铣床对刀步骤精
- 格式:docx
- 大小:8.90 KB
- 文档页数:5
数控加工效率高、精度高,除了机床本身精度和程序的精度以外,对刀是非常关键的因素之一。
对刀的目的是确定编程原点在机床坐标系中的位置,对刀点可以设在零件上、夹具上或机床上,对刀时应使对刀点与刀位点重合。
数控加工有多种对刀方式,如手动对刀、对刀仪对刀及A TC对刀等。
手动对刀,即试切对刀。
由于其对刀简单、可靠、易操作、经济,因此得到广泛应用。
缺点是精度不是很高,而且对刀精度因人而异。
不同机床、不同的零件结构,其手动对刀的难易程度不同。
如龙门式加工中心角度铣头在非坐标轴方向加工时对刀等等。
本文介绍采用角度铣头、三面刃铣刀加工螺旋沟纹辊时,如何借助辅助用具进行对刀的技巧与应用。
1. 加工方案移动辊的圆周上有40条螺旋角度为30°的螺旋沟槽,每个沟槽的断面形状是直角三角形。
在完成其他工序之后,需要在龙门式数控加工中心上,采用直角铣头,逆时针旋转30°后铣螺旋沟槽。
根据沟槽结构的特殊性和沟槽的数量,决定采用三面刃成形铣刀成形加工。
由于同类的辊有多个,因此采用手工编程、宏程序。
2.对刀由于直角铣头工作时的状态必须是刀轴线垂直于螺旋槽,也就是说刀盘在X-Y平面的投影直径线中刀盘端线)必须与螺旋槽同方向。
然后随着工作台的移动、机床A轴的转动和刀轴的转动,在程序的控制下,便可加工出螺旋沟槽。
但前提是要找出工作状态下编程零点在机床坐标系中的位置。
只有找出编程零点的位置,程序才能控制各轴准确动作,加工出工件。
(1)标准棒心到编程零点的距离。
如果将编程零点直接作为对刀点,当刀轴旋转30°后,无法精确的对出这一点,因此只能采用辅助用具,将对刀点设在容易对出的位置。
本案采用圆形标准棒的圆心作为对刀点,具体对刀步骤如下:将一个标准棒固定到工作台面任何位置,为方便可固定在工件附近。
将百分表固定在轴上(机床主轴),测得标准棒X方向最外缘点到移动辊端的距离L,又根据已知的标准棒直径和螺旋槽起点到辊端的距离h算出标准棒心到编程零点的距离X为L+h-d/2。
加工中心对刀与刀具补偿操作教程时间:2012-05-30 作者:模具联盟网点击: 1479 评论:0 字体:T|T一、对刀对刀方法与具体操作同数控铣床。
二、刀具长度补偿设置加工中心上使用的刀具很多,每把刀具的长度和到 Z 坐标零点的距离都不相同,这些距离的差值就是刀具的长度补偿值,在加工时要分别进行设置,并记录在刀具明细表中,以供机床操作人员使用。
一般有两种方法:1、机内设置这种方法不用事先测量每把刀具的长度,而是将所有刀具放入刀库中后,采用 Z 向设定器依次确定每把刀具在机床坐标系中的位置,具体设定方法又分两种。
( 1 )第一种方法将其中的一把刀具作为标准刀具,找出其它刀具与标准刀具的差值,作为长度补偿值。
具体操作步骤如下:①将所有刀具放入刀库,利用 Z 向设定器确定每把刀具到工件坐标系 Z 向零点的距离,如图 5-2 所示的 A 、 B 、 C ,并记录下来;②选择其中一把最长(或最短)、与工件距离最小(或最大)的刀具作为基准刀,如图 5-2 中的 T03 (或 T01 ),将其对刀值 C (或 A )作为工件坐标系的 Z 值,此时 H03=0 ;③确定其它刀具相对基准刀的长度补偿值,即 H01= ±│ C-A │, H02= ±│ C-B │,正负号由程序中的 G43 或 G44 来确定。
④将获得的刀具长度补偿值对应刀具和刀具号输入到机床中。
( 2 )第二种方法将工件坐标系的 Z 值输为 0 ,调出刀库中的每把刀具,通过 Z 向设定器确定每把刀具到工件坐标系 Z 向零点的距离,直接将每把刀具到工件零点的距离值输到对应的长度补偿值代码中。
正负号由程序中的 G43 或 G44 来确定。
2、机外刀具预调结合机上对刀这种方法是先在机床外利用刀具预调仪精确测量每把在刀柄上装夹好的刀具的轴向和径向尺寸,确定每把刀具的长度补偿值,然后在机床上用其中最长或最短的一把刀具进行 Z 向对刀,确定工件坐标系。
万方数据万方数据2.6百分表(或千分表)对刀法(一般用于圆形工件的对刀)1)并,Y向对刀。
将百分表的安装杆装在刀柄上,或将百分表的磁性座吸在主轴套筒上,移动工作台使主轴中心线(即刀具中心)大约移到工件中心,调节磁性座上伸缩杆的长度和角度,使百分表的触头接触工件的圆周面,(指针转动约0.1mill)用手慢慢转动主轴,使百分表的触头沿着工件的圆周面转动,观察百分表指针的便移情况,慢慢移动工作台的轴和轴,多次反复后,待转动主轴时百分表的指针基本在同一位置(表头转动一周时,其指针的跳动量在允许的对刀误差内,如0.02mm),这时可认为主轴的中心就是轴和轴的原点。
2)卸下百分表装上铣刀,用其他对刀方法如试切法、塞尺法等得到z轴坐标值。
2.6专用对刀器对刀法易撞坏)占用机时多(如试切需反复切量几次),人为带来的随机性误差大等缺点,已经适应不了数控加工的节奏,更不利于发挥数控机床的功能。
用专用对刀器对刀有对刀精度高、效率高、安全性好等优点,把繁琐的靠经验保证的对刀工作简单化了,保证了数控机床的高效高精度特点的发挥,已成为数控加工机上解决刀具对刀不可或缺的一种专用工具。
参考文献:[1]陈志雄.数控机床与数控编程技术[M].北京:电子工业出版社,2007.[2]华中数才全一操作说明书[z].武汉华中数控股份有限公司.[3]任国兴主编.数控铣床华中系统编程与操作实训[M].北京:中国劳动社会保障出版社,2007.传统对刀方法有安全性差(如塞尺对刀,硬碰硬刀尖收稿日期:2009一10—14(上接第38页)通过机床附带的后处理程序后即可得到控制机床运行的代码程序。
创建刀轨选择的加工参数及其他加工信息汇总列在表l中。
表I加工参数及其他加工信息加工设备加工工具直径/mm板料毛坯尺寸/mm3切削连接方式固定好板料,对好刀具后,将加工代码程序输入机床,既可实现壁板零件的自动加工成形。
2.2.4成形零件机床加工完成后,得到的实际零件如图5所示。
FANUC数控铣床对刀操作步骤
1.准备工作
在进行对刀操作之前,需要准备好以下工具和材料:对刀仪、螺丝刀、日光灯、底座块、对刀块、校验块、刀柄和对刀块夹紧螺丝等。
2.将对刀仪安装在机床上
将对刀仪安装在机床的主轴上,并用螺丝刀固定好。
3.安装刀柄和刀具
将刀柄和刀具正确安装在主轴上,并用螺丝刀夹紧。
4.移动主轴至刀具测量点
根据加工程序要求,使用机床的手动模式将主轴移动至刀具测量点,
即刀具尖端的位置。
5.设置对刀块
将底座块和校验块放置在工件上,然后将对刀块放到刀具尖端上,并
用对刀块夹紧螺丝将其固定住。
6.开启对刀程序
在机床的控制面板上选择对刀程序,并按照提示操作,开始对刀操作。
7.确认对刀结果
对刀程序运行结束后,查看对刀仪的显示结果,确认刀具尖端与刀具
所在位置的偏差。
8.调整刀具偏差
根据对刀结果,调整刀具的位置,确保刀具尖端的位置准确无误。
9.完成对刀操作
当确认刀具尖端位置准确无误后,即完成了对刀操作。
10.完善记录
在对刀操作完成后,及时将对刀结果记录下来,并保存到相应的文件中,以备将来查阅。
总结起来,FANUC数控铣床对刀操作步骤包括准备工作、安装对刀仪、安装刀柄和刀具、移动主轴至刀具测量点、设置对刀块、开启对刀程序、
确认对刀结果、调整刀具偏差、完成对刀操作和完善记录。
通过严格按照
以上步骤进行对刀操作,可以确保刀具正确安装,提高加工效率和精度,
保证产品质量。
以对工件中心为例、方工件1主轴正传,铣刀靠工件的左面,记住X值,提刀,移到工件的右面,靠右面,记住X值,把这两个X值,取平均值,记录到G54中的X上2主轴正转,铣刀靠工件的前面,记住Y值,提刀,移到工件的后面,靠后面,记住Y值,把这两个Y值,取平均值,记录到G54中的Y上3主轴正转,用铣刀慢慢靠工件的上表面,记住Z值,把它写入G54的Z 上G92指令是用来建立工件坐标系的,它与刀具当前所在位置有关;该指令应用格式为:G92 X_Y_Z_,其含义是刀具当前所在位置在工件坐标系下的坐标值为X_,Y_,Z_;例如G92 X0 Y0 Z0 表示刀具当前所在位置在工件坐标系下的坐标值为0,0,0也即刀具当前所在位置即是工件坐标系的原点;1在X方向一边用铣刀与工件轮廓接触,得出一个读数值M1,X方向移动主轴到工件轮廓的另一边接触,得到地二个度数M2,在刀补测量页面输入M=M2-M1;2在Z方向一边用铣刀与工件轮廓接触,得出一个读数值N1,Z方向移动主轴到工件轮廓的另一边接触,得到地二个度数N2,在刀补测量页面输入N=MN2-N1;3铣床对刀完成————————一、对刀对刀的目的是通过刀具或对刀工具确定工件坐标系与机床坐标系之间的空间位置关系,并将对刀数据输入到相应的存储位置;它是数控加工中最重要的操作内容,其准确性将直接影响零件的加工精度;对刀操作分为X 、Y 向对刀和Z 向对刀;1、对刀方法根据现有条件和加工精度要求选择对刀方法,可采用试切法、寻边器对刀、机内对刀仪对刀、自动对刀等;其中试切法对刀精度较低,加工中常用寻边器和Z 向设定器对刀,效率高,能保证对刀精度;2、对刀工具1 寻边器寻边器主要用于确定工件坐标系原点在机床坐标系中的X 、Y 值,也可以测量工件的简单尺寸;寻边器有偏心式和光电式等类型,其中以光电式较为常用;光电式寻边器的测头一般为10mm 的钢球,用弹簧拉紧在光电式寻边器的测杆上,碰到工件时可以退让,并将电路导通,发出光讯号,通过光电式寻边器的指示和机床坐标位置即可得到被测表面的坐标位置,具体使用方法见下述对刀实例;2 Z 轴设定器Z 轴设定器主要用于确定工件坐标系原点在机床坐标系的Z 轴坐标,或者说是确定刀具在机床坐标系中的高度; Z 轴设定器有光电式和指针式等类型,通过光电指示或指针判断刀具与对刀器是否接触,对刀精度一般可达;Z 轴设定器带有磁性表座,可以牢固地附着在工件或夹具上,其高度一般为50mm 或100mm, 如图4-11 所示;3、对刀实例零件,采用寻边器对刀,其详细步骤如下:1 X 、Y 向对刀①将工件通过夹具装在机床工作台上,装夹时,工件的四个侧面都应留出寻边器的测量位置;②快速移动工作台和主轴,让寻边器测头靠近工件的左侧;③改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机床坐标系中的X 坐标值, 如;④抬起寻边器至工件上表面之上,快速移动工作台和主轴,让测头靠近工件右侧;⑤改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机械坐标系中的X 坐标值,如;⑥若测头直径为10mm ,则工件长度为-10=100 ,据此可得工件坐标系原点W 在机床坐标系中的X 坐标值为+100/2+5= ;⑦同理可测得工件坐标系原点W 在机械坐标系中的Y 坐标值;2 Z 向对刀①卸下寻边器,将加工所用刀具装上主轴;②将Z 轴设定器或固定高度的对刀块,以下同放置在工件上平面上;③快速移动主轴,让刀具端面靠近Z 轴设定器上表面;④改用微调操作,让刀具端面慢慢接触到Z 轴设定器上表面,直到其指针指示到零位;⑤记下此时机床坐标系中的Z 值,如;⑥若Z 轴设定器的高度为50mm ,则工件坐标系原点W 在机械坐标系中的Z 坐标值为30-20= ;3 将测得的X 、Y 、Z 值输入到机床工件坐标系存储地址中一般使用G54-G59 代码存储对刀参数;4、注意事项在对刀操作过程中需注意以下问题:1 根据加工要求采用正确的对刀工具,控制对刀误差;2 在对刀过程中,可通过改变微调进给量来提高对刀精度;3 对刀时需小心谨慎操作,尤其要注意移动方向,避免发生碰撞危险;4 对刀数据一定要存入与程序对应的存储地址,防止因调用错误而产生严重后果;二、刀具补偿值的输入和修改根据刀具的实际尺寸和位置,将刀具半径补偿值和刀具长度补偿值输入到与程序对应的存储位置;需注意的是,补偿的数据正确性、符号正确性及数据所在地址正确性都将威胁到加工,从而导致撞车危险或加工报废;。
数控铣床面板操作与对刀知识点:1、数控铣床操作面板的功能与使用方法;2、数控铣床操作说明书;3、对刀的方法4、刀具补偿概念技能点:1、能按照操作规程启动和停止机床;2、正确使用操作面板上的常用功能键;3、通过各种途径输入加工程序;4.进行对刀并确定相关参数坐标;5.正确地设置刀具参数;一、任务引入数控铣床的操作面板是由系统操作面板(CRT/MDI操作面板)和机械操作面板(也称为用户操作面板)组成。
面板上的功能开关和按键都有特定的含义。
由于数控铣床配用的数控系统不同,其机床操作面板的形式也不相同,但其各种开关、按键的功能及操作方法大同小异。
结合本校实际情况,以JM-850M数控铣床/加工中心上的Fanuc-Oi MC系统为例介绍数控铣床的操作。
二、任务分析要掌握数控铣床的操作,机床的操作面板的操作是关键,熟悉数控铣床的控制面板是操作机床的的基础,掌握操作面板上的常用功能键的使用以及机床的加工控制,是后续任务的基础。
三、相关知识(一)、Fanuc-Oi MC数控系统简介图2-1 Fanuc-Oi MC数控系统CRT/MDI面板Fanuc Oi Mate-MC数控系统面板由系统操作面板和机床控制面板三部分组成。
1、系统操作面板系统操作面板包括CRT显示区、MDI编辑面板。
如图2-1。
(1)、CRT显示区:位于整个机床面板的左上方。
包括显示区和屏幕相对应的功能软键(图2-2)。
(2)、编辑操作面板(MDI面板):一般位于CRT显示区的右侧。
MDI面板上键的位置(如图:2-3)和各按键的名称及功能见表2-1和表2-2。
图2-2 Fanuc Oi Mate-MC数控系统CRT显示区1、功能软键2、扩展软键图2-3 MDI面板表2-1 Fanuc Oi MC系统MDI面板上主功能键与功能说明表2-2 Fanuc Oi MC系统MDI面板上其他按键与功能说明2、机床控制面板Fanuc Oi Mate-MC数控系统的控制面板通常在CRT显示区的下方(如图:2-3),各按键(旋钮)的名称及功能见表2-3。
教学理论2014-05目前我国已经成为机械制造大国,设备的拥有量名列前茅,数控机床在设备总量中占有的比例越来越大。
对于一名数控操作工来说,对刀是加工中的主要操作和重要技能。
在一定条件下,对刀的精度可以决定工件的加工精度,同时对刀的效率直接影响数控加工效率。
下面以FANUC0i数控系统为例论述数控铣床的对刀原理及方法。
一、对刀的概念一般情况下,数控编程员根据图纸,选定一个便于编程和对刀的坐标系及其原点,这个原点称为程序原点。
程序原点一般与工件的工艺基准或设计基准重合,因此又把程序原点称为工件原点。
数控铣床通电后,要进行回零操作,目的是建立数控机床的位置测量、控制、显示的统一基准,这个基准点就是机床原点,它的位置由机床位置传感器决定。
图1中M点为机床原点,W点为工件原点。
Z机床Z工作Z=工件零点M=机床零点X工件Y机床X机床M G54WY工件图1所谓对刀,其实就是在机床上测量机床原点与工件原点之间的偏移距离,并设置程序原点在以刀尖为参照的机床坐标系中的坐标。
二、对刀方法数控铣床对刀可分为两大类:一是用加工刀具直接试切对刀,这种对刀方法在数控铣床上应用的较少,只适用于来料为没有加工过的毛坯件;二是使用找正器等对刀工具来对刀,这种方法刀具不与工件直接接触,所以适用于来料经过粗加工或精加工的毛坯件和对已加工过的工件进行修复。
下面论述使用找正器在数控铣床上对刀的几种方法。
(一)常用找正器的种类X、Y轴常用的找正器有标准验棒、偏心式找正器、光电式找正器、百分表及表架等,辅助工具有塞尺等。
Z轴对刀使用工具有刀具长度测量仪、Z轴对刀仪、量块、塞尺等。
无论使用何种找正工具,它的找正原理是相同的,都是利用找正器来确定主轴的中心及刀尖与找正边的关系。
(二)使用偏心式找正器进行X、Y轴对刀的方法1.分中法(如图2)。
这种方法适用于程序原点在对称中心的工件。
(1)在刀柄上安装找正器,并将刀柄装入主轴,在MDI下运转主轴,转速为500r/min;(2)快速移动各轴,逐渐靠近工件,将找正器的测量部分靠近工件X的正向表面,主轴沿X的负方向逐渐移动,使用手轮微量移动靠近工件,观察找正器状态:①未接触工件时,找正器下半部分偏摆不定。
对刀竟然有七种方法导读:数控车床对刀是加工中的重要技能,对刀的准确性决定了零件的加工精度,对刀效率直接影响零件的加工效率,对刀对机床加工操作非常重要。
数控车床开机后,必须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,也就是刀具回到机床原点,机床原点通常在刀具的最大正行程处,它的位置由机床位置传感器决定。
机床回零后,刀具(刀尖)的位置与机床原点的距离是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。
对刀就是在数控机床的机床坐标系中建立工件坐标系,并使工件坐标系原点与编程原点重合的操作过程。
通过试切或非接触方法测量出机床坐标系中的刀尖编程点距加工原点X和Z 方向的距离,并把数值设置到机床参数中,通过程序调用,建立工件坐标系,程序中基点的绝对坐标值就是以建立的工件坐标系的原点为原点的,加工出零件的轮廓。
一、对刀原理对刀的目的是为了建立工件坐标系,直观的说法是,对刀是确立工件在机床工作台中的位置,实际上就是求对刀点在机床坐标系中的坐标。
对于数控车床来说,在加工前首先要选择对刀点,对刀点是指用数控机床加工工件时,刀具相对于工件运动的起点。
对刀点既可以设在工件上(如工件上的设计基准或定位基准),也可以设在夹具或机床上,若设在夹具或机床上的某一点,则该点必须与工件的定位基准保持一定精度的尺寸关系。
对刀时,应使指刀位点与对刀点重合,所谓刀位点是指刀具的定位基准点,对于车刀来说,其刀位点是刀尖。
对刀的目的是确定对刀点(或工件原点)在机床坐标系中的绝对坐标值,测量刀具的刀位偏差值。
对刀点找正的准确度直接影响加工精度。
在实际加工工件时,使用一把刀具一般不能满足工件的加工要求,通常要使用多把刀具进行加工。
在使用多把车刀加工时,在换刀位置不变的情况下,换刀后刀尖点的几何位置将出现差异,这就要求不同的刀具在不同的起始位置开始加工时,都能保证程序正常运行。
为了解决这个问题,机床数控系统配备了刀具几何位置补偿的功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具参数补正栏指定组号里,在加工程序中利用T指令,即可在刀具轨迹中自动补偿刀具位置偏差。
详述数控铣床的对刀流程
数控铣床对刀流程主要包括以下步骤:
1. 回参考点:开机后,首先运行机床回到各轴的机械原点,建立机床坐标系。
2. 刀具安装:将刀具正确安装在主轴上,确保刀具夹持牢固且跳动小。
3. X/Y/Z轴对刀:手动移动刀具靠近工件表面,轻微触碰并记录当前坐标值,然后退刀,计算刀具长度补偿值,设定刀具长度补偿参数。
4. Z轴对刀:通常采用试切法,通过切削工件表面一小段距离,测量切削后的尺寸,计算并设定Z轴的刀具补偿值。
5. X/Y轴对刀:使用寻边器或试切法确定工件坐标系原点,通过移动刀具找到工件边缘或设定的对刀点,记录坐标值,然后根据程序设定调整工件坐标系。
6. 参数设置与验证:输入相应刀具参数,执行试运行程序,通过切削结果验证对刀精度,如有误差,需微调并对刀,直至达到要求
精度。
以对工件中心为例、方工件
《1 主轴正传,铣刀靠工件的左面,记住X 值,提刀,移到工件的右面,靠右面,记住X 值,把这两个X 值,取平均值,记录到G54 中的X 上
2 主轴正转,铣刀靠工件的前面,记住Y 值,提刀,移到工件的后面,靠后
面,记住Y 值,把这两个Y 值,取平均值,记录到G54 中的Y 上
3 主轴正转,用铣刀慢慢靠工件的上表面,记住Z 值,把它写入G5
4 的Z 上》
《G92 指令是用来建立工件坐标系的,它与刀具当前所在位置有关。
该指令应用格式为:G92 X_Y_Z_ ,其含义是刀具当前所在位置在工件坐标系下的坐标值为(X_,Y_,Z_) 。
例如G92 X0 Y0 Z0 表示刀具当前所在位置在工件坐标系下的坐标值为
(0,0,0 )也即刀具当前所在位置即是工件坐标系的原点。
》
《(1) 在X 方向一边用铣刀与工件轮廓接触,得出一个读数值M1,X 方向移动主轴到工件轮廓的另一边接触,得到地二个度数M2, 在刀补测量页面输入
M=M2-M1;
(2) 在Z 方向一边用铣刀与工件轮廓接触,得出一个读数值N1,Z 方向移动主轴到工件轮廓的另一边接触,得到地二个度数N2, 在刀补测量页面输入N=MN2-N1;
(3) 铣床对刀完成!》
一、对刀
对刀的目的是通过刀具或对刀工具确定工件坐标系与机床坐标系之间的空间位置关系,并将对刀数据输入到相应的存储位置。
它是数控加工中最重要的操作内容,其准确性将直接影响零件的加工精度。
对刀操作分为X 、Y 向对刀和Z 向对刀。
1、对刀方法根据现有条件和加工精度要求选择对刀方法,可采用试切法、寻边器对刀、机内对刀仪对刀、自动对刀等。
其中试切法对刀精度较低,加工中常用寻边器和Z 向设定器对刀,效率高,能保证对刀精度。
2、对刀工具
(1 )寻边器
寻边器主要用于确定工件坐标系原点在机床坐标系中的X 、Y 值,也可以测量工件的简单尺寸。
寻边器有偏心式和光电式等类型,其中以光电式较为常用。
光电式寻边器的测头一般为10mm 的钢球,用弹簧拉紧在光电式寻边器的测杆上,碰到工件时可以退让,并将电路导通,发出光讯号,通过光电式寻边器的指示和机床坐标位置即可得到被测表面的坐标位置,具体使用方法见下述对刀实例。
(2 )Z 轴设定器
Z 轴设定器主要用于确定工件坐标系原点在机床坐标系的Z 轴坐标,或者说是确定刀具在机床坐标系中的高度。
Z 轴设定器有光电式和指针式等类型,通过光电指示或指针判断刀具与对刀器是否接触,对刀精度一般可达0.005mm 。
Z轴设定器带有磁性表座,可以牢固地附着在工件或夹具上,
其高度一般为50mm 或100mm, 如图4-11 所示。
3、对刀实例
零件,采用寻边器对刀,其详细步骤如下:
(1 )X 、Y 向对刀
①将工件通过夹具装在机床工作台上,装夹时,工件的四个侧面都应留出寻边器的测量位置。
②快速移动工作台和主轴,让寻边器测头靠近工件的左侧;
③改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时
机床坐标系中的X 坐标值,如-310.300 ;
④抬起寻边器至工件上表面之上,快速移动工作台和主轴,让测头靠近工件右侧;
⑤改用微调操作,让测头慢慢接触到工件左侧,直到寻边器发光,记下此时机械坐标系中的X 坐标值,如-200.300 ;
⑥若测头直径为10mm ,则工件长度为-200.300-(-310.300 )-
10=100 ,据此可得工件坐标系原点W 在机床坐标系中的X 坐标值为-310.300+100/2+5= -255.300 ;
⑦同理可测得工件坐标系原点W 在机械坐标系中的Y 坐标值。
(2 )Z 向对刀
①卸下寻边器,将加工所用刀具装上主轴;
②将Z 轴设定器(或固定高度的对刀块,以下同)放置在工件上平面上;
③快速移动主轴,让刀具端面靠近Z轴设定器上表面;
④改用微调操作,让刀具端面慢慢接触到Z轴设定器上表面,直到其指针
指示到零位;
⑤记下此时机床坐标系中的Z 值,如-250.800 ;
⑥若Z 轴设定器的高度为50mm ,则工件坐标系原点W 在机械坐标系中的Z 坐标值为-250.800-50- (30-20 )=-310.800 。
(3 )将测得的X 、Y 、Z 值输入到机床工件坐标系存储地址中(一般使用G54-G59 代码存储对刀参数)。
4、注意事项
在对刀操作过程中需注意以下问题:
(1 )根据加工要求采用正确的对刀工具,控制对刀误差;
(2 )在对刀过程中,可通过改变微调进给量来提高对刀精度;
(3 )对刀时需小心谨慎操作,尤其要注意移动方向,避免发生碰撞危险;
(4 )对刀数据一定要存入与程序对应的存储地址,防止因调用错误而产生严重后果。
二、刀具补偿值的输入和修改
根据刀具的实际尺寸和位置,将刀具半径补偿值和刀具长度补偿值输入到与程序对应的存储位置。
需注意的是,补偿的数据正确性、符号正确性及数据所在地址正确性都将威胁到加工,从而导致撞车危险或加工报废。