正弦定理习题 2月22日
- 格式:doc
- 大小:84.01 KB
- 文档页数:2
正弦定理、余弦定理练习题一、选择题1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为A.-B.C.-D.3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为A.150°B.120°C.60°D.75°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.B.5-2 C. D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是A.Rt△B.锐角△C.钝角△D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=A.10+B.10(-1)C.(+1)D.1010.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为A.52B.2C.16D.412.在△ABC中,a2=b2+c2+bc,则A等于A.60°B.45°C.120D.30°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.B.2 C.+1 D.(+1)15.已知三角形ABC 的三边a 、b 、c 成等比数列,它们的对角分别是A 、B 、C ,则sin A sin C 等于A.cos 2BB.1-cos 2BC.1+cos 2BD.1+sin 2B16.在△ABC 中,sin A >sin B 是A >B 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC 中,b Cos A =a cos B ,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形 18.△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC 中,A =60°,b =1,这个三角形的面积为,则△ABC 外接圆的直径为 A. B. C. D.20.在△ABC 中,,则k 为A.2RB.RC.4RD.(R 为△ABC 外接圆半径)二、填空题1.在△ABC 中,A =60°,C =45°,b =2,则此三角形的最小边长为 .2.在△ABC 中,= . 3.在△ABC 中,a ∶b ∶c =(+1)∶∶2,则△ABC 的最小角的度数为 . 4.在△ABC 中,已知sin A ∶sin B ∶sin C =6∶5∶4,则sec A = . 5.△ABC 中,,则三角形为 _________.6.在△ABC 中,角A 、B 均为锐角且cos A >sin B ,则△ABC 是 ___________.7.在△ABC 中,若此三角形有一解,则a 、b 、A 满足的条件为 ____________________.8.已知在△ABC 中,a =10,b =5,A =45°,则B = .9.已知△ABC 中,a =181,b =209,A =121°14′,此三角形 解.10.在△ABC 中,a =1,b =1,C =120°则c = .11.在△ABC 中,若a 2>b 2+c 2,则△ABC 为;若a 2=b 2+c 2,则△ABC 为 ;若a 2<b 2+c 2且b 2<a 2+c 2且c 2<a 2+b 2,则△ABC 为 .12.在△ABC 中,sin A =2cos B sin C ,则三角形为 _____________. 13.在△ABC 中,BC =3,AB =2,且,A = .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题二、1 A2A3C4 B5 C6D7A8 D9B.10 B11 B12C13C14C15.B16. C17:C18A19C20. A二、1. 2(-1)23. 45°4. 85.等腰三角形6.:钝角三角形7. a=b sin A或b<a8. 60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13. 120°14.或215. 36-1216.<x<17.a18. 2、3、4三、1.a=B=105°.b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶47.a=6,b=5,c=48.当θ=时,S四边形OACB最大,最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.13.B1=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°.22.等腰三角形或直角三角形23.24.(1)k=1,2,3(2)C=45°,B=15°。
正弦定理习题姓名_______班级______一、选择题1. 设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,若a =3,b =√3,A =π3,则B =( ) A. π6 B. 5π6 C. π6或5π6 D. 2π32. 在△ABC 中,若∠A =60°,∠B =45°,BC =3√2,则AC =( ) A. 4√3 B. 2√3 C. √3 D. √323. 在△ABC 中,已知a =√3,b =√2,B =45°,则角A 的值为( )A. 60°或120°B. 120°C. 60°D. 30°或150°4. 已知△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c ,若c =2bcosA ,则此三角形必是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形5. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosC =2√23,bcosA +acosB =2,则△ABC 的外接圆的面积为( )A. 4πB. 8πC. 9πD. 36π 二、填空题6. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C =60°,b =√6,c =3,则A =______.7. 设ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c.若a =√3,sin B =12,C =π6,则b =_________.答案和解析1.【答案】A【解析】【分析】本题考查正弦定理,大边对大角,特殊角的三角函数值在解三角形中的应用,属于基础题.由已知及正弦定理可求sinB=bsinAa =12,利用大边对大角可求B为锐角,利用特殊角的三角函数值即可得解B的值.【解答】解:∵a=3,b=√3,A=π3,∴由正弦定理可得:sinB=bsinAa =√3×√323=12,∵a>b,∴B为锐角,B=π6.故选A.2.【答案】B【解析】【分析】本题主要考查正弦定理在解三角形中的应用,属于基础题.结合已知,根据正弦定理,BCsinA =ACsinB可求AC.【解答】解:根据正弦定理,BCsinA =ACsinB,则AC=BC⋅sinBsinA =3√2×√22√32=2√3,故选:B.3.【答案】A【解析】【分析】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.由B的度数求出sin B的值,再由a与b的值,利用正弦定理求出sin A的值,根据a大于b,得到A大于B,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵a=√3,b=√2,B=45°,∴由正弦定理asinA =bsinB,得:sinA=asinBb =√3×√222=√32,∵b<a,∴B<A,即45°<A<180°,∴A=60°或120°.故选:A.4.【答案】B【解析】【分析】本题考查三角形形状的判断,考查正弦定理的运用以及两角和与差的三角函数公式等内容,考查运算能力,属于基础题.利用正弦定理、两角和与差的三角函数公式化简即可判断.【解答】解:∵c=2bcosA,由正弦定理,可得:,即,,∴sinAcosB−sinBcosA=0,即,∵A、B是△ABC的内角,∴A=B,故△ABC是等腰三角形,故选B.5.【答案】C【解析】【解答】解:∵bcosA+acosB=2,∴由余弦定理可得:b×b2+c2−a22bc +a×a2+c2−b22ac=2,整理解得:c=2,又∵cosC=2√23,可得:sinC=√1−cos2C=13,∴设三角形的外接圆的半径为R,则2R=c sinC=213=6,可得:R=3,∴△ABC的外接圆的面积S=πR2=9π.故选C.【分析】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由余弦定理化简已知等式可求c的值,利用同角三角函数基本关系式可求sin C的值,进而利用正弦定理可求三角形的外接圆的半径R的值,利用圆的面积公式即可计算得解.6.【答案】75°【解析】【分析】本题考查了三角形的内角和以及正弦定理,属于基础题.根据正弦定理和三角形的内角和计算即可.【解答】解:根据正弦定理可得bsinB =csinC,C=60°,b=√6,c=3,∴sinB=√6×√3 23=√22,∵b<c,∴B=45°,∴A=180°−B−C=180°−45°−60°=75°,故答案为75°.7.【答案】1【解析】【分析】本题考查了正弦定理、三角形的内角和定理,熟练掌握定理是解本题的关键. 由sinB =12,可得B =π6或B =5π6,结合a =√3,C =π6及正弦定理可求b . 【解答】解:∵sinB =12,∴B =π6或B =5π6, 当B =π6时,a =√3,C =π6,A =2π3, 由正弦定理可得,√3sin 2π3=b12,则b =1;当B =5π6时,C =π6,与三角形的内角和为π矛盾. 故答案为:1.。
正弦定理练习题(含答案)正弦定理 复习1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.14解析:选A.C =180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1. 6.在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2. 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32 B.34C.32或 3D.34或32解析:选D.AB sin C =AC sin B ,求出sin C =32,∵AB >AC , ∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积. 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2C. 3D. 2解析:选D.由正弦定理得6sin120°=2sin C, ∴sin C =12. 又∵C 为锐角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =c sin C , 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.答案:8 312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B ,代入式子a =2b cos C ,得2R sin A =2·2R ·sin B ·cos C ,所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C ,化简,整理,得sin(B -C )=0.∵0°<B <180°,0°<C <180°,∴-180°<B -C <180°,∴B -C =0°,B =C .答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C=________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C=________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2, 又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin C sin A -2sin B +sin C=2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:依题意,sin C =223,S △ABC =12ab sin C =43, 解得b =2 3.答案:2 316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,所以∠A =180°-(30°+105°)=45°,由正弦定理得AC =BC ·sin ∠ABC sin A=20sin30°sin45°=102(km). 即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12, 又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A 2,得 sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去), A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =c sin C,得 b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A=35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010, ∴cos B =1-sin 2B =31010. 又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22. 又0<A +B <π,∴A +B =π4. (2)由(1)知,C =3π4,∴sin C =22. 由正弦定理:a sin A =b sin B =c sin C得 5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1.∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C , ∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C . 当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =b sin B,∴b =215. 当∠C =150°时,∠B =150°(舍去).故边b 的长为215.。
正弦定理综合练习题1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.26 2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( )A.4 2 B.4 3 C.4 6 D.32 33.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于( ) A.1∶5∶6B.6∶5∶1 C.6∶1∶5 D.不确定解析:选A.由正弦定理知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=( )A.1 B.12C.2 D.146.在△ABC中,若cos Acos B=ba,则△ABC是( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积为( )A.32B.34C.32或 3 D.34或328.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a 等于( )A. 6 B.2 C. 3 D.29.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.10.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.11.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________. 12.在△ABC中,a=2b cos C,则△ABC的形状为________.13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csin A+sin B+sin C=________,c=________.14.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.15.在△ABC中,已知a=32,cos C=13,S△ABC=43,则b=________.16.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时后船到达C点,观测灯塔A的方位角是65°,则货轮到达C点时,及灯塔A的距离是多少?18.在△ABC中,a、b、c分别为角A、B、C的对边,若a=23,sin C2cosC2=14,sin B sinC=cos2A 2,求A、B及b、c.19.在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=3 5,sin B=10 10(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.余弦定理综合练习题1.在△ABC中,如果BC=6,AB=4,cos B=13,那么AC等于( )A.6 B.2 6 C.3 6 D.462.在△ABC中,a=2,b=3-1,C=30°,则c等于( )A. 3B. 2C. 5 D.23.在△ABC中,a2=b2+c2+3bc,则∠A等于( )A.60° B.45° C.120° D.150°4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若(a2+c2-b2)tan B=3ac,则∠B的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.在△ABC中,a、b、c分别是A、B、C的对边,则a cos B+b cos A等于( ) A.a B.b C.c D.以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.由增加的长度决定7.已知锐角三角形ABC中,|AB→|=4,|AC→|=1,△ABC的面积为3,则AB→·AC→的值为( )A.2 B.-2 C.4 D.-48.在△ABC中,b=3,c=3,B=30°,则a为( )A. 3 B.2 3 C.3或2 3 D.29.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________.10.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.11.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c的值为________.12.在△ABC中,sin A∶sin B∶sin C=2∶3∶4,则cos A∶cos B∶cos C=________.13.在△ABC中,a=32,cos C=13,S△ABC=43,则b=________.14.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________.15.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c24,则角C=________.16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.17.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.18.已知△ABC的周长为2+1,且sin A+sin B=2sin C.(1)求边AB的长;(2)若△ABC的面积为16sin C,求角C的度数.19.在△ABC中,BC=5,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin(2A-π4 )的值.20.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,确定△ABC 的形状.正弦定理综合练习题答案1.在△ABC中,∠A=45°,∠B=60°,a=2,则b等于( )A. 6B. 2C. 3 D.26解析:选A.应用正弦定理得:asin A=bsin B,求得b=a sin Bsin A= 6.2.在△ABC中,已知a=8,B=60°,C=75°,则b等于( )A.4 2 B.4 3 C.4 6 D.32 3解析:选C.A=45°,由正弦定理得b=a sin Bsin A=4 6.3.在△ABC中,角A、B、C的对边分别为a、b、c,A=60°,a=43,b=42,则角B为( )A.45°或135° B.135° C.45° D.以上答案都不对解析:选C.由正弦定理asin A=bsin B得:sin B=b sin Aa=22,又∵a>b,∴B<60°,∴B=45°.4.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于( ) A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.不确定解析:选A.由正弦定理知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.5.在△ABC中,a,b,c分别是角A,B,C所对的边,若A=105°,B=45°,b=2,则c=( )A.1 B.12C.2 D.14解析:选A.C=180°-105°-45°=30°,由bsin B=csin C得c=2×sin 30°sin45°=1.6.在△ABC中,若cos Acos B=ba,则△ABC是( )A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰三角形或直角三角形解析:选D.∵ba=sin Bsin A,∴cos Acos B=sin Bsin A,sin A cos A=sin B cos B,∴sin2A=sin2B即2A=2B或2A+2B=π,即A=B,或A+B=π2.7.已知△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积为( )A.32B.34C.32或 3 D.34或32解析:选D.ABsin C=ACsin B,求出sin C=32,∵AB>AC,∴∠C有两解,即∠C=60°或120°,∴∠A=90°或30°.再由S△ABC=12AB·AC sin A可求面积.8.△ABC的内角A、B、C的对边分别为a、b、c.若c=2,b=6,B=120°,则a 等于( )A. 6 B.2 C. 3 D.2解析:选D.由正弦定理得6sin120°=2sin C,∴sin C=12.又∵C为锐角,则C=30°,∴A=30°,△ABC为等腰三角形,a=c= 2.9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.解析:由正弦定理得:asin A=csin C,所以sin A=a·sin Cc=12.又∵a<c,∴A<C=π3,∴A=π6. 答案:π610.在△ABC中,已知a=433,b=4,A=30°,则sin B=________.解析:由正弦定理得asin A=bsin B⇒sin B=b sin Aa=4×12433=32.答案:3211.在△ABC中,已知∠A=30°,∠B=120°,b=12,则a+c=________.解析:C=180°-120°-30°=30°,∴a=c,由asin A=bsin B得,a=12×sin30°sin120°=43,∴a+c=8 3.答案:8312.在△ABC中,a=2b cos C,则△ABC的形状为________.解析:由正弦定理,得a=2R·sin A,b=2R·sin B,代入式子a=2b cos C,得2R sin A =2·2R·sin B·cos C,所以sin A=2sin B·cos C,即sin B·cos C+cos B·sin C=2sin B·cos C,化简,整理,得sin(B-C)=0.∵0°<B<180°,0°<C<180°,∴-180°<B-C<180°,∴B-C=0°,B =C.答案:等腰三角形13.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csin A+sin B+sin C=________,c=________.解析:由正弦定理得a+b+csin A+sin B+sin C=asin A=63sin60°=12,又S△ABC=12bc sin A,∴12×12×sin60°×c=183,∴c=6. 答案:12 614.已知△ABC中,∠A∶∠B∶∠C=1∶2∶3,a=1,则a-2b+csin A-2sin B+sin C=________.解析:由∠A∶∠B∶∠C=1∶2∶3得,∠A=30°,∠B=60°,∠C=90°,∴2R=asin A =1sin30°=2,又∵a=2R sin A,b=2R sin B,c=2R sin C,∴a-2b+csin A-2sin B+sin C=2R sin A-2sin B+sin Csin A-2sin B+sin C=2R=2.答案:215.在△ABC中,已知a=32,cos C=13,S△ABC=43,则b=________.解析:依题意,sin C=223,S△ABC=12ab sin C=43,解得b=2 3.答案:2316.在△ABC中,b=43,C=30°,c=2,则此三角形有________组解.解析:∵b sin C=43×12=23且c=2,∴c<b sin C,∴此三角形无解.答案:017.如图所示,货轮在海上以40 km/h的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时后船到达C点,观测灯塔A的方位角是65°,则货轮到达C点时,及灯塔A的距离是多少?解:在△ABC中,BC=40×12=20,∠ABC=140°-110°=30°,∠ACB=(180°-140°)+65°=105°,所以∠A=180°-(30°+105°)=45°,由正弦定理得AC=BC·sin∠ABCsin A=20sin30°sin45°=102(km).即货轮到达C点时,及灯塔A的距离是10 2 km.18.在△ABC中,a、b、c分别为角A、B、C的对边,若a=23,sin C2cosC2=14,sin B sinC=cos2A2,求A、B及b、c.解:由sin C2cosC2=14,得sin C=12,又C∈(0,π),所以C=π6或C=5π6.由sin B sin C=cos2A2,得sin B sin C=12[1-cos(B+C)],即2sin B sin C=1-cos(B+C),即2sin B sin C+cos(B+C)=1,变形得cos B cos C+sin B sin C=1,即cos(B-C)=1,所以B=C=π6,B=C=5π6(舍去),A=π-(B+C)=2π3.由正弦定理asin A=bsin B=csin C,得b=c=asin Bsin A=23×1232=2.故A=2π3,B=π6,b=c=2.19.在△ABC中,A、B为锐角,角A、B、C所对应的边分别为a、b、c,且cos 2A=35,sin B=1010.(1)求A+B的值;(2)若a-b=2-1,求a,b,c的值.解:(1)∵A、B为锐角,sin B=1010,∴cos B=1-sin2B=31010.又cos 2A=1-2sin2A=35,∴sin A=55,cos A=255,∴cos(A+B)=cos A cos B-sin A sin B=255×31010-55×1010=22.又0<A+B<π,∴A+B=π4 .(2)由(1)知,C=3π4,∴sin C=22.由正弦定理:asin A=bsin B=csin C得5a=10b=2c,即a=2b,c=5b.∵a-b=2-1,∴2b-b=2-1,∴b=1.∴a=2,c= 5.20.△ABC中,ab=603,sin B=sin C,△ABC的面积为153,求边b的长.解:由S=12ab sin C得,153=12×603×sin C,∴sin C=12,∴∠C=30°或150°.又sin B=sin C,故∠B=∠C.当∠C=30°时,∠B=30°,∠A=120°.又∵ab=603,asin A=bsin B,∴b=215.当∠C=150°时,∠B=150°(舍去).故边b的长为215.余弦定理综合练习题答案1.在△ABC中,如果BC=6,AB=4,cos B=13,那么AC等于( )A.6 B.2 6 C.3 6 D.46解析:选A.由余弦定理,得AC=AB2+BC2-2AB·BC cos B=42+62-2×4×6×13=6.2.在△ABC中,a=2,b=3-1,C=30°,则c等于( ) A. 3 B. 2 C. 5 D.2解析:选B.由余弦定理,得c2=a2+b2-2ab cos C=22+(3-1)2-2×2×(3-1)cos30°=2,∴c= 2. 3.在△ABC中,a2=b2+c2+3bc,则∠A等于( ) A.60° B.45° C.120° D.150°解析:选D.cos∠A=b2+c2-a22bc=-3bc2bc=-32,∵0°<∠A<180°,∴∠A=150°.4.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若(a2+c2-b2)tan B=3 ac,则∠B的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a2+c2-b2)tan B=3ac,联想到余弦定理,代入得cos B=a2+c2-b22ac=32·1tan B=32·cos Bsin B.显然∠B≠π2,∴s in B=32.∴∠B=π3或2π3.5.在△ABC中,a、b、c分别是A、B、C的对边,则a cos B+b cos A等于( ) A.a B.b C.c D.以上均不对解析:选C.a·a2+c2-b22ac+b·b2+c2-a22bc=2c22c=c.6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A.锐角三角形 B.直角三角形 C.钝角三角形D.由增加的长度决定解析:选A.设三边长分别为a,b,c且a2+b2=c2.设增加的长度为m,则c+m>a+m,c+m>b+m,又(a+m)2+(b+m)2=a2+b2+2(a+b)m+2m2>c2+2cm+m2=(c+m)2,∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC中,|AB→|=4,|AC→|=1,△ABC的面积为3,则AB→·AC→的值为( )A.2 B.-2 C.4 D.-4解析:选 A.S△ABC=3=12|AB→|·|AC→|·sin A=12×4×1×sin A,∴sin A=32,又∵△ABC为锐角三角形,∴cos A=12,∴AB→·AC→=4×1×12=2.8.在△ABC中,b=3,c=3,B=30°,则a为( )A. 3 B.2 3 C.3或2 3 D.2解析:选C.在△ABC中,由余弦定理得b2=a2+c2-2ac cos B,即3=a2+9-33a,∴a2-33a+6=0,解得a=3或2 3.9.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD 的长为________.解析:∵2B=A+C,A+B+C=π,∴B=π3 .在△ABD中,AD=AB2+BD2-2AB·BD cos B=1+4-2×1×2×12= 3.答案:310.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.解:∵sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,∴a∶b∶c=(3-1)∶(3+1)∶10.设a=(3-1)k,b=(3+1)k,c=10k(k>0),∴c边最长,即角C最大.由余弦定理,得cos C=a2+b2-c22ab=-12,又C∈(0°,180°),∴C=120°.11.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c的值为________.解析:S=12ab sin C,sin C=32,∴C=60°或120°.∴cos C=±12,又∵c2=a2+b2-2ab cos C,∴c2=21或61,∴c=21或61.答案:21或6112.在△ABC中,sin A∶sin B∶sin C=2∶3∶4,则cos A∶cos B∶cos C=________.解析:由正弦定理a∶b∶c=sin A∶sin B∶sin C=2∶3∶4,设a=2k(k>0),则b=3k,c=4k,cos B=a2+c2-b22ac=2k2+4k2-3k22×2k×4k=1116,同理可得:cos A=78,cos C=-14,∴cos A∶cos B∶cos C=14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC中,a=32,cos C=13,S△ABC=43,则b=________.解析:∵cos C=13,∴sin C=223.又S△ABC=12ab sin C=43,即12·b·32·223=43,∴b=2 3.答案:2314.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________.解析:在△ABC中,cos B=AB2+BC2-AC22AB·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-19 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎨⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数. 解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13, 由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =AC +BC 2-2AC ·BC -AB 22AC ·BC =12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC中,由正弦定理ABsin C=BCsin A,得AB=sin Csin ABC=2BC=2 5.(2)在△ABC中,根据余弦定理,得cos A=AB2+AC2-BC22AB·AC=255,于是sin A=1-cos2A=55.从而sin 2A=2sin A cos A=45,cos 2A=cos2A-sin2A=35.所以sin(2A-π4)=sin 2A cosπ4-cos 2A sinπ4=210.20.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,确定△ABC 的形状.解:由正弦定理,得sin Csin B=cb.由2cos A sin B=sin C,有cos A=sin C2sin B=c2b.又根据余弦定理,得cos A=b2+c2-a22bc,所以c2b=b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c,因此△ABC为等边三角形.。
正弦定理练习题及答案解析Updated by Jack on December 25,2020 at 10:00 am1.在△ABC 中,A =60°,a =43,b =42,则( )A .B =45°或135° B .B =135°C .B =45°D .以上答案都不对解析:选 B =22,∵a >b ,∴B =45°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理6sin 120°=2sin C sin C =12,于是C =30°A =30°a =c = 2.3.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =__________.解析:在△ABC 中,若tan A =13,C =150°,∴A 为锐角,sin A =110,BC =1, 则根据正弦定理知AB =BC ·sin C sin A =102. 答案:1024.已知△ABC 中,AD 是∠BAC 的平分线,交对边BC 于D ,求证:BD DC =AB AC .证明:如图所示,设∠ADB =θ,则∠ADC =π-θ.在△ABD 中,由正弦定理得: BD sin A 2=AB sin θ,即BD AB =sin A 2sin θ;①在△ACD 中,CD sin A 2=AC sinπ-θ, ∴CD AC =sin A 2sin θ.②由①②得BD AB =CD AC ,∴BD DC =AB AC .一、选择题1.在△ABC 中,a =5,b =3,C =120°,则sin A ∶sin B 的值是( )解析:选A.根据正弦定理得sin A sin B =a b =53.2.在△ABC 中,若sin A a =cos C c ,则C 的值为( )A .30°B .45°C .60°D .90°解析:选B.∵sin A a =cos C c ,∴sin A cos C =a c ,又由正弦定理a c =sin A sin C .∴cos C =sin C ,即C =45°,故选B.3.(2010年高考湖北卷)在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223C .-63解析:选D.由正弦定理得15sin 60°=10sin B , ∴sin B =10·sin 60°15=10×3215=33.∵a >b ,A =60°,∴B 为锐角.∴cos B =1-sin 2B =1-332=63.4.在△ABC 中,a =b sin A ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:选B.由题意有a sin A =b =b sin B ,则sin B =1,即角B 为直角,故△ABC 是直角三角形.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c =( )A .1B .2 -1解析:选B.由正弦定理a sin A =b sin B ,可得3sin π3=1sin B ,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°.故C =90°,由勾股定理得c =2.6.(2011年天津质检)在△ABC 中,如果A =60°,c =4,a =4,则此三角形有( )A .两解B .一解C .无解D .无穷多解解析:选B.因c sin A =23<4,且a =c ,故有唯一解.二、填空题7.在△ABC 中,已知BC =5,sin C =2sin A ,则AB =________.解析:AB =sin C sin A BC =2BC =2 5.答案:2 58.在△ABC 中,B =30°,C =120°,则a ∶b ∶c =________.解析:A =180°-30°-120°=30°,由正弦定理得:a ∶b ∶c =sin A ∶sin B ∶sin C =1∶1∶ 3.答案:1∶1∶ 39.(2010年高考北京卷)在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析:由正弦定理,有3sin 2π3=1sin B , ∴sin B =12.∵∠C 为钝角,∴∠B 必为锐角,∴∠B =π6,∴∠A =π6.∴a =b =1.答案:1三、解答题10.在△ABC 中,已知sin A ∶sin B ∶sin C =4∶5∶6,且a +b +c =30,求a .解:∵sin A ∶sin B ∶sin C =a 2R ∶b 2R ∶c 2R =a ∶b ∶c ,∴a ∶b ∶c =4∶5∶6.∴a =30×415=8.11.在△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c .已知a =5,b =2,B =120°,解此三角形.解:法一:根据正弦定理a sin A =b sin B ,得sin A =a sin B b =5×322=534>1.所以A不存在,即此三角形无解.法二:因为a =5,b =2,B =120°,所以A >B =120°.所以A +B >240°,这与A +B +C =180°矛盾.所以此三角形无解.法三:因为a =5,b =2,B =120°,所以a sin B =5sin 120°=532,所以b <a sin B .又因为若三角形存在,则b sin A =a sin B ,得b >a sin B ,所以此三角形无解.12.在△ABC 中,a cos(π2-A )=b cos(π2-B ),判断△ABC 的形状. 解:法一:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b 2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. 法二:∵a cos(π2-A )=b cos(π2-B ),∴a sin A =b sin B .由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B ,∴A =B .(A +B =π不合题意舍去)故△ABC 为等腰三角形.。
正弦定理练习(参考答案)一、选择题. 1. C 【解析】21bc sin A = 163,∴ sin A =21,A = 30° ,或 150° . 2. D 【解析】b a =3sin 2A ,∴ 3sin 2sin sin A B A =,∴ sin B =23,∴ B =3π,或32π. 3. C 【解析】 ①sin (A + B )+ sin C = 2sin C ,不一定为常数. ②cos (B + C )+ cos A = - cos A + cos A = 0,③tan ⎪⎪⎭⎫ ⎝⎛+2B A tan 2C = tan ⎪⎭⎫ ⎝⎛-︒290C tan 2C = cot 2C tan 2C = 1. ∴ ②和③为常数.4. C 【解析】 A = B ⇒sin A = sin B ,若sin A = sin B ,又∵ A + B <π,∴ A = B.5. C 【解析】 原式可化为 a 2+ ab + b 2- c 2= 0,∴ cos C =ab c b a 2222-+= -21,∴ C =120°.6. C 【解析】 ①∵ b sin A = 10×sin 30° = 5,且4<5,∴ △ABC 不存在. ②∵ b sin A = 10×sin 30° = 5,且5<6<10,∴ △ABC 有两解. 错误!未找到引用源。
∵ ∠A = 150° 且a <b , ∴ △ABC 不存在. ④∵ ∠A = 150° 且a >b ,∴ △ABC 有一解.⑤ 由已知,得∠C = 105°,当⎪⎩⎪⎨⎧b c a c >,>时,各边有正数解,∴ △ABC 有一解,∴ ④⑤符合题条件.7. B 【解析】 sin (A + B )sin (A - B )= sin 2 C ,∴ sin C sin (A - B )= sin 2 C . ∵ C ∈(0,π),∴ sin (A - B )= sin C = sin (A + B ). ∴ sin A cos B - cos A sin B = sin A cos B+ cos A sin B , ∴ cos A sin B = 0,∴ A =2π,∴ △ABC 为直角三角形.8. A 【解析】 ∵ 2b = a + c ,∴ 4b 2= a 2+ c 2+ 2ac ,∴ cos B =ac b c a 2222-+= 1 +acb 232.∴ 2b = a + c ≥2ac ,∴ ac ≤b 2,∴ cos B ≥23- 1=21,∴ B ∈ ⎝⎛⎥⎦⎤3π 0,.9. A 【解析】 cos A cos B = cos (120º- B )cos B =(-21cos B +23sin B )cos B= -41(1 + cos 2B )+43sin 2B =21sin (2B - 30º)-41,∵ B ∈(0º,120º),∴ -30°<2B - 30°<210°,∴ 由图象知cos A cos B ∈⎥⎦⎤⎢⎣⎡-41 21,.10. C 【解析】 由题知21ab sin C =41(a 2 + b 2 - c 2),∴ sin C =ab c b a 2222-+= cos C ,∴ C =4π.二、填空题. 1. -41.【解析】 因为sin A : sin B : sin C = a : b : c = 2 : 3 : 4,所以设 a = 2k ,b = 3k ,c = 4k . cos C =ab c b a 2222-+=3221694⨯⨯-+= -41.2. 等腰.【解析】 ∵ sin A = sin (B + C )= 2sin C cos B ,∴ sin B cos C + cos B sin C = 2 sin C cos B , ∴tan B = tan C ,∵ B ,C ∈(0,π),∴ B = C ,即为等腰三角形.3. 46;26.【解析】 ∵ cos α =542495422⨯⨯-+= -51,∴ sin α =526,∴ S =21×4×5×526= 46.∵ 642)754(=⨯++r ,∴ 26=r . 4.21.【解析】 ∵ C + A = 2B ,∴ B =3π。
正弦定理训练测试题(含答案)正弦定理⼀、单选题(共15题;共30分)1.(2020⾼⼀下·⼤庆期末)已知的三个内⾓的对边分别为,且满⾜,则等于()A. B. C. D.2.(2020⾼⼀下·六安期末)设的内⾓所对的边分别为,若,则的形状为()A. 锐⾓三⾓形B. 直⾓三⾓形C. 钝⾓三⾓形D. 等腰三⾓形3.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆⾯积为()A. B. π C. 2π D. 4π4.在中,⾓A,B,C所对的边分别为a,b,c,已知,,为使此三⾓形有两个,则a满⾜的条件是()A. B. C. D.5.(2020⾼⼀下·抚顺期末)在△ABC中,⾓A,B,C的对边分别为a,b,c,若c=2,b=2 ,C=30°,则B等于()A. 30°B. 60°C. 30°或60°D. 60°或120°6.(2020⾼⼀下·南昌期末)在中,,,,则()A. B. C. D.7.(2020⾼⼀下·牡丹江期末)已知的内⾓的对边分别为,若,则等于()A. B. C. D.8.(2020⾼⼀下·哈尔滨期末)在中,,那么()A. B. C. 或 D.9.(2020⾼⼀下·台州期末)在中,⾓A,B,C所对的边分别为a,b,c,若,,,则()A. B. C. 2 D.10.(2020⾼⼀下·⾦华⽉考)在△ABC中,⾓A,B,C所对的边分别是a,b,c,若,则b=()A. B. C. D.11.(2020·南昌模拟)已知中⾓所对的边分别为,若,则⾓A等于( )A. B. C. D.12.(2020·漯河模拟)设锐⾓的三内⾓A,B,C所对边的边长分别为a,b,c,且,,则a的取值范围为( )A. B. C. D.13.(2020⾼⼀下·太原期中)在锐⾓三⾓形中,已知,则的范围是( )A. B. C. D.14.(2020⾼⼀下·怀仁期中)在△ABC中,,则三⾓形解的情况是()A. ⼀解B. 两解C. ⼀解或两解D. ⽆解15.(2020⾼⼀下·沈阳期中)的内⾓的对边分别为,且, ,,则⾓C=( )A. B. C. 或 D. 或⼆、填空题(共4题;共5分)16.(2020⾼⼆下·嘉兴期末)已知中,,是的中点,且,则________.17.(2020⾼⼀下·哈尔滨期末)已知中,,则⾓A等于________.18.(2020⾼⼀下·温州期末)在中,,,点M在上,且,则________,________.19.(2020⾼⼀下·六安期末)在中,⾓所对的边分别是,若,则⾓C的⼤⼩为________.三、解答题(共5题;共35分)20.(2020⾼⼀下·深圳⽉考)在中,已知,,,求的值.21.(2019⾼三上·杭州期中)在中,a,b,c分别为⾓A,B,C所对边的长,且.(Ⅰ)求⾓B的值;(Ⅱ)若,求的⾯积.22.(2019⾼⼆上·榆林⽉考)在中,,,分别是⾓,,的对边,且,,.求:(1)的值.(2)的⾯积.23.(2019·贵州模拟)在中,内⾓的对边分别为,已知.(1)求;(2)已知,的⾯积为,求的周长.24.(2018·天津)在中,内⾓A,B,C所对的边分别为a,b,c.已知.(Ⅰ)求⾓B的⼤⼩;(Ⅱ)设a=2,c=3,求b和的值.答案解析部分⼀、单选题1.【答案】D【解析】【解答】由题,根据正弦定理可得,所以,因为在中, ,所以,因为,所以,故答案为:D【分析】利⽤正弦定理化边为⾓可得,则,进⽽求解.2.【答案】B【解析】【解答】∵,由正弦定理得:,∵,∴,,故三⾓形为直⾓三⾓形,故答案为:B.【分析】根据正弦定理把已知等式中的边转化为⾓的正弦,利⽤两⾓和公式化简求得的值进⽽求得A,判断出三⾓形的形状.3.【答案】B【解析】【解答】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.故答案为:B.【分析】根据正弦定理可得2R=,解得R=1,故△ABC的外接圆⾯积S=πR2=π.4.【答案】C【解析】【解答】为使此三⾓形有两个,即bsinA<a<b,∴2 × <a<2 ,解得:3<a<2 ,故答案为:C.【分析】为使此三⾓形有两个,只需满⾜bsinA<a<b,即可求a范围.5.【答案】D【解析】【解答】由c=2,b=2 ,C=30°,由正弦定理可得:,,由⼤边对⼤⾓可得:,解得60°或120°.故答案为:D.【分析】由正弦定理可解得,利⽤⼤边对⼤⾓可得范围,从⽽解得A的值.6.【答案】C【解析】【解答】∵,,,∴由正弦定理,可得,∵,B为锐⾓,∴.故答案为:C【分析】由已知利⽤正弦定理可得,结合,可得B为锐⾓,可求.7.【答案】D【解析】【解答】因为,故.故答案为:D.【分析】利⽤正弦定理可求的值.8.【答案】D【解析】【解答】由正弦定理得,因为,∴,所以,从⽽.故答案为:D.【分析】由正弦定理求C,然后再得A⾓.9.【答案】B【解析】【解答】根据正弦定理可得,即,解得,故答案为:B.【分析】直接利⽤正弦定理,结合题中所给的条件即可得结果.10.【答案】D【解析】【解答】解:在中,⾓A,B,C所对的边分别是a,b,c.若,,,利⽤正弦定理:,整理得:.故答案为:D.【分析】直接利⽤正弦定理的应⽤和三⾓函数值的应⽤求出结果.11.【答案】B【解析】【解答】由及正弦定理可得,⼜,所以,解得或(舍),⼜,所以.故答案为:B【分析】由正弦定理可得,结合解⽅程组即可得到答案.12.【答案】A【解析】【解答】且为锐⾓三⾓形,,,⼜,,,,,由正弦定理得:,.故答案为:A.【分析】根据锐⾓三⾓形的特点和可确定的取值范围,进⽽求得的取值范围;利⽤正弦定理可得到,进⽽求得结果.13.【答案】C【解析】【解答】,⼜,,锐⾓三⾓形,∴,故,故.故答案为:C.【分析】根据正弦定理得到,计算,得到答案.14.【答案】D【解析】【解答】过点A作AD⊥BD.点D在∠B的⼀条边上,∵h=csinB=6 3 3=b=AC,因此此三⾓形⽆解.故答案为:D.【分析】由csinB>b,即可得出解的情况.15.【答案】B【解析】【解答】由正弦定理,,所以,⼜,则,所以,故答案为:B。
正弦定理训练题之阳早格格创做1.正在△ABC中,A=45°,B=60°,a=2,则b等于()A.6B. 2C. 3 D.26 2.正在△ABC中,已知a=8,B=60°,C=75°,则b等于()A.4 2 B.4 3 C.4 6 D.32 33.正在△ABC中,a,b,c分别是角A,B,C所对于的边,若A=105°,B=45°,b=2,则c=()A.1 B.12C.2 D.144.正在△ABC中,角A、B、C的对于边分别为a、b、c,A=60°,a=43,b=42,则角B为()A.45°或者135° B.135° C.45° D.以上问案皆分歧过失5.△ABC的内角A、B、C的对于边分别为a、b、c.若c=2,b=6,B=120°,则a等于()A.6B.2C.3D.26.正在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于()A.1∶5∶6B.6∶5∶1C.6∶1∶5 D.没有决定7.正在△ABC中,若cos Acos B=ba,则△ABC是()A.等腰三角形B.等边三角形C.曲角三角形D.等腰三角形或者曲角三角形8.正在△ABC中,角A、B、C所对于的边分别为a、b、c,若a=1,c=3,C=π3,则A=________.9.正在△ABC中,已知a=433,b=4,A=30°,则sin B=________.10.正在△ABC中,已知∠A=30°,∠B=120°,b=12,则a +c =________.11.正在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.12 . 推断谦脚下列条件的三角形个数(1)b=39,c=54,︒=120C 有________组解(2)a=20,b=11,︒=30B 有________组解(3)b=26,c=15,︒=30C 有________组解(4)a=2,b=6,︒=30A 有________组解正弦定理1.正在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .26剖析:选A.应用正弦定理得:a sin A =b sin B,供得b =a sin B sin A = 6. 2.正在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323剖析:选C.A =45°,由正弦定理得b =a sin B sin A=4 6. 3.正在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对于的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12C .2 D.14剖析:选A.C =180°-105°-45°=30°,由b sin B =c sin C得c =2×sin 30°sin45°=1. 4.正在△ABC 中,角A 、B 、C 的对于边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或者135°B .135°C .45°D .以上问案皆分歧过失a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°.5.△ABC 的内角A 、B 、C 的对于边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A.6B .2 C.3D.26sin120°=2sin C, ∴sin C =12. 又∵C 为钝角,则C =30°,∴A =30°,△ABC 为等腰三角形,a =c = 2.6.正在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .没有决定A ∶sinB ∶sinC =a ∶b ∶c =1∶5∶6.7.正在△ABC 中,若cos A cos B =b a,则△ABC 是( ) A .等腰三角形 B .等边三角形C .曲角三角形 D .等腰三角形或者曲角三角形剖析:选D.∵b a =sin B sin A ,∴cos A cos B =sin B sin A, sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或者2A +2B =π,即A =B ,或者A +B =π2. 8.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的里积为( )A.32B.34C.32或者3D.34或者32剖析:选D.AB sin C =AC sin B ,供出sin C =32,∵AB >AC , ∴∠C 有二解,即∠C =60°或者120°,∴∠A =90°或者30°.再由S △ABC =12AB ·AC sin A 可供里积. 9.正在△ABC 中,角A 、B 、C 所对于的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 剖析:由正弦定理得:a sin A =c sin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 问案:π610.正在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.剖析:由正弦定理得a sin A =b sin B⇒sin B =b sin A a =4×12433=32. 问案:3211.正在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.剖析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43, ∴a +c =8 3.问案:8312.正在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.剖析:∵B b C c sin sin =,有B sin 3430sin 2=︒,得sinB=13>∴此三角形无解. 问案:0一,二,二,无。
正 余 弦 定 理3、 已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . 4、如图,在△ABC 中,若b = 1,c23C π∠=,则a= 。
5、在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +=,则角A 的大小为 .6、在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数(2)若a =3b c +=,求b 和c 的值7、 在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.8、如图,在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .1.在△ABC 中,已知角B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,求AB ..AB2.在△ABC 中,已知cos A =35 ,sin B =513 ,求cos C 的值.3、在△ABC 中,已知2cos B sin C =sin A ,试判定△ABC 的形状.4..在△ABC 中,若sin A =sin B +sin Ccos B +cos C ,试判断△ABC 的形状.5.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,求证:a 2-b 2c 2 =sin (A -B )sin C. .6..在△ABC 中,若(a +b +c )(b +c -a )=bc ,并且sin A =2sin B cos C ,试判断△ABC 的形状. \1.解:在△ADC 中,cos C =AC 2+DC 2-AD 22AC ·DC =72+32-522×7×3 =1114 ,又0<C <180°,∴sin C =5314在△ABC 中,AC sin B =ABsin C ∴AB =sin C sin B AC =5314· 2 ·7=5622.解:∵cos A =35 <22=cos45°,0<A <π∴45°<A <90°,∴sin A =45∵sin B =513 <12 =sin30°,0<B <π ∴0°<B <30°或150°<B <180° 若B >150°,则B +A >180°与题意不符.∴0°<B <30° cos B =1213∴cos (A +B )=cos A ·cos B -sin A ·sin B =35 ·1213 -45 · 513 =1665又C =180°-(A +B ).∴cos C =cos [180°-(A +B )]=-cos (A +B )=-1665 . 3.解:在原等式两边同乘以sin A 得2cos B sin A sin C =sin 2A , 由定理得sin 2A +sin 2C -sin 2B =sin 2A , ∴sin 2C =sin 2B ∴B =C 故△ABC 是等腰三角形.4.解:∵sin A =sin B +sin C cos B +cos C,∴cos B +cos C =sin B +sin Csin A ,应用正、余弦定理得a 2+c 2-b 22ac+a 2+b 2-c 22ab =b +ca ,∴b (a 2c 2-b 2)+c (a 2-b 2c 2)=2bc (b +c ), ∴a 2(b +c )-(b +c )(b 2-2bc +c 2)=2bc (b +c ) 即a 2=b 2+c 2故△ABC 为直角三角形.5.证明:由a 2=b 2+c 2-2bc cos A . b 2=a 2+c 2-2ac cos B 两式相减得a 2-b 2=c (a cos B -b cos A ), ∴a 2-b 2c 2 =a cos B -b cos A c 2.又a c =sin A sin C ,b c =sin B sin C ,∴a 2-b 2c 2 =sin A cos B -sin B cos A sin C =sin (A -B )sin C解:由已知条件(a +b +c )(b +c -a )=bc 及余弦定理得 cos A =b 2+c 2-a 22bc =(a +b +c )(b +c -a )2(a +b +c )(b +c -a )=12∴A =60°又由已知条件sin A =2sin B cos C 得sin (B +C )=sin (B +C )+sin (B -C ) ∴sin (C -B )=0,∴B =C 于是有A =B =C =60°, 故△ABC 为等边三角形. 3、【规范解答】由A+C=2B 及180A B C ++=得60B =,由正弦定理得1sin A =得1sin 2A =,由a b <知60A B <=,所以30A =,180C A B =-- 90=,所以sin sin90 1.C ==4、【规范解答】由余弦定理得,222121cos 33a a π+-⨯⨯⨯=,即220a a +-=,解得1a =或2-(舍)。
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
正弦定理
修远中学 陈永和
1.若
sin cos cos A B C a b c
==则△ABC 为 三角形
2.△ABC 中,∠A 、∠B 的对边分别为a ,b ,且∠A=60°,4a b ==,那么满足条件的△ABC 有 个解
3.在△ABC 中,a =,b =,B =45°,则A 等于 .
4. 在△ABC 中,若c =60C =︒,a =
A = . 5. 在△ABC 中,B=1350,C=150,a=5,则此三角形的最大边长为 . 6 在锐角△ABC 中,已知2A
B =,则的a b
取值范围是 . 7.在△ABC 中,a = 14,b = 16,A = 45°则△ABC 有 个解
8.在△ABC 中,已知,2,a x b B ===60°,如果△ABC 两组解,则x 的取值范围是
9.在△ABC 中,AB 1AC =,∠A =30°,则△ABC 面积为
10.在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,则a = b = c =
11.已知△ABC 的面积为3
2,且2,b c ==,则∠A 等于
12.在△ABC 中,sin10a =°,sin50b =°,∠C =70°,那么△ABC 的面积为 .
13.在△ABC 中,若∠A:∠B:∠C=1:2:3,则::a b c =
14.在△ABC 中,若∠A=600,∠B=450,a =那么△ABC 的面积为 .
15.在△ABC 中,已知AB =A =45°,在BC 边的长分别为205的情况下,求相应角C 。
16.在ABC ∆中,BC CA CA AB AB BC ∙=∙=∙,证明ABC ∆为正三角形.
*17. 已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是 .
*18.△ABC 中,若sinA=2sinBcosC ,sin 2A=sin 2B+sin 2C ,试判断△ABC 的形状。