最新广西崇左市中考数学试题含答案解析
- 格式:doc
- 大小:475.50 KB
- 文档页数:22
新课标备战中考广西崇左市中考数学试卷答案及考点详解Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2011年广西崇左市中考数学试卷、答案及考点详解一、填空题(本大题共10小题,每小题2分,满分20分.)1、(2004湟中县)分解因式:x2y﹣4xy+4y= y(x﹣2)2.考点:提公因式法与公式法的综合运用。
分析:先提取公因式y,再对余下的多项式利用完全平方公式继续分解.解答:解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后要进行二次分解因式,分解因式要彻底.2、(2011广西)如图,O是直线AB上一点,∠COB=30°,则∠1=150 °考点:对顶角、邻补角。
专题:计算题。
分析:根据邻补角互补进行计算即可.解答:解:∵∠COB=30°,∴∠1=180°﹣30°=150°.故答案为:150.点评:本题考查了邻补角的定义,利用两个补角的和等于180°求解.3、(2011台州)若二次根式√x﹣1有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件。
分析:根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x 的取值范围.解答:解:根据二次根式有意义的条件,x﹣1≥0,x≥1.故答案为x≥1.点评:此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.4、(2011广西)方程组{5x +x =73x﹣x =1的解是 x=1,y=2 . 考点:解二元一次方程组。
专题:计算题。
分析:用加减法解方程组即可.解答:解:{5x +x =7①3x﹣x =1②, ①+②得:8x=8,x=1,把x=1代入①得:y=2,∴{x =1x =2, 故答案为:x=1,y=2.点评:此题考查的知识点是解二元一次方程组,关键是运用加减消元法求解.5、(2011广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是 两点之间线段最短 .考点:线段的性质:两点之间线段最短。
广西崇左市中考数学试卷一、填空题(本大题共10小题,每小题2分,满分20分.)1、(2004•湟中县)分解因式:x2y﹣4xy+4y=y(x﹣2)2.考点:提公因式法与公式法的综合运用。
分析:先提取公因式y,再对余下的多项式利用完全平方公式继续分解.解答:解:x 2y ﹣4xy+4y ,=y(x2﹣4x+4),=y(x﹣2)2.点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后要进行二次分解因式,分解因式要彻底.2、(2011•广西)如图,O是直线AB上一点,∠COB=30°,则∠1=150°考点:对顶角、邻补角。
专题:计算题。
分析:根据邻补角互补进行计算即可.解答:解:∵∠COB=30°,∴∠1=180°﹣30°=150°.故答案为:150.点评:本题考查了邻补角的定义,利用两个补角的和等于180°求解.3、(2011•台州)若二次根式有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件。
分析:根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.解答:解:根据二次根式有意义的条件,x﹣1≥0,x≥1.故答案为x≥1.点评:此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.4、(2011•广西)方程组的解是x=1,y=2.考点:解二元一次方程组。
专题:计算题。
分析:用加减法解方程组即可.解答:解:,①+②得:8x=8,x=1,把x=1代入①得:y=2,∴,故答案为:x=1,y=2.点评:此题考查的知识点是解二元一次方程组,关键是运用加减消元法求解.5、(2011•广西)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是两点之间线段最短.考点:线段的性质:两点之间线段最短。
分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.6、(2011•广西)下面图形:四边形,三角形,梯形,平行四边形,菱形,矩形,正方形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率是..考点:概率公式;轴对称图形;中心对称图形。
崇左中考数学试题及答案一、选择题1. 下列选项中,哪个数是无理数?A. 3/7B. √2C. 2/5D. 3.14答案:B2. 已知两个角的度数之和为180°,这两个角互为补角。
若其中一个角的度数为40°,则另一个角的度数是多少?A. 50°B. 60°C. 80°D. 90°答案:C3. 某数字的个位数是3,将个位数的数字放到百位上,其十位数的原数加1,个位数的原数减2后,得到一个75的整数倍。
该数字是多少?A. 723B. 273C. 627D. 327答案:C4. 一块矩形的田地,长一米,宽六分之一米。
小明要计算这块田地的面积,他应该得出多少?A. 1平方米B. 6平方米C. 0.5平方米D. 2平方米答案:C5. 罐装牛奶每罐750毫升,小明一天喝了2/5罐,那他一天喝了多少毫升的牛奶?A. 500毫升B. 300毫升C. 250毫升D. 200毫升答案:A二、填空题1. 若 (x - 2) / 3 = 4,则 x 的值是 ______。
答案:142. 一个有8个单位长和6个单位宽的矩形,其周长是 ______。
答案:283. 小明给了小红5张相同的零钱,总面值是10元,那每张零钱的面值是 ______ 元。
答案:24. 小明的体重是他弟弟的3倍,小弟的体重是20千克,那小明的体重是 ______ 千克。
答案:605. 一个角的度数是它补角度数的5倍,那这个角的度数是 ______。
答案:60三、解答题1. 计算:17 + 12 - 4 × 3 ÷ 2 = ______。
答案:192. 一包糖果有36颗,小明拿走了三分之一,小红拿走了三分之二剩下的糖果,那么剩下的糖果还有 ______ 颗。
答案:123. 一张正方形纸片的周长是12厘米,请问它的面积是多少平方厘米?答案:9平方厘米四、解析题小明和小红一起参加了一场长跑比赛。
2022年广西崇左市中考数学试卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣32.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.25.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>76.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC 的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3 10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=.14.(2分)(2022•广西)当x=时,分式的值为零.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:123456789103.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0芒果树叶的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差3.74m4.00.0424芒果树叶的长宽比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.2022年广西崇左市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)(2022•广西)﹣的相反数是()A.B.﹣C.3D.﹣3【分析】根据只有符号不同的两个数互为相反数求解后选择即可.【解答】解:﹣的相反数是.故选:A.【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2022•广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做平移,平移不改变图形的形状大小.【解答】解:根据平移的性质可知:能由如图经过平移得到的是D,故选:D.【点评】本题考查了利用平移设计图案,解决本题的关键是熟记平移的定义.确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.3.(3分)(2022•广西)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.4.(3分)(2022•广西)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是()A.﹣2B.0C.1D.2【分析】关于原点对称的数是互为相反数.【解答】解:∵关于原点对称的数是互为相反数,又∵1和﹣1是互为相反数,故选:C.【点评】本题考查数轴和相反数的知识,掌握基本概念是解题的关键.5.(3分)(2022•广西)不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>7【分析】根据解一元一次不等式的方法可以求得该不等式的解集.【解答】解:2x﹣4<10,移项,得:2x<10+4,合并同类项,得:2x<14,系数化为1,得:x<7,故选:B.【点评】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.6.(3分)(2022•广西)如图,直线a∥b,∠1=55°,则∠2的度数是()A.35°B.45°C.55°D.125°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据对顶角相等可得∠2=∠3.【解答】解:如图,∵a∥b,∴∠3=∠1=55°,∴∠2=∠3=55°.故选:C.【点评】本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.7.(3分)(2022•广西)下列事件是必然事件的是()A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况【分析】根据三角形内角和定理,随机事件,必然事件,不可能事件的定义,逐一判断即可解答.【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.【点评】本题考查了三角形内角和定理,随机事件,熟练掌握随机事件,必然事件,不可能事件的定义是解题的关键.8.(3分)(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是()A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12,∴BC=12sinα.故选:A.【点评】本题考查了解直角三角形的应用,掌握正弦的定义是解本题的关键.9.(3分)(2022•广西)下列运算正确的是()A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a3【分析】按照整式幂的运算法则逐一计算进行辨别.【解答】解:∵a与a2不是同类项,∴选项A不符合题意;∵a•a2=a3,∴选项B符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a﹣1)3=()3=,∴选项D不符合题意,故选:B.【点评】此题考查了整式幂的相关运算能力,关键是能准确理解并运用该计算法则.10.(3分)(2022•广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程()A.=B.=C.=D.=【分析】根据题意可知,装裱后的长为2.4+2x,宽为1.4+2x,再根据整幅图画宽与长的比是8:13,即可得到相应的方程.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.11.(3分)(2022•广西)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A 逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是()A.πB.πC.πD.π【分析】根据旋转的性质可得AC′∥B′D,则可得∠C′AD=∠C′AB′+∠B′AB=90°,即可算出α的度数,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:根据题意可得,AC′∥B′D,∵B′D⊥AB,∴∠C′AD=∠C′AB′+∠B′AB=90°,∵∠C′AD=α,∴α+2α=90°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.12.(3分)(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】本题形数结合,根据二次函数y=(b≠0)的图象位置,可判断b>0;再由二次函数y=ax2+bx+c(a≠0)的图象性质,排除A,B,再根据一次函数y=cx﹣a(c ≠0)的图象和性质,排除C.【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【点评】此题考查一次函数,二次函数及反比例函数中的图象和性质,因此,掌握函数的图象和性质是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)(2022•广西)化简:=2.【分析】应用二次根式的化简的方法进行计算即可得出答案.【解答】解:===2.故答案为:2.【点评】本题主要考查了二次根式的化简,熟练掌握二次根式的化简的计算方法进行求解是解决本题的关键.14.(2分)(2022•广西)当x=0时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,∴x=0且x≠﹣2,∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.15.(2分)(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.【分析】根据题意可写出所有的可能性,然后再写出其中指向的区域内的数是奇数的可能性,从而可以计算出指向的区域内的数是一个奇数的概率.【解答】解:由图可知,指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,∴这个数是一个奇数的概率是,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.16.(2分)(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,,解得:x=134,答:金字塔的高度BO是134米,故答案为:134.【点评】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.17.(2分)(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是14.【分析】根据x=2是关于x的一元一次方程ax+b=3的解,可得:b=3﹣2a,直接代入所求式即可解答.【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,∴2a+b=3,∴b=3﹣2a,∴4a2+4ab+b2+4a+2b﹣1=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1=14.故答案为:14.【点评】此题主要考查了一元一次方程的解和代数式求值,要熟练掌握,解答此题的关键是判断出a、b的关系.18.(2分)(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是5+.【分析】作辅助线,构建全等三角形,先根据翻折的性质得△EGH'≌△EGH,所以△EGH′的周长=△EGH的周长,接下来计算△EGH的三边即可;证明△BME≌△FNE (ASA)和△BEO≌△EFP(AAS),得OE=PF=2,OB=EP=4,利用三角函数和勾股定理分别计算EG,GH和EH的长,相加可得结论.【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.【点评】本题考查了正方形的判定和性质,全等三角形的判定和性质,解直角三角形,图形的翻折等知识,本题十分复杂,解决问题的关键是关注特殊性,添加辅助线,需要十分扎实的基础和很强的能力.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2022•广西)计算:(﹣1+2)×3+22÷(﹣4).【分析】先算乘方,再算括号里面的和乘除法,最后算加减.【解答】解:原式=1×3+4÷(﹣4)=3﹣1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解决本题的关键20.(6分)(2022•广西)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y =.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x、y 的值代入化简后的式子计算即可.【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x=x2﹣y2+y2﹣2y=x2﹣2y,当x=1,y=时,原式=12﹣2×=0.【点评】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式混合运算的运算法则,注意平方差公式的应用.21.(10分)(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.【分析】(1)由平行四边形的性质得出AB=CD,AD=BC,再由BD=BD,即可证明△ABD≌△CDB;(2)利用线段垂直平分线的作法进行作图即可;(3)由垂直平分线的性质得出EB=ED,进而得出∠DBE=∠BDE=25°,再由三角形外角的性质即可求出∠AEB的度数.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵BD=BD,∴△ABD≌△CDB(SSS);(2)如图所示,(3)解:如图3,∵EF垂直平分BD,∠DBE=25°,∴EB=ED,∴∠DBE=∠BDE=25°,∵∠AEB是△BED的外角,∴∠AEB=∠DBE+∠BDE=25°+25°=50°.【点评】本题考查了平行四边形的性质,全等三角形的判定,线段垂直平分线的性质,基本作图,三角形外角的性质,掌握平行四边形的性质,全等三角形的判定方法,线段垂直平分线的作法,线段垂直平分线的性质,三角形外角的定义与性质是解决问题的关键.22.(10分)(2022•广西)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶3.8 3.7 3.5 3.4 3.84.0 3.6 4.0 3.6 4.0的长宽比2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9荔枝树叶的长宽比【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽3.74m4.00.0424比1.912.0n0.0669荔枝树叶的长宽比【问题解决】(1)上述表格中:m= 3.75,n= 2.0;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是B(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【分析】(1)根据中位数和众数的定义解答即可;(2)根据题目给出的数据判断即可;(3)根据树叶的长宽比判断即可.【解答】解:(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;故答案为:3.75;2.0;(2)∵0.0424<0.0669,∴芒果树叶的形状差别小,故A同学说法不合理;∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,∴B同学说法合理.故答案为:B;(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,∴这片树叶更可能来自荔枝.【点评】本题考查了众数,中位数,平均数和方差,掌握相关定义是解答本题的关键.23.(10分)(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.【分析】(1)可用待定系数法来确定y与x之间的函数关系式,根据图象可得x的取值范围即可;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润.【解答】解:(1)设函数解析式为y=kx+b,由题意得:,解得:,∴y=﹣5x+500,当y=0时,﹣5x+500=0,∴x=100,∴y与x之间的函数关系式为y=﹣5x+500(50<x<100);(2)设销售利润为w元,w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,∵抛物线开口向下,∴50<x<100,∴当x=75时,w有最大值,是3125,∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.【点评】本题考查了一次函数的应用,二次函数的最值问题,在本题中,还需注意的是自变量的取值范围.24.(10分)(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.【分析】(1)连接OD,进而判断出OD∥AB,即可得出结论;(2)设AE=2m,DE=3m,进而表示出AD=m,再判断出△ABD∽△ADE,得出比例式,进而表示出AB=m,BD=m,再判断出△ADB∽△CFB,得出比例式建立方程求出m,最后根据勾股定理求出AC=26,即可求出答案.【解答】(1)证明:如图1,连接OD,则OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠B=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∵OD为⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AD,∵=,∴设AE=2m,DE=3m,∵DE⊥AB,∴∠AED=∠BED=90°,在Rt△ADE中,根据勾股定理得,AD==m,∵AC为直径,∴∠ADB=∠ADC=90°=∠AED,∴∠A=∠A,∴△ABD∽△ADE,∴=,∴,∴AB=m,BD=m,∵AB=AC,∠ADC=90°,∴DC=m,BC=2BD=3m,连接AF,则∠ADB=∠F,∵∠B=∠B,∴△ADB∽△CFB,∴,∵AF=10,∴BF=AB+AF=m+10,∴,∴m=4,∴AD=4,CD=6,在Rt△ADC中,根据勾股定理得,AC==26,∴⊙O的半径为AC=13.【点评】此题是圆的综合题,主要考查了切线的判定,平行线的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.25.(10分)(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.【分析】(1)令y=0,从而﹣x2+2x+3=0,解方程进而求得结果;(2)设点P(1,m),根据P A=PC列出方程,进一步求得结果;(3)分为a>0和a<0两种情形.当a>0时,抛物线的顶点等于5及x=0时,y>0,当a<0时,将x=4代入抛物线解析式,y的值大于等于5,从而求得结果.【解答】解:(1)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵抛物线对称轴为:x==1,∴设P(1,m),由﹣x2+2x+3=﹣x﹣1得,x3=﹣1(舍去),x4=4,当x=4时,y=﹣4﹣1=﹣5,∴C(4,﹣5),由P A2=PC2得,22+m2=(4﹣1)2+(m+5)2,∴m=﹣3;(3)可得M(0,5),N(4,5),当a>0时,∵y=﹣a(x﹣1)2+4a,∴抛物线的顶点为:(1,4a),当4a=5时,只有一个公共点,∴a=,当x=0时,y>5,∴3a>5,∴a>,∴a>或a=,当a<0时,(﹣16+8+3)a≥5,∴a≤﹣1,综上所述:a>或a=或a≤﹣1.【点评】本题考查二次函数图象与x轴的交点与一元二次方程的关系,勾股定理列方程,分类讨论等知识思想,解决问题的关键是正确分类.26.(10分)(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=,OD′=,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI 并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.【解答】解:(1)OD=OD′,理由如下:在Rt△AOB中,点D是AB的中点,∴OD=,同理可得:OD′=,∵AB=A′B′,∴OD=OD′;(2)如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=+BO′=3+3;(3)如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI==3,∠AOB=,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大==9+9.【点评】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.。
2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )A. B. C. D.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13 C. 12 D. 236. 如图,2时整,钟表的时针和分针所成的锐角为( )A. 20︒B. 40︒C. 60︒D. 80︒7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0B. ()0,2C. ()3,2D. ()1,28. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 911. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A 1 B. 2 C. 5 D. 10二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.14.__.15. 八桂大地孕育了丰富药用植物.某县药材站把当地药市交易的400种药用植物按“草.的本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.16. 不等式7551x x +<+的解集为______.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19 计算:()()2342-⨯+-20. 解方程组:2321x y x y +=⎧⎨-=⎩21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:.进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.23 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?.【(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.【答案】A【解析】【分析】本题考查了温度的比较以及正负数的概念,熟悉掌握概念是解决本题的关键.0℃以下记为负数,0℃以上记为正数,温度都小于0℃时,绝对值最大的,温度最低.【详解】解:∵ 4.6 4.6-=, 3.2 3.2-=,4.6 3.2>,∴ 4.6 3.2 5.88.1-<-<<,∴气温最低的是北京.故选:A .2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A .不是轴对称图形,故不符合题意;B .是轴对称图形,故符合题意;C .不是轴对称图形,故不符合题意;D .不是轴对称图形,故不符合题意;故你:B .3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯【答案】B【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:88490000008.4910=⨯;故选B .4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A. 1B. 13C. 12D.23【答案】D【解析】【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有213+=种等可能的结果,其中取出白球的情况有2种,∴23P=;故选D.6. 如图,2时整,钟表的时针和分针所成的锐角为()A. 20︒B. 40︒C. 60︒D. 80︒【答案】C【解析】【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0 B. ()0,2 C. ()3,2 D. ()1,2【答案】C【解析】【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 坐标为()3,2,故选:C .8. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M反的射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯【答案】A【解析】【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:55131031022d t t =⨯⨯=⨯⋅,故选:A .9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<【答案】A【解析】【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点()11,M x y ,()22,N x y 在反比例函数图象上,则满足关系式2y x =,横纵坐标的积等于2,结合120x x <<即可得出答案.【详解】解: 点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,∴ 112x y =,222x y =,120x x <<,∴ 10y <,20y >,∴ 120y y <<.故选:A .10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 9【答案】D【解析】【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=【答案】B【解析】【分析】本题考查了一元一次方程的应用,根据“第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱”列方程即可.【详解】解:根据题意,得100345x x x ++=,故选:B .12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10【答案】C【解析】【分析】先证明四边形AECG 是平行四边形,得出AG CE ∥,同理AF BH ∥,则可证四边形MNPQ 是平行四边形,利用平行线分线段成比例可得出DQ PQ =,AM QM =,证明()SAS ADG BAH ≌得出DAG ABH ∠=∠,则可得出90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,得出平行四边形MNPQ 是矩形,证明()AAS ADQ BAM ≌,得出DQ AM =,进而得出DQ AM PQ QM ===,得出矩形MNPQ 是正方形,在Rt ADQ △中,利用勾股定理求出25QM =,然后利用正方形的面积公式求解即可.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别为各边中点,∴12CG DG CD AH ===,12AE AB =,∴DG CG AE ==,∴四边形AECG 是平行四边形,∴AG CE ∥,同理DF BH ,∴四边形MNPQ 是平行四边形,∵AG CE ∥,∴1DQ DG PQ CG==,∴DQ PQ =,同理AM QM =,∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =,∴()SAS ADG BAH ≌,∴DAG ABH ∠=∠,∵90DAG GAB ∠+∠=︒,∴90ABH GAB ∠+∠=︒,∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =,∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.【答案】35【解析】【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14.__.【答案】2(答案不唯一)【解析】【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.大小,再找出符合条件的整数即可.【详解】解:134<<,12∴<<,∴符合条件的数可以是:2(答案不唯一).故答案为:2.15. 八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.【答案】80【解析】【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16. 不等式7551x x +<+的解集为______.【答案】<2x -【解析】的【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .【答案】【解析】【分析】本题考查了平行四边形的判定,菱形的判定和性质,菱形的周长,过点A 作AM BC ⊥于M ,AN CD ⊥于N ,由题意易得四边形ABCD 是平行四边形,进而由平行四边形的面积可得AM AN =,即可得到四边形ABCD 是菱形,再解Rt ADN △可得sin 60AN AD ==︒,即可求解,得出四边形ABCD 是菱形是解题的关键.【详解】解:过点A 作AM BC ⊥于M ,AN CD ⊥于N ,则90AND ∠=︒,∵两张纸条的对边平行,∴AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,又∵两张纸条的宽度相等,∴AM AN =,∵··ABCD S BC AM CD AN == ,∴BC CD =,∴四边形ABCD 是菱形,在Rt ADN △中,60ADN ∠=︒,3cm AN =,∴sin 60AN AD ===︒,∴四边形ABCD的周长为4=,故答案为:18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .【答案】353【解析】【分析】本题考查的是二次函数的实际应用,设抛物线为()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭,代入即可求出解析式;当0y =时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=,解得:9100a =-,∴抛物线解析式为:()2954100y x =--+;当0y =时,()29540100x --+=,解得,153x =-(舍去),2353x =,即此次实心球被推出的水平距离OM 为35m 3.故答案为:353三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19. 计算:()()2342-⨯+-【答案】8-【解析】【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20. 解方程组:2321x y x y +=⎧⎨-=⎩【答案】212x y =⎧⎪⎨=⎪⎩【解析】【分析】本题考查的是二元一次方程组的解法,直接利用加减消元法解方程组即可.【详解】解:2321x y x y +=⎧⎨-=⎩①②,+①②得:24=x ,解得:2x =,把2x =代入①得:12y =,∴方程组的解为:212x y =⎧⎪⎨=⎪⎩.21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.【答案】(1)众数为1、中位数为2、平均数为1.9(2)估计为“优秀”等级的女生约为50人【解析】【分析】(1)根据平均数、中位数、众数的定义求解即可;(2)算出样本的优秀率,再估计总体的优秀人数.【小问1详解】解:女生进球数的平均数为()1011826334151 1.920⨯⨯+⨯+⨯+⨯+⨯+⨯=(个),女生进球数的中位数是第10个和第11个成绩的平均数,即2222+=(个),女生进球个数为1个人最多,故众数是1个;【小问2详解】解:3112005020++⨯=(人),答:估计为“优秀”等级的女生约为50人.的【点睛】本题考查了中位数,众数,平均数,用样本件估计总体,掌握中位数,平均数、众数的定义以及优秀率的求法是解题的关键.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.【答案】(1)见详解(2)【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 为半径画弧,分别交AB ,AC 于点D ,E ,作直线DE ,则直线l 即为所求.(2)连接BE ,由线段垂直平分线的性质可得出BE AE =,由等边对等角可得出45EBA A ∠=∠=︒,由三角形内角和得出90BEA ∠=︒,则得出ABE 为等腰直角三角形,再根据正弦的定义即可求出BE 的长.小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE如下图:【∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,∴sin BE A AB ==∴8BE AB ===【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.23. 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水. (2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【解析】【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后, 再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w=+前后得.0.50.2%0.01%05w =+⨯,解得9.5w =.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后,∴0.50.2%0.04%0.52d ⨯==+后,第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后,∴0.50.04%0.008%0.52d ⨯==+后,而0.008%0.01%<,∴进行两次漂洗,能达到洗衣目标;【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.【答案】(1)证明见解析 (2)证明见解析(3)10【解析】【分析】(1)先证明BD CD =,DE EF =,再证明AEF CED △≌△,可得AF CD =,F EDC ∠=∠,再进一步解答即可;(2)如图,连接AD ,证明AD BC ⊥,可得AD 过圆心,结合∥A F B D ,证明AF AD ⊥,从而可得结论;(3)如图,过B 作BQ AC ⊥于Q ,连接OB ,设BQ 3x =,则4AQ x =,可得CQ AC AQ x =-=,求解x ==5AB x ==18AD ==,设O 半径为r ,可得18OD r =-,再利用勾股定理求解即可.【小问1详解】证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;【小问2详解】证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQAQ =,设BQ 3x =,则4AQ x =,∴5AC AB x ===,∴CQ AC AQ x =-=,∴BC ==,12=,∴x ==,∴5AB x ==∵AB AC =,12BC =,AD BC ⊥,∴6BD CD ==,∴18AD ==,设O 半径为r ,∴18OD r =-,∴()222186r r =-+,解得:10r =,∴O 的半径为10.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】【分析】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键:(1)①把4a =-代入解析式,写出函数解析式即可;②将一般式转化为顶点式,进行求解即可;(2)将一般式转化为顶点式,根据二次函数的性质进行解释即可;(3)将一般式转化为顶点式,表示出y 的最大值,再利用二次函数求最值即可.【详解】解:(1)①把4a =-代入223y x ax a =++-,得:()()22244387y x x x x =+⋅-+--=--;∴287y x x =--;②∵()2287423y x x x =--=--,∴当4x =时,y 有最小值为23-;(2)∵()222233y x ax a x a a a =+-+-=++-,∵抛物线的开口向上,∴当x a =-时,y 有最小值;∴甲的说法合理;(3)正确;∵()222233y x ax a x a a a =+-+-=++-,∴当x a =-时,y 有最小值为23a a -+-,即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭,∴当12a =时,min y 有最大值,114-.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.为(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.【答案】(1)见解析(2)①180α=︒;②120︒或240︒【解析】【分析】(1)利用线段垂直平分线的性质得出OA OC =,利用等边对等角得出A ACO ∠=∠,结合角平分线定义可得出A ACO OCB ∠=∠=∠,最后根据相似三角形的判定即可得证;(2)先求出30A ACO OCB ∠=∠=∠=︒,然后利用含30︒的直角三角形性质求出2BO =,4AO =,2MO =,利用勾股定理求出AM =AC =A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,则OM A C '''⊥,A C AC ''==,2OM OM '==,根据点到直线的距离,垂线段最短知MN MM '≤,三角形三边关系得出MN OM OM '≤+,故当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,最后根据三角形面积公式求解即可;②先利用三角形三边关系判断出MC A C '''<,MA A C '''<,则当A MC ''△为直角三角形时,只有90A MC ''∠=︒,然后分A 和C '重合,A '和C 重合,两种情况讨论即可.【小问1详解】证明:∵MO 垂直平分AC ,∴OA OC =,∴A ACO ∠=∠,∵CO 平分ACB∠∴ACO OCB ∠=∠,∴A OCB ∠=∠,又B B ∠=∠;∴ABC CBO △∽△;【小问2详解】解:①∵90B Ð=°,∴90A ACO OCB ∠+∠+∠=︒,∴30A ACO OCB ∠=∠=∠=︒,∴1122BO CO AO ==,又6AB AO BO =+=,∴2BO =,4AO =,∵MO 垂直平分AC ,∴122OM AO ==,2AC AM =,∴AM ==,∴AC =,取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,∴OM A C '''⊥,A C AC ''==,2OM OM '==,根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,∴A MC ''△面积的最大值为142⨯=;②∵246MC MO OC ''≤+=+=,A C ''=,∴MC A C '''<,同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒,当A 和C '重合时,如图,∵AOC A OA'≌∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒,∴120A OA '∠=︒,∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。
崇左数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 2x + 3 = 5x + 1C. 2x - 3 = 5x + 1D. 2x - 3 = 5x - 1答案:D2. 如果一个矩形的长是宽的两倍,且周长为24厘米,那么矩形的宽是多少?A. 3厘米B. 4厘米C. 6厘米D. 8厘米答案:B3. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 - 4x + 3)。
A. 2x^2 + 2x - 2B. 2x^2 + 2x + 2C. 2x^2 - 2x - 2D. 2x^2 - 2x + 2答案:D4. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C5. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 如果一个三角形的内角和为180度,其中一个角是90度,另外两个角的度数之和是多少?A. 90度B. 60度C. 120度D. 150度答案:C8. 一个数的立方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:D9. 计算下列表达式的值:(2x + 3)(2x - 3)。
A. 4x^2 - 9B. 4x^2 + 9C. 4x^2 - 6x + 9D. 4x^2 + 6x + 9答案:A10. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么它的周长是多少?A. 22厘米B. 24厘米C. 26厘米D. 28厘米答案:B二、填空题(每题2分,共20分)1. 如果一个数的相反数是-5,那么这个数是__5__。
2. 一个数的绝对值是它本身的数是__非负数__。
3. 一个数的倒数是1/5,那么这个数是__5__。
4. 一个圆的半径是4厘米,那么它的面积是__50.24平方厘米__。
2024届崇左市重点中学中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .152.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A .2B .2C .2D .23.在平面直角坐标系中,将点P (﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,-3)D .(-5,5)4.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(﹣2,3),先把△ABC 向右平移6个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( )A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)5.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣36.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣77.函数y=113xx+--自变量x的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤38.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.6011.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x12.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,□ABCD中,E是BA的中点,连接DE,将△D A E沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF =25°,则∠FD A的度数为_________.14.已知a+b=4,a-b=3,则a2-b2=____________.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.因式分解:(a +1)(a ﹣1)﹣2a +2=_____.17.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.18.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是_____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分) (1)计算:)10201631(1)2384π-⎛⎫---+⎪⎝⎭ (2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解. 20.(6分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.21.(6分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图. 成绩分组组中值 频数 25≤x <3027.5 4 30≤x <3532.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?22.(8分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.23.(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?24.(10分)如图,在Rt △ABC 中,∠C=90°,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E. (1)求证:∠A=∠ADE ;(2)若AD=8,DE=5,求BC 的长.25.(10分)计算:2cos30°+27-33--(12)-2 26.(12分)315211x x x -⎧⎨-+-⎩<()<27.(12分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解题分析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.2、A【解题分析】分析出此三棱柱的立体图像即可得出答案.【题目详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=22×4=82,所以侧面积之和为82×2+4×4=16+162,所以答案选择A项.【题目点拨】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.3、B【解题分析】试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.考点:点的平移.4、A【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置.【题目详解】如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.5、D【解题分析】先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【题目点拨】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、B【解题分析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为: ,故选B.(7,2),∴k147、B【解题分析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.8、C【解题分析】根据线段上的等量关系逐一判断即可.【题目详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【题目点拨】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9、D【解题分析】A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【题目详解】A.-2x-2y3 2x3y=-4xy4,故本选项错误;B. (−2a2)3=−8a6,故本项错误;C. (2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【题目点拨】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.10、B【解题分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【题目详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=12BD=1.同理求得EH∥AC∥GF,且EH=GF=12AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【题目点拨】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.11、A【解题分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程. 【题目详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30x=456x+.故选A.【题目点拨】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.12、B【解题分析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y=53,∴E(0,53).故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、50°【解题分析】延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA 得度数.【题目详解】延长BF交CD于G由折叠知,BE=CF, ∠1=∠2, ∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案为50°.【题目点拨】本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.14、1.【解题分析】a2-b2=(a+b)(a-b)=4×3=1.故答案为:1.考点:平方差公式.15、113407,北京市近两年的专利授权量平均每年增加6458.5件.【解题分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【题目详解】解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件),∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【题目点拨】此题考查统计图的意义,解题的关键在于看懂图中数据.16、(a﹣1)1.【解题分析】提取公因式(a−1),进而分解因式得出答案.【题目详解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案为:(a﹣1)1.【题目点拨】此题主要考查了提取公因式法分解因式,找出公因式是解题关键.17、1 4【解题分析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=14.故答案为14.18、22.5【解题分析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5;(2)2xx-,3.【解题分析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可.试题解析:(1)原式=1-2+1×2+4=5;(2)原式=()()()()2212x x x xx x+----×()224xx--=2xx-,当3x+7>1,即x>-2时的负整数时,(x=-1)时,原式=121---=3..20、2.【解题分析】将原式化简整理,整体代入即可解题.【题目详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【题目点拨】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.21、(1)详见解析(2)2400【解题分析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【题目详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)22、(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S四边形OA′B′C′=1.【解题分析】(1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;(2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.【题目详解】(1)如图所示,四边形OA′B′C′即为所求.(2)S四边形OA′B′C′=S△OA′B′+S△OB′C′=×4×4+×2×2=8+2=1.【题目点拨】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.23、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解题分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【题目详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【题目点拨】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.24、(1)见解析(2)7.5【解题分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【题目详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,6=,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴7.5=【题目点拨】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.25、37【解题分析】根据实数的计算,先把各数化简,再进行合并即可.【题目详解】原式=3233334+- 37【题目点拨】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.26、﹣2<x <2.【解题分析】分别解不等式,进而得出不等式组的解集.【题目详解】 315211x x x -⎧⎨-+-⎩<①()<② 解①得:x <2解②得:x >﹣2.故不等式组的解集为:﹣2<x <2.【题目点拨】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键.27、1a-1,22【解题分析】先根据完全平方公式进行约分化简,再代入求值即可.【题目详解】原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a +1=2,故答案为2. 【题目点拨】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.。
2021年广西崇左市中考数学试卷一、单项选择题(本大题共12小题。
每小题3分,共36分。
在每小题提供的四个选项中,只有一个是正确的)1.(3分)(2015•广西)一个物体作左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作( ) A.﹣4m B.4m C.8m D.﹣8m2.(3分)(2015•广西)下列各图中,∠1与∠2互为余角的是( ) A.B.C.D.3.(3分)(2015•广西)下列各组中,不是同类项的是( ) A.52与25B.﹣ab与baD.a2b3与﹣a3b2 C.0.2a2b与﹣a2b4.(3分)(2015•广西)下列计算正确的是( ) A.(﹣8)﹣8=0B.3+=3C.(﹣3b)2=9b2D.a6÷a2=a35.(3分)(2015•广西)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( ) A.的B.中C.国D.梦6.(3分)(2015•广西)如果一个三角形的两边长分别为2和5,则第三边长可能是( ) A.2B.3C.5D.87.(3分)(2015•广西)下列命题是假命题的是( ) A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形 C.对角线相等的菱形是正方形 D.对角线互相垂直的四边形是正方形8.(3分)(2015•广西)甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是S 甲2=3.8,S 乙2=2.3,S 丙2=6.2,S 丁2=5.2,则成绩最稳定的是( )A .甲B .乙C .丙D .丁 9.(3分)(2015•广西)不等式5x ≤﹣10的解集在数轴上表示为( )A .B .C .D . 10.(3分)(2015•广西)如图,在Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( ) A .sinA=B .cosA=C .tanA=D .tanB= 11.(3分)(2015•广西)若反比例函数y=的图象经过点(2,﹣6),则k 的值为( ) A .﹣12B .12C .﹣3D .3 12.(3分)(2015•广西)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有( )A .160B .161C .162D .163二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2015•广西)比较大小:0 ﹣2(填“>”“<”或“=”).14.(3分)(2015•广西)据统计,参加“崇左市2021年初中毕业升学考试”的人数用科学记数法表示为1.47×104人,则原来的人数是 人.15.(3分)(2015•广西)若直线a ∥b,a ⊥c,则直线b c . 16.(3分)(2015•广西)小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为 事件(填“必然”或“不可能”或“随机”).17.(3分)(2015•广西)如图,线段AB是⊙O的直径,点C在圆上,∠AOC=80°,点P是线段AB延长线上的一动点,连接PC,则∠APC的度数是 度(写出一个即可).18.(3分)(2015•广西)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x= .三、解答题(本答题共8小题,满分66分)19.(6分)(2015•广西)计算:(﹣1)0﹣4cos45°+|﹣5|+.20.(6分)(2015•广西)化简:(﹣1)÷.21.(6分)(2015•广西)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:BE=CD.22.(8分)(2015•广西)如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标。
崇左中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 3x + 5 = 8x - 10B. 2x - 3 = 3x + 1C. 5x - 2 = 3x + 7D. 4x + 6 = 6x - 2答案:C2. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B4. 圆的面积公式是?A. πr^2B. 2πrC. πrD. πr^3答案:A5. 下列哪个选项是正确的?A. √16 = 4B. √9 = ±3C. √25 = 5D. √49 = 7答案:C6. 一个等腰三角形的两边长分别为5和10,那么第三边的长度是?A. 5B. 10C. 不能确定D. 以上都不是答案:B7. 下列哪个选项是正确的?A. 2x + 3y = 6B. 3x - 2y = 0C. 4x + 5y = 20D. 以上都不是答案:D8. 一个数的立方等于-8,那么这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 下列哪个函数是反比例函数?A. y = x^2B. y = 1/xC. y = x + 1D. y = x^3答案:B10. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是?A. 5B. 7C. 9D. 12答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 一个数的绝对值是7,那么这个数可以是______或______。
答案:7或-713. 一个二次函数的顶点坐标是(2, -3),那么这个函数的解析式可以是______。
答案:y = a(x - 2)^2 - 3(a ≠ 0)14. 一个圆的半径是5,那么这个圆的周长是______。
2016年广西崇左市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.9的绝对值是()A.9 B.﹣9 C.3 D.±32.sin30°=()A.B.C.D.3.今年我们三个市参加中考的考生共约11万人,用科学记数法表示11万这个数是()A.1.1×103B.1.1×104C.1.1×105D.1.1×1064.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.5.下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95 C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法6.如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30°B.45°C.60°D.70°7.关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣48.抛物线y=,y=x2,y=﹣x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的个数有()A.1个B.2个C.3个D.4个9.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限10.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.112.若一次函数y=mx+6的图象与反比例函数y=在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤0二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上.13.计算:0﹣10=.14.计算:a2•a4=.15.要使代数式有意义,则x的最大值是.16.如图,△ABC中,∠C=90°,∠A=60°,AB=2.将△ABC沿直线CB向右作无滑动滚动一次,则点C经过的路径长是.17.同时投掷两个骰子,它们点数之和不大于4的概率是.18.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)三、解答题:本大题共8小题,满分66分,解答过程写在答题卡上,解答应写出文字说明、证明过程或演算步骤.19.计算:3+(﹣2)3﹣(π﹣3)0.20.化简:().21.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)△A1B1C1与△ABC的位似比是;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是.22.为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?23.如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.24.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)25.如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.(1)求证:四边形EFGH是平行四边形;(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知,且菱形ABCD 的面积是20,求矩形EFGH的长与宽.26.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y 轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.2016年广西崇左市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.9的绝对值是()A.9 B.﹣9 C.3 D.±3【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:9的绝对值是9.故选:A.2.sin30°=()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值进行解答即可.【解答】解:sin30°=.故选:B.3.今年我们三个市参加中考的考生共约11万人,用科学记数法表示11万这个数是()A.1.1×103B.1.1×104C.1.1×105D.1.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:11万=1.1×105.故选:C.4.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是D选项所给的图形.故选D.5.下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95 C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法【考点】命题与定理.【分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:A、必然事件发生的概率等于1,错误;B、5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95,正确;C、射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则甲稳定,错误;D、要了解金牌获得者的兴奋剂使用情况,可采用全面调查的方法,错误;故选B6.如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30°B.45°C.60°D.70°【考点】圆周角定理.【分析】连接AD,构建直角三角形ACD.根据直径所对的圆周角是90°知三角形ACD是直角三角形,然后在Rt△ABC中求得∠BAD=60°;然后由圆周角定理(同弧所对的圆周角相等)求∠2的度数即可.【解答】解:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°,故选C.7.关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A.B.C.4 D.﹣4【考点】根与系数的关系.【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()===﹣4.故答案选D.8.抛物线y=,y=x2,y=﹣x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】利用二次函数的性质,利用开口方向,对称轴,顶点坐标逐一探讨得出答案即可.【解答】解:抛物线y=,y=x2的开口向上,y=﹣x2的开口向下,①错误;抛物线y=,y=x2,y=﹣x2的顶点为(0,0),对称轴为y轴,②③正确;④错误;故选:B.9.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限【考点】一次函数的性质.【分析】直接根据一次函数的性质选择不正确选项即可.【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误;故选D.10.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部 B.外部 C.边上 D.以上都有可能【考点】旋转的性质.【分析】先根据勾股定理求出两直角三角形的各边长,再由旋转的性质得:∠EBE′=45°,∠E′=∠DEB=90°,求出E′D′与直线AB的交点到B的距离也是5,与AB的值相等,所以点A在△D′E′B的边上.【解答】解:∵AC=BD=10,又∵∠ABC=∠DEB=90°,∠A=45°,∠D=30°,∴BE=5,AB=BC=5,由三角板DEB绕点B逆时针旋转45°得到△D′E′B,设△D′E′B与直线AB交于G,可知:∠EBE′=45°,∠E′=∠DEB=90°,∴△GE′B是等腰直角三角形,且BE′=BE=5,∴BG==5,∴BG=AB,∴点A在△D′E′B的边上,故选C.11.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.1【考点】扇形面积的计算;正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B.12.若一次函数y=mx+6的图象与反比例函数y=在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤0【考点】反比例函数与一次函数的交点问题;根的判别式.【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y=中,得:mx+6=,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上.13.计算:0﹣10=﹣10.【考点】有理数的减法.【分析】根据有理数的减法,可得答案.【解答】解:0﹣10=0+(﹣10)=﹣10,故答案为:﹣10.14.计算:a2•a4=a6.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【解答】解:a2•a4=a2+4=a6.故答案为:a6.15.要使代数式有意义,则x的最大值是.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵代数式有意义,∴1﹣2x≥0,解得x≤,∴x的最大值是.故答案为:.16.如图,△ABC中,∠C=90°,∠A=60°,AB=2.将△ABC沿直线CB向右作无滑动滚动一次,则点C经过的路径长是.【考点】轨迹.【分析】根据锐角三角函数,可得BC的长,根据线段旋转,可得圆弧,根据弧长公式,可得答案.【解答】解:由锐角三角函数,得BC=AB•sin∠A=3,由旋转的性质,得是以B为圆心,BC长为半径,旋转了150°,由弧长公式,得==,故答案为:.17.同时投掷两个骰子,它们点数之和不大于4的概率是.【考点】列表法与树状图法.【分析】根据题意,设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,由分步计数原理可得(x,y)的情况数目,由列举法可得其中x+y ≤4的情况数目,进而由等可能事件的概率公式计算可得答案.【解答】解:设第一颗骰子的点数为x,第二颗骰子的点数为y,用(x,y)表示抛掷两个骰子的点数情况,x、y都有6种情况,则(x,y)共有6×6=36种情况,而其中点数之和不大于4即x+y≤4的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,则其概率为=.故答案为.18.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是①②③.(写出所有正确结论的序号)【考点】四边形综合题.【分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连结EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1﹣x,利用等腰直角三角形的性质得到2x=(1﹣x),解得x=﹣1,则可对④进行判断.【解答】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF、AC,它们相交于点H,如图,∵Rt△ABE≌Rt△ADF,∴BE=DF,而BC=DC,∴CE=CF,而AE=AF,∴AC垂直平分EF,AH平分∠EAF,∴EB=EH,FD=FH,∴BE+DF=EH+HF=EF,所以④错误;∴△ECF的周长=CE+CF+EF=CED+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x,则EF=2x,CE=1﹣x,∵△CEF为等腰直角三角形,∴EF=CE,即2x=(1﹣x),解得x=﹣1,∴EF=2(﹣1),∴CH=EF=﹣1,所以②正确.故答案为①②③.三、解答题:本大题共8小题,满分66分,解答过程写在答题卡上,解答应写出文字说明、证明过程或演算步骤.19.计算:3+(﹣2)3﹣(π﹣3)0.【考点】实数的运算;零指数幂.【分析】分别进行二次根式的化简、乘方、零指数幂等运算,然后合并.【解答】解:原式=15﹣8﹣1=6.20.化简:().【考点】分式的混合运算.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分解因式后约分即可.【解答】解:原式=•=•=1.21.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)△A1B1C1与△ABC的位似比是;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是(﹣2a,2b).【考点】作图-位似变换;作图-轴对称变换.【分析】(1)根据位似图形可得位似比即可;(2)根据轴对称图形的画法画出图形即可;(3)根据三次变换规律得出坐标即可.【解答】解:(1))△ABC与△A1B1C1的位似比等于===;(2)如图所示(3)点P(a,b)为△ABC内一点,依次经过上述两次变换后,点P的对应点的坐标为(﹣2a,2b).故答案为:,(﹣2a,2b).22.为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“艺术“的人数所占的百分比得到“艺术”部分的圆心角度;(2)先计算出借阅“科普“的学生数,然后补全条形统计图;(3)利用样本估计总体,用样本中“科普”类所占的百分比乘以300即可.【解答】解:(1)上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360°×=150°;(2)借阅“科普“的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)300×=50,估计“科普”类图书应添置50册合适.23.如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D 作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.【考点】切线的判定与性质;平行四边形的性质.【分析】(1)先证明四边形AOCD是菱形,从而得到∠AOD=∠COD=60°,再根据切线的性质得∠FDO=90°,接着证明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根据切线的判定定理即可得到结论;(2)在Rt△OBF中,利用60度的正切的定义求解.【解答】(1)证明:连结OD,如图,∵四边形AOCD是平行四边形,而OA=OC,∴四边形AOCD是菱形,∴△OAD和△OCD都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF为切线,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线;(2)解:在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.24.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤) 4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设批发青菜x市斤,西兰花y市斤,根据题意列出方程组,解方程组青菜青菜和西兰花的重量,即可得出老王一共能赚的钱;(2)设给青菜定售价为a元;根据题意列出不等式,解不等式即可.【解答】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100(4﹣2.8)+100(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100(1﹣10%)×(x﹣2.8)+100(4.5﹣3.2)≥250,解得:x≥4≈4.1;答:给青菜定售价为不低于4.1元/市斤.25.如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.(1)求证:四边形EFGH是平行四边形;(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知,且菱形ABCD的面积是20,求矩形EFGH的长与宽.【考点】相似三角形的判定与性质;平行四边形的判定;菱形的性质;矩形的性质.【分析】(1)根据菱形的性质可得出OA=OC,OD=OB,再由中点的性质可得出OF=OH,结合对顶角相等即可利用全等三角形的判定定理(SAS)证出△AOF≌△COH,从而得出AF∥CH,同理可得出DH∥BF,依据平行四边形的判定定理即可证出结论;(2)设矩形EFGH的长为a、宽为b.根据勾股定理及边之间的关系可找出AC=,BD=,利用菱形的性质、矩形的性质可得出∠AOB=∠AGH=90°,从而可证出△BAO∽△CAG,根据相似三角形的性质可得出,套入数据即可得出a=2b①,再根据菱形的面积公式得出a2+b2=80②,联立①②解方程组即可得出结论.【解答】(1)证明:∵点O是菱形ABCD对角线AC、BD的交点,∴OA=OC,OD=OB,∵点O是线段FH的中点,∴OF=OH.在△AOF和△COH中,有,∴△AOF≌△COH(SAS),∴∠AFO=∠CHO,∴AF∥CH.同理可得:DH∥BF.∴四边形EFGH是平行四边形.(2)设矩形EFGH的长为a、宽为b,则AC=.∵=2,∴BD=AC=,OB=BD=,OA=AC=.∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOB=90°.∵四边形EFGH是矩形,∴∠AGH=90°,∴∠AOB=∠AGH=90°,又∵∠BAO=∠CAG,∴△BAO∽△CAG,∴,即,解得:a=2b①.=AC•BD=••=20,∵S菱形ABCD∴a2+b2=80②.联立①②得:,解得:,或(舍去).∴矩形EFGH的长为8,宽为4.26.如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y 轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)先求出直线BC解析式为y=﹣x+3,再求出抛物线顶点坐标,得出当x=1时,y=2;结合抛物线顶点坐即可得出结果;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),由勾股定理得出PB2=(m﹣3)2+(﹣m2+2m+3)2,PQ2=(m+3)2+(﹣m2+2m+3﹣n)2,BQ2=n2+36,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,由AAS证明△PQM≌△BPN,得出MQ=NP,PM=BN,则MQ=﹣m2+2m+3﹣n,PN=3﹣m,得出方程﹣m2+2m+3﹣n=3﹣m,解方程即可.【解答】解:(1)∵抛物线的对称轴x=1,B(3,0),∴A(﹣1,0)∵抛物线y=ax2+bx+c过点C(0,3)∴当x=0时,c=3.又∵抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0)∴,∴∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵C(0,3),B(3,0),∴直线BC解析式为y=﹣x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4)∵对于直线BC:y=﹣x+1,当x=1时,y=2;将抛物线L向下平移h个单位长度,∴当h=2时,抛物线顶点落在BC上;当h=4时,抛物线顶点落在OB上,∴将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),则2≤h≤4;(3)设P(m,﹣m2+2m+3),Q(﹣3,n),①当P点在x轴上方时,过P点作PM垂直于y轴,交y轴与M点,过B点作BN垂直于MP的延长线于N点,如图所示:∵B(3,0),∵△PBQ是以点P为直角顶点的等腰直角三角形,∴∠BPQ=90°,BP=PQ,则∠PMQ=∠BNP=90°,∠MPQ=∠NBP,在△PQM和△BPN中,,∴△PQM≌△BPN(AAS),∴PM=BN,∵PM=BN=﹣m2+2m+3,根据B点坐标可得PN=3﹣m,且PM+PN=6,∴﹣m2+2m+3+3﹣m=6,解得:m=1或m=0,∴P(1,4)或P(0,3).②当P点在x轴下方时,过P点作PM垂直于l于M点,过B点作BN垂直于MP的延长线与N点,同理可得△PQM≌△BPN,∴PM=BN,∴PM=6﹣(3﹣m)=3+m,BN=m2﹣2m﹣3,则3+m=m2﹣2m﹣3,解得m=或.∴P(,)或(,).综上可得,符合条件的点P的坐标是(1,4),(0,3),(,)和(,).2016年8月12日项目经理岗位职责1、组织制定项目总体规划和施工设计,全面负责项目部生产、经营、质量、安全、文明、财务等一系列管理工作。