BCN,∠BPA=∠CPO,∴∠ABP=∠COP,即∠ABM=∠AOF,在△ABM和△AOF中,∴△ABM≌△AOF(AAS),∴AM=AF,∴CA平分∠BCF,∴.∵∠BCN=α,∴∠BCM=180°﹣α,∴;(2)∵△ABM≌△AOF,△ACM≌△ACF,∴BM=OF,CM=CF,∵OC+BC=OC+BM+CM,∴OC+BC=OC+OF+CF=2OF,∵A(20,17),∴OF=20,∴OC+BC=40;(3)当点C沿x轴负方向移动且与点O重合时,∵x轴与y轴垂直,∴α=90°,此时以AO为斜边在坐标平面内作一个Rt△AOE(E不与D重合),则∠AED的度数的所有可能值有∠AED=45°或135°.故答案为:90°;45°或135°.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t, ∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.精品文档用心整理资料来源于网络仅供免费交流使用。