函数的奇偶性与周期性教学讲义
- 格式:docx
- 大小:204.11 KB
- 文档页数:8
函数四大性质综合讲义1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值3.(一)对称轴1.概念:如果一个函数的图像沿着一条直线对折,直线两侧的图像能够完全重合,则称函数具备对称性中的轴对称,该直线称为函数的对称轴。
2.常见函数的对称轴①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴⑤指数函数:既不是轴对称,也不是中心对称⑥对数函数:既不是轴对称,也不是中心对称⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心⑾正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)⑿对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。
数学知识点:函数的奇偶性与周期性一、考纲目标1.结合具体函数,了解函数奇偶性的含义;2.运用函数图像,理解和研究函数的奇偶性;3.了解函数的奇偶性、最小正周期的含义,会判断、应用简单函数的周期性;二、知识梳理(一)函数的奇偶性1.定义:如果对于函数 f (x)的定义域内的任意一个x,都有f(x)=f(-x)(f(-x)=f(x)),那么这个函数就是偶(奇)函数;2.性质及一些结论:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;(3)为偶函数(4)若奇函数的定义域包含,则因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;(6)断函数的奇偶性有时可以用定义的等价形式:,(7)设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇(8)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(二)函数的周期性1.定义:若T为非零常数,对于定义域内的任一x,使恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期2.简单理解:一般所说的周期是指函数的最小正周期,周期函数的定义域一定是无限集,但是我们可能只研究定义域的某个子集三、考点逐个突破1.奇偶性辨析例1.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是A.1 B.2 C.3 D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零例2.判断下列函数的奇偶性:(1)f(x)=|x|(x2+1);(2)f(x)=x+1 x ;(3)f(x)=x-2+2-x;(4)f(x)=1-x2+x2-1;(5)f(x)=(x-1)1+x1-x.解析 (1)此函数的定义域为R.∵f(-x)=|-x|[(-x)2+1]=|x|(x2+1)=f(x),∴f(-x)=f (x),即f(x)是偶函数.(2)此函数的定义域为x>0,由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(3)此函数的定义域为{2},由于定义域关于原点不对称,故f(x)既不是奇函数也不是偶函数.(4)此函数的定义域为{1,- 1},且f(x)=0,可知图像既关于原点对称,又关于y 轴对称,故此函数既是奇函数又是偶函数.(5)定义域:⎩⎨⎧1-x≠01+x1-x ≥0⇒-1≤x<1是关于原点不对称区间,故此函数为非奇非偶函数. 2.奇偶性的应用 例3.已知函数对一切,都有,(1)求证:是奇函数;(2)若,用表示解:(1)显然的定义域是,它关于原点对称.在中,令,得,令,得,∴,∴,即, ∴是奇函数(2)由,及是奇函数,得例4.(1)已知是上的奇函数,且当时,,则的解析式为(2)已知是偶函数,,当时,为增函数,若,且,则 ()例5设为实数,函数,(1)讨论的奇偶性; (2)求 的最小值解:(1)当时,,此时为偶函数;当时,,,∴此时函数既不是奇函数也不是偶函数(2)①当时,函数,若,则函数在上单调递减,∴函数在上的最小值为;若,函数在上的最小值为,且②当时,函数,若,则函数在上的最小值为,且;若,则函数在上单调递增,∴函数在上的最小值综上,当时,函数的最小值是,当时,函数的最小值是,当,函数的最小值是3.函数周期性的应用例6.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 011).解 (1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2,又f(x)是奇函数,∴f(-x)=-f(x)=-2x -x 2, ∴f(x)=x 2+2x.又当x ∈[2,4]时,x -4∈[-2,0], ∴f(x -4)=(x -4)2+2(x -4). 又f(x)是周期为4的周期函数,∴f(x)=f(x -4)=(x -4)2+2(x -4)=x 2-6x +8. 从而求得x ∈[2,4]时,f(x)=x 2-6x +8. (3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 011)=0. 4.单调性与奇偶性的交叉应用例7.已知定义域为R 的函数f(x)=-2x +b2x +1+a 是奇函数.①求a 、b 的值;②若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求k 的取值范围. 解:①∵f(x)是定义在R 上的奇函数,∴f(0)=0, 即b -1a +2=0,∴b =1,∴f(x)=1-2x a +2x +1, 又由f(1)=-f(-1)知1-2a +4=-1-12a +1,解得a =2.②由①知f(x)=1-2x 2+2x +1=-12+12x +1,易知f(x)在(-∞,+∞)上为减函数.又∵f(x)是奇函数,从而不等式f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),∵f(x)为减函数,∴由上式得t 2-2t>k -2t 2,即对任意的t ∈R 恒有:3t 2-2t -k>0,从而Δ=4+12k<0,∴k<-13.一、选择题1.(2012·高考陕西卷)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |解析:选D.由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知y =f (x +1)是偶函数,则函数y =f (x )的图象的对称轴是( ) A .x =1 B .x =-1C .x =12D .x =-12解析:选A.∵y =f (x +1)是偶函数,∴f (1+x )=f (1-x ),故f (x )关于直线x =1对称.3.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2 解析:选B.f (a )=a 3+sin a +1,①f (-a )=(-a )3+sin(-a )+1=-a 3-sin a +1,② ①+②得f (a )+f (-a )=2, ∴f (-a )=2-f (a )=2-2=0.4.函数f (x )=1-21+2x(x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数解析:选D.∵f (x )=1-21+2x =2x -12x +1,∴f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ).又其定义域为R ,∴f (x )是奇函数.5.定义在R 上的偶函数y =f (x )满足f (x +2)=f (x ),且当x ∈(0,1]时单调递增,则( )A .f ⎝ ⎛⎭⎪⎫13<f (-5)<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5)C .f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫13<f (-5)D .f (-5)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52解析:选B.∵f (x +2)=f (x ),∴f (x )是以2为周期的函数,又f (x )是偶函数,∴f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12,f (-5)=f (5)=f (4+1)=f (1), ∵函数f (x )在(0,1]上单调递增,∴f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f (1),即f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫52<f (-5).二、填空题6.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x+a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-17.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -18.(2013·大连质检)设f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且f (x +3)·f (x )=-1,f (-4)=2,则f (2014)=________.解析:由已知f (x +3)=-1f x,∴f (x +6)=-1f x +3=f (x ),∴f (x )的周期为6.∴f (2014)=f (335×6+4)=f (4)=-f (-4)=-2. 答案:-2 三、解答题9.判断下列函数的奇偶性: (1)f (x )=x 2-1+1-x 2; (2)f (x )=⎩⎨⎧x 2-2x +3 x >0,0 x =0,-x 2-2x -3x <0.解:(1)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0.∴f (-1)=f (1)且f (-1)=-f (1), ∴f (x )既是奇函数又是偶函数. (2)①当x =0时,-x =0,f (x )=f (0)=0,f (-x )=f (0)=0, ∴f (-x )=-f (x ). ②当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ). ③当x <0时,-x >0,∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由①②③可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.10.已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围.解:∵f (x )的定义域为[-2,2],∴有⎩⎨⎧-2≤1-m ≤2-2≤1-m 2≤2,解得-1≤m ≤3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.一、选择题1.(2012·高考天津卷)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .y =cos 2x ,x ∈RB .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R解析:选B.由函数是偶函数可以排除C 和D ,又函数在区间(1,2)内为增函数,而此时y =log 2|x |=log 2x 为增函数,所以选择B.2.(2011·高考山东卷)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为( )A .6B .7C .8D .9 解析:选B.令f (x )=x 3-x =0, 即x (x +1)(x -1)=0, 所以x =0,1,-1,因为0≤x <2,所以此时函数的零点有两个,即与x 轴的交点个数为2. 因为f (x )是R 上最小正周期为2的周期函数, 所以2≤x <4,4≤x <6上也分别有两个零点, 由f (6)=f (4)=f (2)=f (0)=0, 知x =6也是函数的零点,所以函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 二、填空题3.若f (x )=12x -1+a 是奇函数,则a =________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ),即12-x -1+a =-12x -1-a ,得:2a =1,a =12.答案:124.(2013·长春质检)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定:其中正确命题的序号为________.①f (4)=0;②f (x )是以4为周期的函数; ③f (x )的图象关于x =1对称; ④f (x )的图象关于x =2对称. 解析:∵f (x +2)=-f (x ),∴f (x )=-f (x +2)=-(-f (x +2+2))=f (x +4), 即f (x )的周期为4,②正确.∵f (x )为奇函数,∴f (4)=f (0)=0,即①正确. 又∵f (x +2)=-f (x )=f (-x ),∴f (x )的图象关于x =1对称,∴③正确, 又∵f (1)=-f (3),当f (1)≠0时,显然f (x )的图象不关于x =2对称,∴④错误.答案:①②③ 三、解答题5.已知函数f (x )=x 2+|x -a |+1,a ∈R . (1)试判断f (x )的奇偶性;(2)若-12≤a ≤12,求f (x )的最小值.解:(1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ), 此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x )既不是奇函数,也不是偶函数.(2)当x ≤a 时,f (x )=x 2-x +a +1=⎝⎛⎭⎪⎫x -122+a +34,∵a ≤12,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1.当x ≥a 时,函数f (x )=x 2+x -a +1=⎝⎛⎭⎪⎫x +122-a +34,∵a≥-12,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-12≤a≤12时,函数f(x)的最小值为a2+1.。
函数的奇偶性【知识要点】1.函数奇偶性的定义:一般地,对于函数f (x)定义域内的任意一个X,都有f (-x) = f (x), 那么函数f (x)叫偶函数(even function).如果对于函数定义域内的任意一个x,都有f(-x) = -f(x),那么函数f(x)叫奇函数(odd function).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (-x) 与f (x)的关系;⑴奇函数o f (-x)=- f (x)o f--)+f (x)=0 o 釜=-1(fx)) 0);(2)偶函数o f (-x)= f (x)o f (- x)- f (x)= 0 o4.函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)若奇函数f Q)在原点有意义,则f (0)= 0;(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;(6)函数f Q)与函数有相同的奇偶性.5 .奇偶性与单调性: (1)奇函数在两个关于原点对称的区间L b ,- j a ,4上有相同的单调性;(2)偶函数在两个关于原点对称的区间L b ,- j a ,4上有相反的单调性.【典例精讲】 类型一函数奇偶性的判断 例1判断下列函数的奇偶性:x 2 + 2x + 3, x < 0,(6)f (x )= {a x = 0, -x 2 + 2x - 3, x > 0.变式 判断下列函数的奇偶性:11 ⑴f(x)=x 4; (2)f(x)=X 5;⑶ f (x)=x+x 2 ;(4) f(x)= - x 2(5) f (x )= x 3- 2x(6) f (x ) = 2 x 4 4十 一x 2,、b ,,(7) y = ax H ——(a > 0,b > 0) x(8) x (k > 0)y -例2已知/ Q)是R 上的奇函数,且当X > 0时,f Q)= x 3+ 2 x 2-1,求f Q)的表达式。
《函数的奇偶性与周期性》教案教案:函数的奇偶性与周期性一、教学内容本节课主要内容为函数的奇偶性与周期性。
1.函数的奇偶性概念及判断方法;2.函数的周期性概念及判断方法;3.综合应用题。
二、教学目标1.理解函数的奇偶性的定义;2.掌握函数奇偶性的判断方法;3.了解函数周期的概念,掌握函数周期的判断方法;4.能够应用函数的奇偶性与周期性解决综合问题。
三、教学过程1.导入(5分钟)教师通过提问与学生交流,引出函数的奇偶性与周期性的概念,比如“大家了解什么是函数的奇偶性吗?可以举几个例子来说明一下。
”“函数的周期性是什么意思呢?”等等。
2.讲解(25分钟)通过投影仪展示PPT,讲解函数的奇偶性与周期性的概念。
1)函数的奇偶性概念及判断方法:函数f(x)为奇函数,当且仅当对于任意x∈D,f(-x)=-f(x);函数f(x)为偶函数,当且仅当对于任意x∈D,f(-x)=f(x);判断奇偶性的方法为将函数代入定义进行验证。
2)函数的周期性概念及判断方法:函数f(x)的周期为T,当且仅当对于任意x∈D,有f(x+T)=f(x);判断函数周期的方法为找出函数的一次性表达式,并将其化简为f(x+T)=f(x)。
3)综合应用题解析:通过一些例题的解析,让学生能够运用奇偶性和周期性的知识解决问题。
3.锻炼与拓展(20分钟)举一些例题进行训练,可以分小组进行讨论与比赛,以增加学生的参与度。
1)设f(x)是定义域为R的周期函数,且f(0)=3,f(1)=2,f(2)=4,f(3)=-1,f(4)=-2,f(5)=-4,求f(2005)的值。
2)已知函数f(x)是定义域为R的奇函数,且f(2)=3,f(4)=-1,求f(x)的表达式。
3)设f(x)=x^3-3x,则f(x)是奇函数还是偶函数?。
4.巩固与评价(10分钟)布置一些练习题,要求学生自主完成,并互相批改答案,提升学生的综合应用能力。
1)设f(x)为周期函数,且f(x)=2x^2-x+1,周期为T,求T的值。
创一教育学科教师辅导讲义知识梳理一、函数奇偶性的概念【问题导思】1.对于函数f(x)=x2,f(x)=|x|,以-x代替x.函数值发生变化吗?其图象有何特征?【提示】以-x代x各自的函数值不变,即f(-x)=f(x);图象关于y轴对称.2.对于函数f(x)=x3,f(x)=1x,以-x代替x,函数值发生变化吗?其图象有何特征?【提示】以-x代替x各自的函数值互为相反数,即f(-x)=-f(x);图象关于原点对称.1.偶函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.2.奇函数一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.3.奇偶性如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性.4.奇、偶函数的图象性质偶函数的图象关于y轴对称,奇函数的图象关于原点对称.例题精讲例1:函数奇偶性的判定判断下列函数的奇偶性.(1)f (x )=x 2-1+1-x 2;(2)f (x )=4-x 2|x +3|-3; (3)f (x )=x 2+1x2. 【思路探究】 首先判断函数的定义域是否关于原点对称,在定义域关于原点对称的情况下,判断f (x )与f (-x )之间的关系.【自主解答】 (1)由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x 2=1,∴x =±1, 即函数的定义域为{-1,1},关于原点对称.∵f (-1)=0=f (1),且f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧ 4-x 2≥0,|x +3|-3≠0,得⎩⎪⎨⎪⎧x 2≤4,x ≠0,且x ≠-6, ∴-2≤x ≤2且x ≠0,关于原点对称,∴f (x )=4-x 2|x +3|-3=4-x 2x +3-3=4-x 2x , ∵f (-x )=4-x 2-x=-f (x ),∴f (x )是奇函数. (3)函数的定义域为(-∞,0)∪(0,+∞)关于原点对称.∵f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), ∴f (x )是偶函数.【规律方法】1.判断函数的奇偶性要遵循定义域优先的原则,如果定义域不关于原点对称,则该函数必为非奇非偶函数.2.用定义判断函数奇偶性的步骤:【变式训练】判断下列函数的奇偶性:(1)f (x )=x -1x;(2)f (x )=|x +2|+|x -2|; (3)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0),-x 2+x (x >0). 【解】 (1)f (x )的定义域(-∞,0)∪(0,+∞),关于原点对称.∵f (-x )=(-x )-1-x=-(x -1x )=-f (x ), ∴f (x )是奇函数.(2)f (x )的定义域为R .f (-x )=|-x +2|+|-x -2|=|x +2|+|x -2|=f (x ),∴f (x )是偶函数.(3)当x <0时,-x >0,则f (-x )=-(-x )2-x=-(x 2+x )=-f (x ),当x >0时,-x <0,则f (-x )=(-x )2-x=-(-x 2+x )=-f (x ),综上所述,对任意x ∈(-∞,0)∪(0,+∞).都有f (-x )=-f (x ),∴f (x )为奇函数.例2:奇偶函数的图象及应用已知函数f (x )=1x 2+1在区间[0,+∞)上的图象如图2-2-4所示,请据此在该坐标系中补全函数f (x )在定义域内的图象,请说明你的作图依据.【思路探究】 先证明f (x )是偶函数,依据其图象关于y 轴对称作图.【自主解答】 ∵f (x )=1x 2+1,∴f (x )的定义域为R .又对任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), ∴f (x )为偶函数.则f (x )的图象关于y 轴对称,其图象如图所示:【规律方法】1.利用函数的奇偶性作用,其依据是奇函数图象关于原点对称,偶函数图象关于y 轴对称,画图象时,一般先找出一些关键点的对称点,然后连点成线.2.由于奇函数、偶函数图象的对称性,我们可以由此得到作函数图象的简便方法,如作出函数y =|x |的图象.因为该函数为偶函数,故只需作出x ≥0时的图象,对x ≤0时的图象,关于y 轴对称即可.【变式训练】设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图2-2-5所示,则不等式f (x )<0的解集是________.图2-2-5【解析】 注意到奇函数的图象关于原点成中心对称,用对称的思想方法画全函数f (x )在[-5,5]上的图象(如图),数形结合,得f (x )<0的解集为{x |-2<x <0或2<x ≤5}.【答案】 (-2,0)∪(2,5]课堂小测1.函数y =f (x )在区间[2a -3,a ]上具有奇偶性,则a =________.【解析】 由题意知,区间[2a -3,a ]关于原点对称,∴2a -3=-a ,∴a =1.【答案】 12.函数f (x )=x 4+1x 2+1的奇偶性为________. 【解析】 ∵x ∈R ,又f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ), ∴f (x )是偶函数.【答案】 偶函数3.(2013·抚顺高一检测)已知函数y =f (x )是R 上的奇函数,且当x >0时,f (x )=1,则f (-2)的值为________.【解析】 ∵当x >0时,f (x )=1,∴f (2)=1,又f (x )是奇函数,∴f (-2)=-f (2)=-1.【答案】 -14.(2013·常州高一检测)已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图象.【解】 (1)①由于函数f (x )是定义域为R 的奇函数,则f (0)=0;②当x <0时,-x >0,∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x ,综上:f (x )=⎩⎪⎨⎪⎧ x 2-2x x >0,0 x =0,-x 2-2x x <0.(2)图象如图:师生小结课后作业一、填空题1.函数f (x )=-x +1x的奇偶性是________. 【解析】 ∵f (x )的定义域为{x |x ≠0},关于原点对称.又f (-x )=x -1x=-f (x ).故f (x )为奇函数. 【答案】 奇函数2.(2013·黄山高一检测)已知函数f (x )=a -2x为奇函数,则a =________. 【解析】 ∵函数f (x )为奇函数,∴f (-x )+f (x )=0,即a +2x +a -2x=0, ∴2a =0,即a =0.【答案】 03.若函数f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,则b -a =________.【解析】 f (x )=x 3-bx +a +2是定义在[a ,b ]上的奇函数,有f (-x )=-f (x ),即-x 3+bx +a +2=-x 3+bx -a亲爱的同学们,这节课我们学了哪些内容? 1.利用奇偶函数图象的对称性,我们可以作出函数的大致图象,然后观察图象得出结论. 2.已知奇偶函数在某个区间上的解析式,我们利用对称性可求出这个区间的对称区间上的解析式.要注意“求谁设谁”. 3.解含“f ”的不等式,应具备两个方面:一是能转化为f (x 1)<f (x 2)或f (x 1)>f (x 2)的形式,二是f (x )的单调性已知.特别是f (x )为偶函数时,应把不等式f (x 1)<f (x 2)转化为f (|x 1|)<f (|x 2|)的形式,利用x ∈[0,+∞)的单调性求解.-2可得⎩⎪⎨⎪⎧ a +2=0,a =-b ,解得⎩⎪⎨⎪⎧a =-2,b =2, 所以b -a =4.【答案】 44.下列说法中正确的是________.①函数y =3x 2,x ∈(-2,2]是偶函数;②函数f (x )=⎩⎪⎨⎪⎧x 2,x <0,x 3,x ≥0,是奇函数; ③函数f (x )=x +1既不是奇函数也不是偶函数;④f (x )=x 2+1是偶函数.【解析】 ①不正确,因为定义域不关于原点对称,故①不正确;②不正确,当x >0时,-x <0,∴f (-x )=(-x )2=x 2≠x 3且x 2≠-x 3,故②不正确;③正确,∵f (-x )=-x +1≠x +1,f (-x )=-x +1≠-x -1,故f (x )=x +1是非奇非偶函数,故③正确. ④正确,∵f (-x )=(-x )2+1=x 2+1=f (x ),故④正确.【答案】 ③④5.图2-2-6已知f (x )是定义在[-2,0)∪(0,2]上的奇函数,当x >0时,f (x )的图象如图2-2-6所示,那么f (x )的值域是________.【解析】 ∵x ∈(0,2]时,f (x )的值域为(2,3],由于奇函数的图象关于原点对称,故当x ∈[-2,0)时,f (x )∈[-3,-2),∴f (x )的值域为[-3,-2)∪(2,3].【答案】 [-3,-2)∪(2,3]6.设函数f (x )=ax 3+cx +5,已知f (-3)=3,则f (3)=________.【解析】 设g (x )=ax 3+cx ,则g (x )为奇函数,∴g (-3)=-g (3).∵f (-3)=g (-3)+5=3,∴g (-3)=-2,∴g (3)=2,∴f (3)=g (3)+5=7.【答案】 77.(2013·青岛高一检测)定义在R 上的奇函数f (x ),若当x >0时,f (x )=x 2-2x ,则x <0时f (x )=________.【解析】 设x <0,则-x >0,又f (x )是奇函数,∴f (x )=-f (-x )=-[(-x )2-2·(-x )]=-x 2-2x .【答案】 -x 2-2x创一教育11 / 11创造奇迹,只做第一!。
预习讲义2.5函数的奇偶性和周期性知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.课前训练1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数. ( ×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称. ( √)(3)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称. ( √)(4)若函数f(x)=xx-2 x+a为奇函数,则a=2. ( √)(5)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数. ( √)(6)函数f(x)为R上的奇函数,且f(x+2)=f(x),则f(2 014)=0. ( √)2.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)等于________.答案-2解析f(-1)=-f(1)=-(1+1)=-2.3.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.答案1 3解析依题意b=0,且2a=-(a-1),∴a =13,则a +b =13.4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于________. 答案 -2解析 ∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,∴f (2 015)=f (503×4+3)=f (3)=f (-1). 又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2,即f (2 015)=-2.5.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________. 答案 (-1,0)∪(1,+∞)解析 画草图,由f (x )为奇函数知:f (x )>0的x 的取值范围为(- 1,0)∪(1,+∞).2.5函数的奇偶性和周期性例题精讲例1 判断下列函数的奇偶性: (1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x1+x; (3)f (x )=4-x2|x +3|-3.思维启迪 判断函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再验证f (-x )=±f (x )或其等价形式f (-x )±f (x )=0是否成立.解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3.∴f (x )的定义域为{-3,3},关于原点对称. 又f (3)+f (-3)=0,f (3)-f (-3)=0. 即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x 1+x≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称. ∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称. ∴f (x )=4-x 2x +3 -3=4-x 2x .∴f (x )=-f (-x ),∴f (x )是奇函数.例2(1) f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式.(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f (105.5)=________. 解析 (1)当x <0时, -x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1. 由于f (x )是奇函数,故f (x )=-f (-x ), 所以当x <0时,f (x )=2x 2+3x -1. 因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎨⎧-2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1f x +2 =-1-1f x=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.例3 (1)已知奇函数f (x )在定义域(-1,1)内是减函数,则满足f (1-m )+f (1-m 2)<0的实数m 的取值范围为________. 答案 (0,1)解析 f (1-m )<-f (1-m 2), 即f (1-m )<f (m 2-1), 于是⎩⎪⎨⎪⎧-1<1-m <1,-1<1-m 2<1,1-m >m 2-1,解得0<m <1.(2)设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.解析 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |). ∴不等式f (1-m )<f (m )⇔f (|1-m |)<f (|m |). 又当x ∈[0,2]时,f (x )是减函数.∴⎩⎨⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12课后提升1.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53,则f (x )的解析式为________.答案 f (x )=2x 2+23x解析 因为f (x )是奇函数,所以f (-x )+f (x )=0,得px 2+2-3x +q +px 2+23x +q=0,得q =0, 由f (2)=53得4p +26=53,得p =2,则f (x )=2x 2+23x.2、若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,则g (x )等于________. 解析 ∵f (x )为偶函数,g (x )为奇函数, ∴f (-x )=f (x ),g (-x )=-g (x ). ∴f (-x )+g (-x )=f (x )-g (x )=e -x. 又∵f (x )+g (x )=e x,∴g (x )=e x-e-x 2.答案 12(e x -e -x)3.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. (1)证明 由函数f (x )的图象关于直线x =1对称, 有f (x +1)=f (1-x ),即有f (-x )=f (x +2). 又函数f (x )是定义在R 上的奇函数,故有f(-x)=-f(x).故f(x+2)=-f(x).从而f(x+4)=-f(x+2)=f(x),即f(x)是周期为4的周期函数.(2)解由函数f(x)是定义在R上的奇函数,有f(0)=0. x∈[-1,0)时,-x∈(0,1],f(x)=-f(-x)=--x. 故x∈[-1,0]时,f(x)=--x.x∈[-5,-4]时,x+4∈[-1,0],f(x)=f(x+4)=--x-4.从而,x∈[-5,-4]时,函数f(x)=--x-4.课后作业一、填空题1.下列函数中,所有奇函数的序号是________.①f (x )=2x 4+3x 2;②f (x )=x 3-2x ;③f (x )=x 2+1x;④f (x )=x 3+1. 答案 ②③2.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.3.定义两种运算:a b =a 2-b 2,a ⊗b = a -b 2,则f (x )=2 x 2- x ⊗2 是________函数.(填“奇”或“偶”) 答案 奇解析 因为2 x =4-x 2,x ⊗2= x -2 2, 所以f (x )=4-x22- x -2 2=4-x 22- 2-x =4-x2x , 该函数的定义域是[-2,0)∪(0,2], 且满足f (-x )=-f (x ). 故函数f (x )是奇函数.4.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x-a -x+2(a >0,且a ≠1).若g (2)=a ,则f (2)等于________. 答案154解析 ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,② 由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.5.若f (x )是奇函数,且在(0,+∞)上递增,且f (-3)=0,则xf (x )<0的解集是________.答案 (-3,0)∪(0,3) 解析 结合f (x )的草图即可.6.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 答案 0解析 ∵函数f (x )=x 2-|x +a |为偶函数,∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |,∴|-x +a |=|x +a |,∴a =0.7.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R ),则f (2 015)=________. 答案 14解析 令x =1,y =0时,4f (1)·f (0)=f (1)+f (1), 解得f (0)=12,令x =1,y =1时,4f (1)·f (1)=f (2)+f (0), 解得f (2)=-14,令x =2,y =1时,4f (2)·f (1)=f (3)+f (1), 解得f (3)=-12,依次求得f (4)=-14,f (5)=14,f (6)=12,f (7)=14,f (8)=-14,f (9)=-12,…可知f (x )是以6为周期的函数, ∴f (2 015)=f (335×6+5)=f (5)=14.二、解答题8.设f (x )是定义域为R 的周期函数,且最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x . (1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.解 (1)∵f (1+x )=f (1-x ), ∴f (-x )=f (2+x ).又f (x +2)=f (x ),∴f (-x )=f (x ), ∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0], 则f (x )=f (-x )=x ;进而当1≤x ≤2时,-1≤x -2≤0, f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎨⎧-x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 解 (1)因为f (x )是奇函数,且定义域为R ,所以f (0)=0, 即-1+b 2+a =0,解得b =1.从而有f (x )=-2x+12x +1+a . 又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.经检验适合题意,∴a =2,b =1. (2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+k . 即对一切t ∈R 有3t 2-2t -k >0. 从而判别式Δ=4+12k <0,解得k <-13.11.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈[12,1]上恒成立,求实数a 的取值范围.解 由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f (ax +1)≤f (x -2),则|ax +1|≤|x -2|. 又x ∈[12,1],故|x -2|=2-x ,即x -2≤ax +1≤2-x .∴1-3x ≤a ≤1x -1在[12,1]上恒成立.∴(1x -1)min =0,(1-3x)max =-2,∴-2≤a ≤0.12.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+江苏省泰州中学校本教学案 一轮复习11 编者:余静 f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}..。
函数讲函数的奇偶性与周期性课件pptxxx年xx月xx日CATALOGUE目录•函数奇偶性及周期性概述•奇函数与偶函数•周期函数的定义和性质•奇函数与偶函数举例•周期函数的举例及变式•奇偶性与周期性的扩展知识01函数奇偶性及周期性概述函数奇偶性的定义与性质奇函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=-f(x),那么f(x)是奇函数。
要点一要点二偶函数对于函数f(x),如果对于任意的x属于D,都有f(-x)=f(x),那么f(x)是偶函数。
恒等于0的函数对于函数f(x),如果对于任意的x属于D,都有f(x)=0,那么f(x)是恒等于0的函数。
要点三对于函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么f(x)是周期函数。
周期函数对于周期函数f(x),如果存在一个非零常数T,使得对于任意的x属于D,都有f(x+T)=f(x),那么T是f(x)的最小正周期。
最小正周期函数周期性的定义与性质奇偶性与周期性的应用用奇偶性和周期性判断函数的图像对于一个函数f(x),如果知道它的奇偶性和周期性,就可以根据这些性质大致判断出它的图像。
用奇偶性和周期性简化计算对于具有特定奇偶性和周期性的函数,我们可以利用这些性质来简化计算。
用奇偶性和周期性解决实际问题有时在解决实际问题时,需要用到函数的奇偶性和周期性。
02奇函数与偶函数奇函数定义与性质奇函数定义:对于函数f(x),如果对于任意的x∈D,都奇函数性质有f(-x)=-f(x),那么称f(x)为奇函数。
奇函数的图象关于原点对称;奇函数的定义域一定关于原点对称;奇函数的相反数函数是自身;如果奇函数f(x)在x=0有定义,那么f(0)=0。
偶函数定义:对于函数f(x),如果对于任意的x∈D,都有f(-x)=f(x),那么称f(x)为偶函数。
偶函数性质偶函数的图象关于y轴对称;偶函数的定义域一定关于原点对称;偶函数的相反数函数是自身;如果偶函数f(x)在x=0有定义,那么f(0)=0。
第三节 函数的奇偶性与周期性错误!知识梳理一、函数的奇偶性1.函数奇偶性的定义及简单性质.2.若f (x )为偶函数,则f (-x )=f (x )=f (|x |),反之,也成立.3.若奇函数f (x )的定义域包含0,则f (0)=0.4.判断函数的奇偶性有时可以用定义的等价形式.在定义域关于原点对称的情况下, (1)若f (x )-f (-x )=0或f x f -x=1[f (-x )≠0],则f (x )为偶函数; (2)若f (x )+f (-x )=0或f x f -x=-1[f (-x )≠0],则f (x )为奇函数. 5.设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上: 奇+奇=奇,偶+偶=偶,偶×偶=偶,奇×奇=偶,奇×偶=奇.二、函数的周期性1.周期函数定义:若T 为非零常数,对于定义域内的任一x ,使得f (x +T )=f (x )恒成立,则f (x )叫做________,T 叫做这个函数的________.2.周期函数的性质:1. 结合具体函数,了解函数奇偶性的含义2. 了解函数的周期性3. 会运用函数图象理解和研究函数的奇偶性(1)若T 是函数f (x )的一个周期,则kT (k ∈Z ,k ≠0)也是它的一个周期;(2)f (x +T )= f (x )常写作f ⎝ ⎛⎭⎪⎫x +T 2=f ⎝ ⎛⎭⎪⎫x -T 2; (3)若f (x )的周期中,存在一个最小正数t 满足f (x +t )=f (x ),则称t 为f (x )的最小正周期;(4)若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)也是周期函数,且周期为T|ω|.基础自测1.(2013·北京西城区期末)下列函数中,既是偶函数又在 (0,+∞)上单调递增的函数是( )A .y =-1xB .y =e |x |C .y =-x 2+3D .y =cos x解析:y =-1x是奇函数,A 错误;y =e |x |是偶函数且在(0,+∞)上单调递增,B 正确;y =-x 2+3是偶函数且在(0,+∞)上单调递减,C 错误;y =cos x 是偶函数且在(0,+∞)上有时递增,有时递减,D 错误.故选B.答案:B2.函数f (x )=1x+x 的图象关于( ) A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称解析:可判断f (x )=1x+x 为奇函数,所以图象关于原点对称.故选C. 答案:C3.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)=( )A .1B .-1C .-114 D.114答案:B4.若偶函数f (x )是以4为周期的函数,f (x )在区间[-6,-4]上是减函数,则f (x )在[0,2]上的单调性是________.解析:∵T =4,且在[-6,-4]上单调递减,∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称, 由对称性知f (x )在[0,2]上单调递增.答案:单调递增1.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C . |f (x )|+g (x )是偶函数D .|f (x )|- g (x )是奇函数解析:因为 g (x )是R 上的奇函数,所以|g (x )|是R 上的偶函数,从而f (x )+|g (x )|是偶函数.故选A.答案:A2.(2013·山东卷)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A .-2B .0C .1D .2解析:因为f (x )为奇函数,所以f (-1)=-f (1)=-(1+1)=-2.故选A.答案:A3.(2013·江苏卷)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:因为f (x )是定义在R 上的奇函数,所以易知x ≤0时,f (x )=-x 2-4x 解不等式得到f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).答案: (-5,0)∪(5,+∞)1.(2013·南京模拟)已知函数f (x )是奇函数,当x >0时,f (x )=a x (a >0且a ≠1),且f (log 124)=-3,则a 的值为( )A. 3 B .3 C .9 D.32解析:∵f (log 124)=f (log 214)=f (-2)=-f (2)=-a 2=-3,∴a 2=3,解得a =±3,又a >0,∴a = 3.答案:A2.(2013·温州高三第一次质检)已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=e x +a ,若f (x )在R 上是单调函数,则实数a 的最小值是________.解析:依题意得f (0)=0.当x >0时,f (x )>e 0+a =a +1.若函数f (x ) 在R 上是单调函数,则有a +1≥0,a ≥-1,因此实数a 的最小值是-1.答案:-1。
函数的奇偶性与周期性教学讲义1.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有__f (-x )=f (x )__,那么函数f (x )是偶函数都有__f (-x )=-f (x )__,那么函数f (x )是奇函数 图象 特征 关于__y 轴__对称关于__原点__对称2.函数的周期性 (1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有__f (x +T )=f (x )__,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个__最小的正数__,那么这个__最小正数__就叫作f (x )的最小正周期.1.奇(偶)函数定义的等价形式(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1(f (x )≠0)⇔f (x )为偶函数;(2)f (-x)=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1(f (x )≠0)⇔f (x )为奇函数.2.对f (x )的定义域内任一自变量的值x ,最小正周期为T (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f (x ),则T =2|a |; (3)若f (x +a )=f (x +b ),则T =|a -b |. 3.函数图象的对称关系(1)若函数f (x )满足关系f (a +x )=f (b -x ),则f (x )的图象关于直线x =a +b2对称;(2)若函数f (x )满足关系f (a +x )=-f (b -x ),则f (x )的图象关于点(a +b2,0)对称.1.(教材改编)函数f (x )=x 2-1,f (x )=x 3,f (x )=x 2+cos x ,f (x )=1x +|x |中,偶函数的个数是__2__.2.(教材改编)若奇函数f (x )在区间[a ,b ]上是减函数,则它在[-b ,-a ]上是__减__函数;若偶函数f (x )在区间[a ,b ]上是增函数,则它在[-b ,-a ]上是__减__函数.3.(教材改编)已知f (x )为奇函数,当x >0时,f (x )=x -1,则f (-2)= 1- 2 . 4.(教材改编)已知函数f (x )满足f (x +3)=f (x ),当x ∈[0,1]时,f (x )=log 3(x 2+3),则f (2019)=__1__.5.若函数y =f (x )(x ∈R )是奇函数,则下列坐标表示的点一定在函数y =f (x )图象上的是( B ) A .(a ,-f (a )) B .(-a ,-f (a )) C .(-a ,-f (-a ))D .(a ,f (-a ))[解析] ∵函数y =f (x )为奇函数,∴f (-a )=-f (a ).即点(-a ,-f (a ))一定在函数y =f (x )的图象上.6.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( B ) A .-13B .13C .12D .-12[解析] 由已知得a -1+2a =0,得a =13,又f (-x )=f (x )得b =0,所以a +b =13.7.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)=( A )A .-12B .-14C .14D .12[解析] ∵f (x )为周期函数且周期为2,∴f (-52)=f (-12),又f (x )为奇函数,∴f (-12)=-f (12)=-2×12(1-12)=-12.考点1 判断函数的奇偶性——自主练透例1 判断下列函数的奇偶性 (1)f (x )=(1+x )1-x1+x; (2)f (x )=x 2-1+1-x 2; (3)f (x )=|x +1|-|x -1|;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.(5)f (x )=1-x 2|x +2|-2;(6)(理)已知函数f (x )对任意x ,y ∈R ,都有f (x +y )+f (x -y )=2f (x )·f (y ),且f (0)≠0.[分析] 先求出定义域,看定义域是否关于原点对称,在定义域内,解析式带绝对值号的先化简,计算f (-x ),再判断f (-x )与f (x )之间的关系.抽象函数常用赋值法判断. [解析] (1)由题意得1-x1+x ≥0且x ≠-1,∴-1<x ≤1,∴f (x )的定义域不关于原点对称, ∴f (x )不存在奇偶性,为非奇非偶函数.(2)由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0得x =±1,定义域关于坐标原点对称,又f (-1)=f (1)=0,∴f (x )既是奇函数,又是偶函数.(3)函数的定义域x ∈(-∞,+∞),关于原点对称.∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-(|x +1|-|x -1|)=-f (x ), ∴f (x )=|x +1|-|x -1|是奇函数.(4)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数. (5)去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎨⎧-1≤x ≤1,x ≠0.故f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )=1-x 2x +2-2=1-x 2x,这时有f(-x)=1-(-x)2-x=-1-x2x=-f(x),故f(x)为奇函数.(6)(理)已知对任意x,y∈R,都有f(x+y)+f(x-y)=2f(x)·f(y),不妨取x=0,y=0,则有2f(0)=2[f(0)]2,因为f(0)≠0,所以f(0)=1.取x=0,得f(y)+f(-y)=2f(0)f(y)=2f(y),所以f(y)=f(-y).又y∈R,所以函数f(x)是偶函数.名师点拨☞判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于f(x)或-f(x),据此得出结论.(2)图象法:奇(偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)考点2函数的周期性——师生共研例2已知函数f(x)满足f(x)·f(x+2)=13.(1)求证:f(x)是周期函数;(2)若f(1)=2,求f(99)的值;(3)若当x∈[0,2]时,f(x)=x,试求x∈[4,8]时函数f(x)的解析式.[解析](1)证明:由题意知f(x)≠0,则f(x+2)=13f(x).用x+2代替x得f(x+4)=13f(x+2)=f(x),故f(x)为周期函数,且4为f(x)的周期.(2)若f(1)=2,则f(99)=f(24×4+3)=f(3)=13f(1)=132.(3)当x∈[4,6]时,x-4∈[0,2],则f(x-4)=x-4,又周期为4,所以f(x)=f(x-4)=x-4.当x∈(6,8]时,x-6∈(0,2],则f(x-6)=x-6,根据周期为4,则f(x+2)=f(x-6)=x-6.又f(x)·f(x+2)=13,所以f (x )=13f (x +2)=13x -6. 所以解析式为f (x )=⎩⎨⎧x -4,4≤x ≤6,13x -6,6<x ≤8.名师点拨 ☞本题存在规律性:若f (x +a )·f (x )=b (常数),则2a 为f (x )的周期(a >0);同理,f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x ),均可推得2a 为f (x )的周期(a >0).〔变式训练1〕已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).若当2≤x ≤3时,f (x )=x ,则f (2019)=__3__;当0≤x ≤1时,f (x )=__-(x +2)__;当-2≤x ≤-1时,f (x )=__x +4__.[解析] 由f (x +2)=-f (x ),得f (x )=f (x +4),f (2019)=f (3)=3;当0≤x ≤1时,f (x )=-f (x +2)=-(x +2);当-2≤x ≤-1时,f (x )=f (x +4)=x +4.考点3 函数性质的综合应用——多维探究角度1 函数奇偶性与单调性结合例3 (1)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( C ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)(2)(2018·新疆乌鲁木齐诊断)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( A ) A .(13,23)B .[13,23)C .(12,23)D .[12,23)[解析] (1)因为f (x )是奇函数,所以当x <0时,f (x )=-x 2+2x . 作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.故选C .(2)由y=f(x)图象知,x离y轴越近,函数值越小,因此,|2x-1|<13,解得13<x<23,故选A.角度2函数奇偶性与周期性结合例4(2018·课标全国Ⅱ,12)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=(C)A.-50B.0C.2D.50[解析]本题主要考查函数的奇偶性和周期性.∵f(x)是定义域为R的奇函数,∴f(0)=0,且f(-x)=-f(x),①又∵f(1-x)=f(1+x),∴f(-x)=f(2+x),②由①②得f(2+x)=-f(x),③∴f(4+x)=-f(2+x),④由③④得f(x)=f(x+4),∴f(x)的最小正周期为4,对于f(1+x)=f(1-x),令x=1,得f(2)=f(0)=0;令x=2,得f(3)=f(-1)=-f(1)=-2;令x=3,得f(4)=f(-2)=-f(2)=0.故f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,所以f(1)+f(2)+f(3)+…+f(50)=12×0+f(1)+f(2)=0+2+0=2.故选C.[方法总结]若对于函数f(x)定义域内的任意一个x都有:(1)f(x+a)=-f(x-a)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;(2)f(x+a)=1f(x)(a≠0,f(x)≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;(3)f(x+a)=-1f(x)(a≠0,f(x)≠0),则函数f(x)必为周期函数,2|a|是它的一个周期.角度3单调性、奇偶性和周期性结合例5定义在R上的函数f(x)满足:①对任意x∈R有f(x+4)=f(x);②f(x)在[0,2]上是增函数;③f(x+2)的图象关于y轴对称.则下列结论正确的是(D)A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (6.5)<f (7)D .f (4.5)<f (7)<f (6.5)[解析] 由①知函数f (x )的周期为4,由③知f (x +2)是偶函数,则有f (-x +2)=f (x +2),即函数f (x )图象的一条对称轴是x =2,由②知函数f (x )在[0,2]上单调递增,则在[2,4]上单调递减,且在[0,4]上越靠近x =2,对应的函数值越大,又f (7)=f (3),f (6.5)=f (2.5),f (4.5)=f (0.5),由以上分析可得f (0.5)<f (3)<f (2.5),即f (4.5)<f (7)<f (6.5),故选D . 名师点拨 ☞函数性质综合应用问题的常见类型及解题策略1.函数单调性与奇偶性结合.注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.2.周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解. 〔变式训练2〕(1)(角度1)(文)已知偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( A ) A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)(角度1)(理)(2018·甘肃天水月考)定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)(2)(2018·安徽十大名校联考)设e 是自然对数的底数,函数f (x )是周期为4的奇函数,且当0<x <2时,f (x )=-ln x ,则e f (73 )的值为(D )A .35B .34C .43D .53(3)(2018·四川达州模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减,设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( D )A .a >b >cB .c >a >bC .b >c >aD .a >c >b[解析] (1)(文)因为π>3>2,且当x ∈[0,+∞)时,f (x )是增函数,所以f (π)>f (3)>f (2). 又函数f (x )为R 上的偶函数, 所以f (-3)=f (3),f (-2)=f (2), 故f (π)>f (-3)>f (-2).(理)∵f (x )是偶函数,∴f (-2)=f (2). 又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2), 有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A . (2)因为函数以4为周期,所以f (73)=f (73-4)=f (-53)=-f (53)=ln 53,所以e f (73 )=e ln 53=53.故选D . (3)∵偶函数f (x )满足f (x +2)=f (x ),∴函数的周期为2.∴a =f (-2.8)=f (-0.8),b =f (-1.6)=f (0.4)=f (-0.4),c =f (0.5)=f (-0.5). ∵-0.8<-0.5<-0.4,且函数f (x )在[-1,0]上单调递减,∴a >c >b ,故选D .[名师点拨] 解决此类问题通常先利用周期性将自变量转化到所知的区间,然后利用奇偶性和单调性求解.。