2018届高考数学二轮复习第一部分层级二75分的重点保分题精析精研保分专题(七)点直线平面之间的位置关系课
- 格式:ppt
- 大小:2.10 MB
- 文档页数:44
第一部分层级二 75分的重点保分题精析精研重点攻关保分专题(一) 函数的图象与性质[全国卷3年考情分析][师生共研²悟通]1.函数的三要素定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题务必遵循“定义域优先”的原则.2.分段函数若函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[典例] (1)(2016²全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC.y=2x D.y=1 x[解析] 选D 函数y=10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y=1x的定义域与值域均为(0,+∞),故选D.(2)(2017²广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (3))=( )A.43 B .23 C .-43D .-3[解析] 选A 因为f (3)=1-log 23=log 223<0,所以f (f (3))=f ⎝ ⎛⎭⎪⎫log 223=2log 223+1=2log 243=43.[即学即用²练通]1.函数y =1-x22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 解析:选D 要使函数y =1-x22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1. 2.(2017²全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞3.已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎢⎡⎭⎪⎫0,12[师生共研²悟通] 函数图象的4种变换方式(1)平移变换①水平平移:y =f (x ±a )(a >0)的图象,可由y =f (x )的图象向左(+)或向右(-)平移a 个单位而得到.②竖直平移:y =f (x )±b (b >0)的图象,可由y =f (x )的图象向上(+)或向下(-)平移b 个单位而得到.(2)对称变换①y =f (-x )与y =f (x )的图象关于y 轴对称; ②y =-f (x )与y =f (x )的图象关于x 轴对称; ③y =-f (-x )与y =f (x )的图象关于原点对称. (3)伸缩变换①y =af (x )(a >0)的图象,可由y =f (x )的图象上所有点的纵坐标变为原来的a 倍,横坐标不变而得到;②y =f (ax )(a >0)的图象,可由y =f (x )的图象上所有点的横坐标变为原来的1a,纵坐标不变而得到.(4)翻折变换①作出y =f (x )的图象,将图象位于x 轴下方的部分翻折到x 轴上方,其余部分不变,即得到y =|f (x )|的图象;②作出y =f (x )在y 轴上及y 轴右边的图象,并作y 轴右边的图象关于y 轴对称的图象,即得到y =f (|x |)的图象.[典例] (1)(2017²全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )[解析] 选D 法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.(2)(2017²合肥模拟)函数f (x )=-x 2+3x +a ,g (x )=2x -x 2,若f (g (x ))≥0对x ∈[0,1]恒成立,则实数a 的取值范围是( )A .[-e ,+∞) B.[-ln 2,+∞)C .[-2,+∞) D.⎝ ⎛⎦⎥⎤-12,0 [解析] 选C 如图所示,在同一坐标系中作出y =x 2+1,y =2x,y =x 2+32的图象,由图象可知,在[0,1]上,x 2+1≤2x <x 2+32恒成立,即1≤2x -x 2<32,当且仅当x =0或x =1时等号成立,∴1≤g (x )<32,∴f (g (x ))≥0⇒f (1)≥0⇒-1+3+a ≥0⇒a ≥-2,则实数a 的取值范围是[-2,+∞).[即学即用²练通]1.(2017²惠州三调)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析:选D 函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A 、B ;当x =π时,f (π)=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.解析:函数y =|x -a |-1的图象如图所示,因为直线y =2a 与函数y =|x -a |-1的图象只有一个交点,故2a =-1,解得a =-12.答案:-12[师生共研²悟通]1.判断复合函数单调性的常用结论(1)当f (x ),g (x )同时为增(减)函数时,f (x )+g (x )为增(减)函数.(2)设f (x ),g (x )都是增(减)函数,则当两者都恒大于0时,f (x )²g (x )是增(减)函数;当两者都恒小于0时,f (x )²g (x )是减(增)函数.2.函数奇偶性的重要结论(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若奇函数f (x )定义域中含有0,则必有f (0)=0.[注意] f (0)=0是f (x )为奇函数的既不充分也不必要条件. 3.周期性的3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x,则T =2a .(a >0) [典例] (1)(2018届高三²广西三市第一次联考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则a 的取值范围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)[解析] 选B ∵f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增, ∴f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2), ∴f (2log 3a )>f (2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减, ∴0<2log 3a <2,即log 3a <12,解得0<a < 3.(2)(2017²山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.[解析] ∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153³6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. [答案] 6[即学即用²练通]1.已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1是增函数,∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |,解得13<x <1.2.(2017²天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.a<b<c B.c<b<aC.b<a<c D.b<c<a解析:选C 由f(x)为奇函数,知g(x)=xf(x)为偶函数.因为f(x)在R上单调递增,f(0)=0,所以当x>0时,f(x)>0,所以g(x)在(0,+∞)上单调递增,且g(x)>0.又a=g(-log25.1)=g(log25.1),b=g(20.8),c=g(3),20.8<2=log24<log25.1<log28=3,所以b<a<c.3.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于点(1,0)对称,且当x≥0时,恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=e x-1,则f(2 018)+f(-2 017)=( ) A.1-e B.e-1C.-1-e D.e+1解析:选A ∵y=f(x-1)的图象关于点(1,0)对称,∴y=f(x)的图象关于原点对称,∴f(-x)=-f(x),又当x≥0时,f(x+2)=f(x),∴f(2 018)+f(-2 017)=f(0)-f(1)=0-(e-1)=1-e.[创新应用] 新定义下的函数问题新定义函数问题主要包括两类:1 概念型,即基于函数概念背景的新定义问题,此类问题常以函数的三要素 定义域、对应关系、值域 作为重点,考查考生对函数概念的深入理解;2 性质型,即基于函数性质背景的新定义问题,主要涉及函数的单调性、奇偶性、周期性、有界性、对称性等性质及有关性质的延伸,旨在考查考生灵活应用函数性质的能力.[典例] (1)(2017²山东高考)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为________.①f(x)=2-x;②f(x)=3-x;③f(x)=x3;④f(x)=x2+2.[解析] 设g(x)=e x f(x),对于①,g(x)=e x²2-x,则g′(x)=(e x²2-x)′=e x²2-x(1-ln 2)>0,所以函数g(x)在(-∞,+∞)上为增函数,故①符合要求;对于②,g(x)=e x²3-x,则g′(x)=(e x²3-x)′=e x²3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ²x 3,则g ′(x )=(e x ²x 3)′=e x ²(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ²(x 2+2),则g ′(x )=[e x²(x 2+2)]′=e x ²(x 2+2x +2)=e x ²[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求. 综上,具有M 性质的函数的序号为①④. [答案] ①④(2)如果定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x ); ③y =e x+1;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的序号是________.[解析] 若函数f (x )为“H 函数”,则有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),x 1[f (x 1)-f (x 2)]>x 2[f (x 1)-f (x 2)],即(x 1-x 2)[f (x 1)-f (x 2)]>0.所以“H 函数”f (x )就是R 上的单调递增函数. ①y ′=-3x 2+1,由y ′>0,解得-33<x <33, 所以该函数的单调递增区间为⎝ ⎛⎭⎪⎫-33,33, 而在区间⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递减, 显然在R 上不是单调递增函数,即不是“H 函数”. ②y ′=3-2(cos x +sin x )=3-22sin ⎝ ⎛⎭⎪⎫x +π4.因为sin ⎝⎛⎭⎪⎫x +π4∈[-1,1],所以y ′=3-22sin ⎝⎛⎭⎪⎫x +π4≥3-22>0,故该函数在R 上是单调递增函数,即“H 函数”. ③因为函数y =e x在R 上是单调递增函数,所以y =e x+1在R 上也是单调递增函数,即“H 函数”.④由f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0,得f (x )=⎩⎪⎨⎪⎧ln x ,x >0,ln -x ,x <0,0,x =0.故该函数在(0,+∞)上单调递增,在(-∞,0)上单调递减, 所以在R 上不是单调递增函数,即不是“H 函数”. 综上,填②③. [答案] ②③[针对训练]1.已知函数f (x )=⎩⎪⎨⎪⎧2 1-x ,0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=f {f [f …f n 个(x )]},那么f 2 017(2)的值为( ) A .0 B .1 C .2D .3解析:选B ∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,∴f n (2)的值具有周期性,且周期为3,∴f 2 017(2)=f 3³672+1(2)=f 1(2)=1.2.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos(πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④解析:选B 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,因此①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,因此②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,因此③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),因此④是“1的饱和函数”. 综上可知,其中是“1的饱和函数”的所有函数的序号是②④. [专题过关检测]A 级——常考点落实练1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞) D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,即0≤x <1或x >1.∴f (x )的定义域为[0,1)∪(1,+∞).2.(2017²北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数解析:选A 因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-[ 3x -⎦⎥⎤⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.3.已知函数f (x )=2³4x-a 2x的图象关于原点对称,g (x )=ln(e x+1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12 D.14解析:选B 由题意得f (0)=0,∴a =2. ∵g (x )为偶函数,∴g (1)=g (-1),∴ln(e +1)-b =ln ⎝ ⎛⎭⎪⎫1e +1+b ,∴b =12,∴log 212=-1.4.已知函数f (x )=e|ln x |-⎪⎪⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为( )解析:选A 据已知关系式可得f (x )=⎩⎪⎨⎪⎧e-ln x+⎝⎛⎭⎪⎫x -1x =x ,0<x ≤1,eln x-⎝ ⎛⎭⎪⎫x -1x =1x,x >1,作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象,结合选项知,A 正确.5.(2017²石家庄质检)设函数f (x )=⎩⎪⎨⎪⎧2x +n ,x <1,log 2x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2,则实数n 的值为( )A .-54B .-13C.14D.52解析:选D 因为f ⎝ ⎛⎭⎪⎫34=2³34+n =32+n ,当32+n <1,即n <-12时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=2⎝ ⎛⎭⎪⎫32+n +n =2,解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫34=log 2⎝ ⎛⎭⎪⎫32+n =2,即32+n =4,解得n =52.6.已知函数f (x )满足:①定义域为R ;②∀x ∈R ,都有f (x +2)=f (x );③当x ∈[-1,1]时,f (x )=-|x |+1.则方程f (x )=12log 2|x |在区间[-3,5]内解的个数是( )A .5B .6C .7D .8解析:选A 由题意知f (x )是周期为2的函数,作出y =f (x ),y =12log 2|x |的图象如图所示,由图象可得所求解的个数为5. 7.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1, 所以0<1|x |+1≤1,所以ln 1|x |+1≤0,即f (x )=ln 1|x |+1的值域为(-∞,0].答案:(-∞,0]8.(2017²福州质检)若函数f (x )=x (x -1)(x +a )为奇函数,则a =________. 解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x (-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立, 所以x (a -1)=0对x ∈R 恒成立,所以a =1. 法二:因为函数f (x )=x (x -1)(x +a )为奇函数, 所以f (-1)=-f (1),所以-1³(-1-1)³(-1+a )=-1³(1-1)³(1+a ), 解得a =1. 答案:19.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=________. 解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x, 所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1310.(2016²江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110. 由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.答案:-25B 级——易错点清零练1.已知函数f (x )=ax 2+bx +3a +b 是定义在[a -1,2a ]上的偶函数,则y =2cos ⎣⎢⎡⎦⎥⎤ a +b x -π3的最小正周期是( ) A .6π B .5π C .4π D .2π解析:选A ∵函数f (x )=ax 2+bx +3a +b 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,解得a =13,由f (x )=f (-x ),得b =0,∴y =2cos ⎣⎢⎡⎦⎥⎤ a +b x -π3=2cos ⎝ ⎛⎭⎪⎫13x -π3,∴最小正周期T =2πω=6π.2.函数y =sin xx,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin x x,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x →π时,y =sin x x→0,故选A.3.函数f (x )=lg x 2的单调递减区间是________.解析:函数f (x )是定义域为{x |x ≠0}的偶函数.f (x )=lg x 2=⎩⎪⎨⎪⎧2lg x ,x >0,2lg -x ,x <0,可得函数f (x )的单调递减区间是(-∞,0).答案:(-∞,0)4.已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)=________.解析:∵f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10,∴f (10)-f (-100)=2-10=-8. 答案:-85.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________. 解析:∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2,又f (x )在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧-a2≤2,a 2≤0,即-4≤a ≤0,故实数a 的取值范围是[-4,0]. 答案:[-4,0]C 级——“12+4”高考练1.下列函数中,满足“∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=1x-x B .f (x )=x 3C .f (x )=ln xD .f (x )=2x解析:选A “∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)²[f (x 1)-f (x 2)]<0”等价于f (x )在(0,+∞)上为减函数,易判断f (x )=1x-x 满足条件.2.已知函数f (x )=⎩⎪⎨⎪⎧x 4+1,x >0,cos 2x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)解析:选D 由f (-x )≠f (x )知f (x )不是偶函数,当x ≤0时,f (x )不是增函数,显然f (x )也不是周期函数.当x >0时,f (x )=x 4+1>1;当x <0时,-1≤cos 2x ≤1,所以f (x )的值域为[-1,+∞).3.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12D .-1 解析:选 D 因为f (x )是周期为3的周期函数,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫-12+3=f ⎝ ⎛⎭⎪⎫-12=4³⎝ ⎛⎭⎪⎫-122-2=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln x +a ,x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a ³(-1)+b =3,ln(-1+a )=0,得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln x +2 ,x ≥-1,故f (-3)=2³(-3)+5=-1.5.(2017²石家庄质检)已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞) B.(-∞,1-ln 2) C .(1-ln 2,1) D .(1,1+ln 2)解析:选B 因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2ex -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2).6.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:选A 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x,则当x →+∞时,f (x )→+∞,排除D ,故选A.7.(2016²山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2解析:选D 由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点O 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BO 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017²贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.10.(2015²安徽高考)函数f (x )=ax +bx +c2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0解析:选C ∵f (x )=ax +bx +c2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =b c2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,故c <0,故选C.11.已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g x ,x >0,若f (2-x 2)>f (x ),则x 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:选C 因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),因为函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g x ,x >0,所以函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln 1+x ,x >0,作出函数f (x )的图象如图所示.可知f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln 1+x ,x >0在(-∞,+∞)上单调递增.因为f (2-x 2)>f (x ), 所以2-x 2>x , 解得-2<x <1.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图1所示,得到函数h (x )的图象如图2所示,由图象得函数h (x )有最小值-1,无最大值.13.(2017²张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a的值等于________.解析:∵f (1)=2>0,且f (1)+f (a )=0, ∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-314.(2018届高三²武汉调研)定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f x 1 +f x 22=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 018],则函数f (x )=log 2x 在[1,22 018]上的“均值”为________.解析:根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f x 1 +f x 2 2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1²22 018=22 018,当x 1∈[1,22 018]时,选定x 2=22 018x 1∈[1,22 018],可得M =12log 2(x 1x 2)=1 009.答案:1 00915.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中作出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017²惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎪⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为________.解析:因为f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝ ⎛⎭⎪⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,②正确; 因为f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,-34=-x +⎝ ⎛⎭⎪⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎪⎫-32+x .又f ⎝ ⎛⎭⎪⎫-32+x =-f ⎝ ⎛⎭⎪⎫-32+x +32=-f (x ),所以f (-x )=f (x ),③正确; f (x )是周期函数,在R 上不可能是单调函数,④错误.故真命题的序号为①②③. 答案:①②③保分专题(二) 基本初等函数、函数与方程[全国卷3年考情分析][师生共研²悟通] 指数与对数式的8个运算公式(1)a m²a n=am +n;(2)(a m )n =a mn ;(3)(ab )m =a m b m;(4)log a (MN )=log a M +log a N ;(5)log a MN=log a M -log a N ; (6)log a M n=n log a M ;(7)a log a N =N ;(8)log a N =log b N log b a.[注意] (1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.[典例] (1)(2017²福州质检)已知a =16ln 8,b =12ln 5,c =ln 6-ln 2,则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a[解析] 选B 因为a =16ln 8,b =12ln 5,c =ln 6-ln 2,所以a =ln 2,b =ln 5,c =ln62=ln 3.又对数函数y =ln x 在(0,+∞)上为单调递增函数,由2<3<5,得ln 2<ln 3<ln 5,所以a <c <b .(2)已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y=g(x)在同一坐标系内的大致图象是( )[解析] 选B ∵f(x)=a x-2>0恒成立,又f(4)²g(-4)<0,∴g(-4)=log a|-4|=log a4<0=log a1,∴0<a<1.故函数y=f(x)在R上单调递减,且过点(2,1),函数y=g(x)在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B正确.[即学即用²练通]1.已知函数f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( ) A.[1,81] B.[1,3]C.[1,9] D.[1,+∞)解析:选C 由f(x)的图象过点(2,1)可知b=2,∴f(x)=3x-2,其在区间[2,4]上是增函数,∴f(x)min=f(2)=30=1,f(x)max=f(4)=32=9.故f(x)的值域为[1,9].2.若函数f(x)=x a满足f(2)=4,那么函数g(x)=|log a(x+1)|的图象大致为( )解析:选C 法一:由函数f(x)=x a满足f(2)=4,得2a=4,∴a=2,则g(x)=|log a(x +1)|=|log2(x+1)|,将函数y=log2x的图象向左平移1个单位长度(纵坐标不变),然后将x轴下方的图象翻折上去,即可得g(x)的图象,故选C.法二:由函数f(x)=x a满足f(2)=4,得2a=4,∴a=2,即g(x)=|log2(x+1)|,由g (x )的定义域为{x |x >-1},排除B 、D ;由x =0时,g (x )=0,排除A.故选C.3.(2016²浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b=________.解析:∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a=1,∴log a b =12,∴a =b 2.∵a b=b a,∴(b 2)b=bb 2,即b 2b=bb 2,∴2b =b 2, ∴b =2,a =4. 答案:4 2[师生共研²悟通]1.函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.2.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )²f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典例] (1)已知f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2 018x+log 2 018x ,则函数f (x )的零点个数是( )A .1B .2C .3D .4[解析] 选C 在同一直角坐标系中作出函数y =2 018x和y =-log 2 018x 的图象如图所示,可知函数f (x )=2 018x+log 2 018x 在x ∈(0,+∞)上存在一个零点,又f (x )是定义在R 上的奇函数,∴f (x )在x ∈(-∞,0)上只有一个零点,又f (0)=0,∴函数f (x )的零点个数是3.(2)(2017²山东高考)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0, 2 ]∪[23,+∞)D .(0, 2 ]∪[3,+∞)[解析] 选B 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形:①当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意;②当m >1时,0<1m<1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去).综上所述,m ∈(0,1]∪[3,+∞).[类题通法]1.判断函数零点个数的3种方法2.利用函数零点的情况求参数值(或范围)的3种方法[即学即用²练通]1.函数f (x )=log 3x -x +2必有一个零点的区间是( )A.⎝ ⎛⎭⎪⎫19,13B.⎝ ⎛⎭⎪⎫13,59C.⎝ ⎛⎭⎪⎫59,79D.⎝ ⎛⎭⎪⎫79,1 解析:选A 因为f (x )=log 3x -x +2,所以f ⎝ ⎛⎭⎪⎫19=log 319-19+2=-2-19+2=-19<0,f ⎝ ⎛⎭⎪⎫13=log 313-13+2=-1-13+2=23>0,即f ⎝ ⎛⎭⎪⎫19²f ⎝ ⎛⎭⎪⎫13<0,所以函数f (x )=log 3x -x +2在⎝ ⎛⎭⎪⎫19,13上必有一个零点. 2.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(1,2)内单调递增,依题意有f (1)²f (2)<0,所以(-a )²(3-a )<0,所以0<a <3.3.设f 1(x )=|x -1|,f 2(x )=-x 2+6x -5,函数g (x )是这样定义的:当f 1(x )≥f 2(x )时,g (x )=f 1(x ),当f 1(x )<f 2(x )时,g (x )=f 2(x ),若方程g (x )=a 有四个不同的实数解,则实数a 的取值范围是( )A .(-∞,4)B .(0,4)C .(0,3)D .(3,4)解析:选D 作出f 1(x )=|x -1|,f 2(x )=-x 2+6x -5的图象如图,函数g (x )的图象为两函数中位置在上的部分(即图中实线部分),即g (x )=⎩⎪⎨⎪⎧-x +1,x ≤1,-x 2+6x -5,1<x ≤4,x -1,x >4,由⎩⎪⎨⎪⎧y =x -1,y =-x 2+6x -5,得A (4,3),f 2(x )=-x 2+6x -5的顶点坐标为B (3,4),要使方程g (x )=a 有四个不同的实数解,即函数g (x )的图象与函数y =a 的图象有四个不同交点,数形结合可得3<a <4,故选D.[师生共研²悟通][典例] (2017²湖北七市(州)联考)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P =P 0e-kt.如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.[解析] 前5小时污染物消除了10%,此时污染物剩下90%,即t =5时,P =0.9P 0,代入,得(e -k )5=0.9,∴e -k =0.915,∴P =P 0e -kt=P 0⎝ ⎛⎭⎪⎫0.915t .当污染物减少19%时,污染物剩下81%,此时P =0.81P 0,代入得0.81=⎝ ⎛⎭⎪⎫0.915t,解得t =10,即需要花费10小时.[答案] 10 [类题通法]应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇨建模数学语言⇨求解数学应用⇨反馈检验作答(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[即学即用²练通]1.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有某型号电脑6台,乙分公司现有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知从甲地运往A ,B 两地每台电脑的运费分别是40元和30元,从乙地运往A ,B 两地每台电脑的运费分别是80元和50元.若总运费不超过1 000元,则调运方案的种数为( )A .1B .2C .3D .4解析:选C 设甲地调运x 台电脑至B 地,则剩下(6-x )台电脑调运至A 地;乙地应调运(8-x )台电脑至B 地,运往A 地12-(8-x )=(x +4)台电脑(0≤x ≤6,x ∈N).则总运费y =30x +40(6-x )+50(8-x )+80(x +4)=20x +960,∴y =20x +960(x ∈N,0≤x ≤6).若y ≤1 000,则20x +960≤1 000,得x ≤2.又0≤x ≤6,x ∈N ,∴x =0,1,2,即有3种调运方案.2.某商场为了解商品的销售情况,对某种电器今年一至五月份的月销售量Q (x )(百台)进行统计,得数据如下:x (月份)变化关系的模拟函数是( )A .Q (x )=ax +b (a ≠0)B .Q (x )=a |x -4|+b (a ≠0)C .Q (x )=a (x -3)2+b (a ≠0) D .Q (x )=a ²b x(a ≠0,b >0且b ≠1)解析:选C 观察数据可知,当x 增大时,Q (x )的值先增大后减小,且大约是关于Q (3)对称,故月销售量Q (x )(百台)与时间x (月份)变化关系的模拟函数的图象是关于x =3对称的,显然只有选项C 满足题意,故选C.[专题过关检测]A 级——常考点落实练1.幂函数y =f (x )的图象经过点(3,3),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是减函数 D .非奇非偶函数,且在(0,+∞)上是增函数解析:选D 设幂函数f (x )=x a ,则f (3)=3a=3,解得a =12,则f (x )=x 12=x ,是非奇非偶函数,且在(0,+∞)上是增函数.2.(2017²全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).3.已知函数f (x )=a x,其中a >0且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)²f (x 2)=( )A .1B .aC .2D .a 2解析:选A ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0,又f (x )=a x,∴f (x 1)²f (x 2)=ax 1²ax 2=ax 1+x 2=a 0=1.4.某商场销售A 型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A .4B .5.5C .8.5D .10解析:选C 由题意可设定价为x 元/件,利润为y 元,则y =(x -3)[400-40(x -4)]=40(-x 2+17x -42),故当x =8.5时,y 有最大值.5.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).6.若函数f (x )与g (x )的图象关于直线y =x 对称,函数f (x )=⎝ ⎛⎭⎪⎫12-x,则f (2)+g (4)=( )A .3B .4C .5D .6解析:选D 法一:∵函数f (x )与g (x )的图象关于直线y =x 对称,又f (x )=⎝ ⎛⎭⎪⎫12-x =2x,∴g (x )=log 2x ,∴f (2)+g (4)=22+log 24=6.法二:∵f (x )=⎝ ⎛⎭⎪⎫12-x ,∴f (2)=4,即函数f (x )的图象经过点(2,4),∵函数f (x )与g (x )的图象关于直线y =x 对称,∴函数g (x )的图象经过点(4,2),∴f (2)+g (4)=4+2=6.7.(2017²云南第一次统一检测)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b .8.若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:选A 若函数y =a |x |(a >0,且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.9.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3 x 2-1 ,x ≥2,则不等式f (x )>2的解集为( )A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C 令2ex -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).10.已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3解析:选C 由于AB ―→=2BC ―→,则AC ―→=3BC ―→,则点A 的坐标为(m,3g (m )),又点A 在函数f (x )=log a x 的图象上,故log a m =3log b m ,即log a m =log b m 3,由对数运算可知b =a 3.B 级——易错点清零练1.已知函数f (x )=1log 122x +1 ,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞)D.⎝ ⎛⎭⎪⎫-12,2 解析:选C 由题意,得⎩⎪⎨⎪⎧2x +1≠1,2x +1>0,解得x >-12且x ≠0.2.已知a >1,f (x )=a x 2+2x ,则使f (x )<1成立的一个充分不必要条件是( ) A .-1<x <0 B .-2<x <1 C .-2<x <0D .0<x <1解析:选A ∵a >1,∴y =a x在R 上为增函数,故f (x )<1⇔a x 2+2x <1⇔a x 2+2x <a 0⇔x2+2x <0⇔-2<x <0,结合选项可知,使f (x )<1成立的一个充分不必要条件是-1<x <0.3.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 2(2x ),则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 2(2x )=1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.4.已知幂函数f (x )=(m -1)2x m 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x-k ,当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,则实数k 的取值范围是________.解析:∵f (x )是幂函数, ∴(m -1)2=1,解得m =2或m =0.若m =2,则f (x )=x -2,f (x )在(0,+∞)上单调递减,不满足条件; 若m =0,则f (x )=x 2,f (x )在(0,+∞)上单调递增,满足条件, 故f (x )=x 2.当x ∈[1,2)时,f (x )∈[1,4),g (x )∈[2-k,4-k ), 即A =[1,4),B =[2-k,4-k ), ∵A ∪B =A ,∴B ⊆A ,则⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,解得0≤k ≤1.答案:[0,1]C 级——“12+4”高考练1.函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( )A .(0,0)B .(0,-1)C .(-2,0)D .(-2,-1)解析:选C 令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0且a ≠1)的图象恒过点(-2,0).2.“1a>1”是“函数f (x )=(3-2a )x单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件。