精益数据体系的数据中台架构22页PPT
- 格式:ppt
- 大小:2.07 MB
- 文档页数:22
多图详解数据中台建设框架(建议收藏)大数据DT提供大数据、AI等领域干货学习资源的「宝藏号」,跟50万技术人共同成长,一起玩转大数据、Python、数据分析、数据科学、人工智能!还会有各种好玩又奇葩的数据解读,边学习边吃瓜!531篇原创内容公众号导读:近日,舞动数字·2021数字化转型系列论坛由机械工业出版社华章公司成功举办。
在数字化能力与平台构建专场中,《数据中台》的核心作者、数澜咨询及解决方案的负责人铁平老师发表了主题演讲。
铁平老师从技术、服务、数据、运营4个体系回顾了数据中台建设框架1.0,并在此基础上优化给出了数据中台建设框架2.0,同时指出数据中台是企业数字化转型的关键创新引擎。
以下为演讲全文,大数据DT经授权发布。
作者:铁平来源:大数据DT(ID:hzdashuju)今天我给大家分享一下企业数据中台的建设框架。
我叫沈金,花名是铁平,是目前数澜咨询及解决方案的负责人,是《数据中台》的核心作者之一,也在去年撰写了《数据中台咨询白皮书》。
从我个人的经历来讲,前5年做的事情更多是让数据跑起来,所以更多关注的是数据库,以及数据库相关的一些工作。
后七八年更多关注于让数据用起来,所以关注整体的数据架构,包括数据的整体解决方案。
是早期阿里集团OneID的一个核心开发者以及运营者。
01 数据中台:企业数字化转型关键创新引擎关于数据中台,我们有一个观点,就是我们始终认为数据中台是一种让企业数据快速持续用起来的机制,它绝对不是一个技术平台。
通过数据中台可以让企业拥有什么呢?•第一,让企业拥有数据价值释放的一个通道能力。
•第二,让企业具备开发整个复用、快速试错的一个交付能力。
•第三,让企业拥有数据交换、数据资产化,以及资产服务化的技术能力。
所以,数据中台是不是技术平台?其实在去年7月份,Gartner颁布了一个《2020中国ICT成熟度曲线报告》,正式建议企业的管理者把数据中台当作整个数据化转型的关键创新引擎,从而解决数字化的收入,以及实现可持续的交互的业务能力。
大数据平台架构及建设思路ppt
做出详细介绍。
一、引言
当前,由于日益复杂的业务场景,企业数据量的爆炸式增长,大数据
已成为企业生存发展的重要资源和基础。
大数据平台是以大数据服务为主
要功能的软件系统,它支撑企业信息化建设,有效实现大数据采集、存储、处理、挖掘、服务等活动。
二、大数据平台架构
1.数据收集层:该层主要负责数据的采集工作,采用抽取、转换、加
载(ETL)的技术,将数据从各类数据源中抽取、转换到数据仓库中,以便
进行后续分析处理;
2.存储层: 该层主要负责数据的持久化存储,数据存储方式有RDBMS、NoSQL存储、HDFS、Data Grid等;
3.服务层:该层有别于传统数据仓库的分析,是对批量数据进行实时
处理的一道有效的网关,用于实现应用的接入,同时又是实现传统的数据
仓库及大数据分析的桥梁。
三、大数据平台建设思路
1.认识企业数据现状:了解企业所拥有的有关数据,包括数据源、数
据格式、数据量等,以便为建设大数据平台制定适当解决方案;
2.数据收集与集成:建立企业数据仓库,集成数据源,收集数据,通
过ETL技术将数据抽取、转换、加载到数据仓库中。
通用数据中台体系架构数据中台的目标是让数据持续用起来,通过数据中台提供的工具、方法和运行机制,把数据变为一种服务能力,让数据更方便地被业务所使用。
下图为数据中台总体架构图,数据中台是在底层存储计算平台与上层的数据应用之间的一整套体系。
数据中台屏蔽掉底层存储平台的计算技术复杂性,降低对技术人才的需求,让数据的使用成本更低。
通过数据中台的数据汇聚、数据开发模块建立企业数据资产。
通过资产管理与治理、数据服务把数据资产变为数据服务能力,服务于企业业务。
数据安全体系、数据运营体系保障数据中台可以长期健康、持续运转。
一个通用的数据中台架构应该如何构建?1.数据中台总体架构图数据汇聚数据汇聚是数据中台数据接入的入口。
数据中台本身几乎不产生数据,所有数据来自于业务系统、日志、文件、网络等,这些数据分散在不同的网络环境和存储平台中,难以利用,很难产生业务价值。
数据汇聚是数据中台必须提供的核心工具,把各种异构网络、异构数据源的数据能够方便地采集到数据中台进行集中存储,为后续的加工建模做准备。
数据汇聚方式一般有数据库同步、埋点、网络爬虫、消息队列等;从汇聚的时效性来分,有离线批量汇聚和实时采集。
数据开发通过数据汇聚模块汇聚到中台的数据,没有经过什么处理,基本是按照数据的原始状态堆砌在一起的,这样业务还是很难使用。
数据开发是一整套数据加工以及加工过程管控的工具,有经验的数据开发、算法建模人员利用数据加工模块提供的功能,可以快速把数据加工成对业务有价值的形式,提供给业务使用。
数据开发模块主要是面向开发、分析人员,提供离线、实时、算法开发工具以及任务的管理、代码发布、运维、监控、告警等一些列集成工具,方便使用,提升效率。
2.数据资产体系有了数据汇聚、数据开发模块,中台已经具备传统数仓平台的基本能力,可以做数据的汇聚以及各种数据开发,就可以建立企业的数据资产体系。
之前说数据资产体系是中台的血肉,开发、管理、使用的都是数据。
大数据时代,数据量大,增长快,业务对数据的依赖也会越来越高,必须考虑数据的一致性和可复用性,垂直烟囱式的数据和数据服务的建设方式注定不能长久存在。
数据中台的通用体系架构方案从数据中台的建设、运营角度出发,对数据中台在企业数据应用中的作用进行了分析,把数据中台定位为多个数据应用的共享数据平台。
从数据应用及数据治理两个维度分析了数据中台的建设要素,提出了模块化、解耦的数据中台体系架构。
数据中台体系架构包含数据存储框架、数据采集框架、数据处理框架。
数据治理框架、数据安全框架及数据运营模块,可按照企业应用需求进行组合,可以对单个模块进行扩充,能满足大多数企业数据中台建设的需求。
内容目录:0 引言1 数据中台系统定位2 数据中台通用体系架构2.1 数据存储框架2.2 数据采集框架2.3 数据处理框架2.4 数据治理框架2.5 数据安全框架2.6 数据运营框架3 结语0、引言进入信息时代,随着数据产业的蓬勃发展,数字化建设如火如荼。
“数字中国”“互联网+”等国家战略项目已在资源、可持续发展、环境、行政办公等领域取得了良好的效果。
数据是资产、资源,但如何把数据资产、数据资源转化为社会收益和企业利润,还需要多方探索。
当前,机构和企业不再建设从源数据采集到分析应用的烟囱式系统,更倾向于数据集中采集、存储,并应用分层建设。
这种方式一方面有利于应用系统的快速部署,另一方面也保证了数据的集中管理与运营,体现数据的资产、资源属性。
数据中台的出现弥补了数据开发和应用开发之间由于开发速度不匹配而出现的响应力不足等缺陷问题。
数据中台是国内学者提出的概念,起始于阿里的“大中台、小前台”概念。
阿里的中台是从管理的角度出发,以中台事业部集中数据搜索,技术及产品,数据共享等多个部门的功能。
其他组织或企业建设数据中台不一定需要成立中台事业部,但是数据集中治理与提升数据价值转换效率的思路是一致的。
有学者提出了一种基于数据中台的数据治理系统,他认为数据中台是一种大数据架构,用来完成数据治理。
也有学者认为数据中台并非指大数据平台,数据中台完成数据治理后会形成标准数据,再对数据进行存储,进而形成大数据资产,可以为用户提供高效的优质服务。
数据中台全景架构及模块解析数据中台是企业级能力复用平台,目标是让数据持续用起来,通过数据中台提供的工具、方法和运行机制,把数据变为一种服务能力,让数据更方便地被业务所使用。
今天就来点实际干货,把企业真实数据平台架构分享给您!相信看完这篇文章,你会真正对数据中台有一个全景的认识与理解,从抽象过度到具体。
无图无真相,我赶紧po一张数据中台总体架构图:数据中台是在底层存储计算平台与上层的数据应用之间的一整套体系,屏蔽掉底层存储平台的计算技术复杂性,降低对技术人才的需求,可以让数据的使用成本更低。
如果用三句话来概括数据中台的组成架构,那么一定是:•通过数据中台的数据汇聚、数据开发模块建立企业数据资产。
•通过资产管理与治理、数据服务把数据资产变为数据服务能力,服务于企业业务。
•数据安全体系、数据运营体系保障数据中台可以长期健康、持续运转。
现在您已经知道了,数据中台离不开这几个模块:数据汇聚、数据开发、资产管理、数据安全、数据服务。
那么赶紧跟上我的脚步潜入内部去一探究竟吧。
数据汇聚数据汇聚,首先必然要有数据来源,有了数据来源之后,需要确定采集工具,有了采集工具之后你还要确定存储位置。
数据是数据中台的核心,所以数据汇聚无疑是数据中台的入口。
企业中的数据来源极其多,但大都都离不开这几个方面:数据库,日志,前端埋点,爬虫系统等。
•数据库我们不用多说,例如通常用mysql作为业务库,存储业务一些关键指标,比如用户信息、订单信息。
也会用到一些Nosql数据库,一般用于存储一些不那么重要的数据。
•日志也是重要数据来源,因为日志记录了程序各种执行情况,其中也包括用户的业务处理轨迹,根据日志我们可以分析出程序的异常情况,也可以统计关键业务指标比如PV,UV。
•前端埋点同样是非常重要的来源,用户很多前端请求并不会产生后端请求,比如点击,但这些对分析用户行为具有重要的价值,例如分析用户流失率,是在哪个界面,哪个环节用户流失了,这都要靠埋点数据。