2019届高三文科班10月份 月考数学试卷
- 格式:doc
- 大小:842.42 KB
- 文档页数:4
高三年级10月份月考数学试题考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
第I 卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合{}{},0,1,2A x x B =-1≥0=,则A B = ( )A .{}0B .{}1C .{}1,2D .{}0,1,22.若()125i z i -=,则z 的值为( )A .3B .5CD 3.命题“x R ∃∈,2210x x -+<”的否定是( )A .x R ∃∈,2210x x -+≥B .x R ∃∈,2210x x -+>C .x R ∀∈,2210x x -+≥D .x R ∀∈,2210x x -+<4.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = ( )A .(7,4)--B .(7,4)C .(1,4)-D .(1,4)5.已知等差数}{n a 的前n 项和n S ,若34512a a a ++=,则7S 的值为( ) A .14 B .28 C .42 D .56 6.函数()sin ln f x x x =⋅的图象大致是( )7.已知()0,απ∈且1sin cos 2αα+=,则cos 2α的值为( )A . BC .14-D . 8.ABC ∆中,a b c 、、分别是角A B C 、、的对边,若ABC ∆的面积为2224a b c +-,则角C 的值为( ) A .6π B .4π C .3π D .2π 9.将函数()πsin 43f x x ⎛⎫=+⎪⎝⎭的图象向左平移(0ϕϕ>)个单位后关于直线π12x =对称, 则ϕ的最小值为( )A .5π24 B .π4 C .7π24 D .π310.如图,平面四边形ABCD 中,90ABC ADC ∠=∠= ,2BC CD ==,点E 在对角线AC 上,AC=4,AE=1,则EB ED ⋅的值为( )A .17B .13C .5D .111.中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层.设最底层长有c 个,宽有d 个,则共计有木桶6)]()2()2[(b d d a c b c a n -++++个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为( )A .1530B .1430C .1360D .126012.设()f x 是定义在R 上的函数,其导函数为'()f x ,若()'()1f x f x -<,(0)4f = 则不等式()31xf x e >+的解集为( )A .(,0)(0,)-∞+∞B .(0,)+∞C .(3,)+∞D .(,0)(3,)-∞+∞第19题图第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填写在答题卡上) 13.已知向量(1,2)=a ,(2,2)=-b ,(1,)λ=c .若()2+c a b ,则λ= 14.若锐角,αβ满足4sin 5α=,()2tan 3αβ-=,则tan β= ________. 15.求和122122323233n n n n n ---+⋅+⋅++⋅+= . 16.已知函数3()+21x x f x x x e e -=+-+其中e 是自然对数的底数.若2(1)(2)2f a f a -+≤,则实数a 的取值范围是________.三、解答题:(共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答) 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.18.(本小题满分12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m19.(本小题满分12分)ABC ∆中,a b c 、、分别是角A B C 、、的对边,已知=60,2B b ∠= ,D 是边BC的中点且AD =(1)求sin A 的值;(2)求ABC ∆的面积.20.(本小题满分12分)已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列, 数列{}n b 满足 123111223n b b b b n n++++= *()n N ∈ (1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2n S .21.(本小题满分12分)设函数221()(ln ),f x x a x a R x x=---∈ (1)讨论()f x 的单调性(2)当0a >时,记()f x 的最小值为()g a ,证明:()1g a <请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4—4:坐标系与参数方程.在直角坐标系xOy 中,过点(1,2)P 的直线l的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于,M N 两点.求11||||PM PN +的值23.(本小题满分10分)选修4—5:不等式选讲已知函数()()23f x x m x m R =++-∈. (1)当3m =-时,解不等式()9f x <;(2)若存在[]2,4x ∈,使得()3f x ≤成立,求m 的取值范围.文科数学参考答案一、CDCAB, ADBAD, CB 二、13.1214.617 15. 1132n n ++- 16. 1[1,]2-17解:(1)1cos 2()22x f x x -=......................................................................... 2分11π12cos 2sin(2)22262x x x =-+=-+. .....................................5分 ∴()f x 的最小正周期为2ππ2T ==. ............................................................................. 6分 (2)由(Ⅰ)知π1()sin(2)62f x x =-+. ∵π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. ........................................................... 8分要使得()f x 在π[,]3m -上的最大值为32, 即πsin(2)6x -在π[,]3m -上的最大值为1. ................................................................ 9分∴ππ262m -≥,即π3m ≥. .......................................................................................... 11分 ∴m 的最小值为π3. ....................................................................................................... 12分 18解:(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.. .................................... 4分故1(2)n n a -=-或12n n a -=.. ........................................................................................ 6分 (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解.. ................................................................................................. 8分 若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =............................. 11分 综上,6m =.. .............................................................................................................. 12分19解:(1)∵2b =,由正弦定理得2sin B C =,∴sin 7C ===................................................................. 3分 ∵,c b <所以角C为锐角,∴cos C =................................................................. 4分∴sin sin(120)sin120cos cos120sin 14A c C C =-=-=............................ 6分 (2)∵2b ,2c=,设,2b c k ==, 由sin sin a bA B=,得sin 143sin sin 60b A a k B === ∴32k BD =............................................................. 9分 在ABD ∆中由余弦定理得22229313422cos6013424k k k AD k k =+-⨯⨯⨯==, ∴2k = ............................................................................................................................. 11分∴ABC ∆的面积11sin 602322S BA BC k k =⋅=⨯⨯= ..........................12分 20解:(1)设等比数列{}n a 的公差为q ,由条件得3242(2)a a a +=+,又12a =则232(22)22q q q +=+即224(1)2(1)q q q +=+因为210q +>得2q =故2n n a = ......................................................................................................... 2分 对于数列{}n b 当1n =时,12b =;当2n ≥时,由123111223n b b b b n n++++= *()n N ∈得 12311112(1)231n b b b b n n -++++=-- ...................................................................... 4分∴12 (2)n b n n=≥可得2n b n =,且12b =也适合,故2n b n =*()n N ∈ ∴2n n a =,2n b n = ....................................................................................................... 6分(2)由(1)得122112222+n n n n S c c c a b a b a b =+++=-++--- ,122122(+)()n n a a a b b b =-+-+-+- ..............................................................8分 22[1(2)](2)1(2)n n ---=+⋅--- ........................................................................................10分 221212(12)222333n n n n +=---=⋅-- ..................................................................12分 21.解:(1)()f x 的定义域为(0,)+∞,............................................................................... 1分2222323321222(2)()'()1()x x x x a f x a a x x x x x x +++-=+-+=-=, ................................ 2分当0a ≤时,'()0f x >,()f x 在(0,)+∞上单调递增; ..................................................... 3分 当0a >时,当(0,)x a ∈,'()0f x <,()f x 单调递减;当(,)x a ∈+∞,'()0f x >,()f x 单调递增;综上,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增. ......................... 5分(2)由(1)知,min 1()()()ln g a f x f a a a a a===--................................................. 7分 解法一:2211'()1ln 1ln g a a a a a=--+=-, ................................................................. 8分321''()0g a a a=--<,∴'()g a 单调递减, ..................................................................... 9分 又'(1)0,g'(2)0g ><,所以存在0(1,2)a ∈,使得0'()0g a =, ∴当0(0,)a a ∈时,'()0g a >,()g a 单调递增;当0(,)a a ∈+∞时,'()0g a <,()g a 单调递减; ....................................................... 10分∴max 000001()()ln g a g a a a a a ==--,又0'()0g a =, 即0201ln 0a a -=,021ln a a =, ....................................................................................... 11分∴0002000112()g a a a a a a a =--=-,令00()()t a g a =,则0()t a 在(1,2)上单调递增, 又0(1,2)a ∈,所以0()(2)211t a t <=-=,∴()1g a < .............................................. 12分解法二:要证()1g a <,即证1ln 1a a a a --<,即证:2111ln a a a--<, .................. 9分 令211()ln 1h a a a a =++-,则只需证211()ln 10h a a a a=++->, 223331122(2)(1)'()a a a a h a a a a a a---+=--==, ....................................................... 10分 当(0,2)a ∈时,'()0h a <,()h a 单调递减;当(2,)a ∈+∞时,'()0h a >,()h a 单调递增; .............................................................. 11分∴min 111()(2)ln 21ln 20244h a h ==++-=->,∴()0h a >,即()1g a < ................ 12分22解:由已知消去t 得)1(32-=-x y∴化为一般方程为:0323=-+-y x .......................................................................... 2分曲线C :4sin ρθ=得,24sin ρρθ=, ............................................................................ 3分 即224x y y +=,整理得22(2)4x y +-=,即曲线22(2)4C x y +-=: ...................... 5分 (2)把直线l 的参数方程代入曲线C 的直角坐标方程得:221(1))42t ++=,即230t t +-=, ......................................................................7分 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,............................................. 8分1212||||11||||||||||||||t t PM PN PM PN PM PN t t ++∴+==⋅⋅1212||||t t t t -=⋅ .................................................. 9分123==. ................................................................................................ 10分23解:(1)当3m =-时,()323f x x x =-+-由()9,()3239f x f x x x <=-+-<即∴33239x x x ≥⎧⎨-+-<⎩或3323239x x x ⎧<<⎪⎨⎪-+-<⎩或323329x x x ⎧≤⎪⎨⎪-+-<⎩ ............................ 3分 故35x ≤<或332x <<或312x -<≤..............................................................................4分 从而15x -<<; ................................................................................................................ 5分 (2)当[2,4]x ∈时,()23f x x m x =++- ∴存在[]2,4x ∈,使得()3f x ≤成立即存在[]2,4x ∈使得62x m x +≤- .......................................................................... 7分 即2662x x m x -≤+≤-成立 ∴存在[]2,4x ∈,使得636x mx m≤+⎧⎨≤-⎩成立即6266m m +≥⎧⎨-≥⎩................................................................................................................... 9分∴40m -≤≤ ................................................................................................................10分。
2019届高三数学10月月考试题 文一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。
1.设角α终边上一点P (4a ,3a )(a ≠0),则cos α的值是( )A .35B .45-C .35±D .45±2.已知实数集R 为全集,集合{}{2log (1),A x y x B y y ==-==,则()R C A B=( ) A .(,1]-∞ B .(0,1) C .[0,1] D .(1,2]3.设复数z 满足12z i i ⋅=--,则复平面内表示复数z 的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.执行如图所示的程序框图,则输出的实数m 的值为( )A .9B .10C .11D .125.若3sin()25πα+=-,且(,)2παπ∈,则sin(2)πα-=( ) A .2425 B .1225 C .1225- D .2425- 6.已知函数()f x 的定义域为R ,lg ,0(90),0x x f x x x >⎧-=⎨-≤⎩, 则(10)(100)f f --的值为( )A .-8B .-16C .55D .1017.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .16B .13C .23D .1 8.已知函数()2sin sin()3f x x x πϕ=++是奇函数,其中(0,)ϕπ∈,则函数()cos(2)g x x ϕ=-的图象( )A .关于点(,0)12π对称 B .可由函数()f x 的图象向右平移3π个单位得到 C .可由函数()f x 的图象向左平移6π个单位得到 D .可由函数()f x 的图象向左平移12π个单位得到 9.函数()f x 是定义域为R 的奇函数,且0x ≤时,1()22x f x x a =-+,则函数()f x 的零点个数是( )A .4B .3C .2D .1 10.已知x ,y 满足约束条件11493x y x y x y ≥⎧⎪≥-⎪⎨+≤⎪⎪+≤⎩,若目标函数(0)z y mx m =->的最大值为1,则m 的值是( )A .25B .1C .2D .4 11.已知四棱锥P —ABCD 的顶点都在半径R 的球面上,底面ABCD 是正方形,且底面ABCD 经过球心O ,E 是AB 的中点,PE ⊥底面ABCD ,则该四棱锥P —ABCD 的体积等于( )A3R B .323R C.33R D.33R 12.已知函数()2f x +=,当(0,1]x ∈时,则2()f x x =,若在区间(-1,1]内,()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是( )A .1[,)2+∞B .11[,]22-C .1[,0)2-D .1(0,]2二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。
2019年高三10月月考数学文试题含答案一、选择题(本大题共10个小题,每小题5分,共50分)1.已知集合,,则为()A.B. C. D.2.己知命题:,则为()A. B.C. D.3.已知幂函数的图象过点,则的值为()A. B. C. D.4.为了得到函数的图象,只需把函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度5. 下列命题中,真命题是( )A..B. 命题“若,则”的逆命题.C. ,使得.D. 命题“若,则”的逆否命题.6.设函数,则“”是“函数为奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.函数的图象可能为( )8.在△ABC中,若,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9. 已知命题的图像关于对称;命题.则下列命题中正确的是()A. B. C. D.10.已知是定义域为的偶函数,,那么函数的极值点的个数是()A.5B.4C.3D.2二、填空题:(本大题共5个小题,每小题5分,共25分).11. 已知函数,则▲.12.已知角的终边上有一点,则的值为▲.13. 已知函数的图象恒过点,则点的坐标是▲.14. 已知是定义域为的函数,且满足,当时,则▲.15.函数的图象与函数)的图象所有交点的横坐标之和等于▲.三、解答题(本大题共6个小题,共75分)16.(本小题满分12分)已知全集,集合,(I)求:;(Ⅱ)若集合,,,且是的充分条件,求实数的取值范围.17. (本小题满分12分)已知函数的定义域为.(Ⅰ)求实数的取值范围;(Ⅱ)当变化时,若的最小值为,求函数的值域.18.(本小题满分12分)已知函数的最小正周期为. (Ⅰ)求的值及的单调递减区间;(Ⅱ)在锐角中,角所对的边分别为,,,求的面积.19.(本小题满分12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当]时,恒成立,求实数的取值范围.20. (本小题满分13分)如图,函数(其中)的图象与坐标轴的三个交点为,且,,,为的中点,.(Ⅰ)求的值及的解析式;(Ⅱ)设,求.21.(本小题满分14分)设函数.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;(Ⅱ)求函数的单调区间;(Ⅲ)若函数有两个极值点且,求证:.济宁市育才中学xx高三10月数学(文)试题答案C2469 2 6074 恴|33984 84C0 蓀];40319 9D7F 鵿D21566 543E 吾30327 7677 癷/26478 676E 杮c。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年上学期学年度上学期高三月考(三)文科数学试题一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}1,3,5C .{}4,6D .{}4,6,7,82.已知复数21i z i=+(i 是虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列各式中的值为12的是( ) A .22sin 151-B .22cos 15sin 15-C .2sin15cos15D .22sin 15cos 15+4. 与命题“若a ∈M ,则b ∉M ”等价的命题是( )A .若a ∉M ,则b ∉MB .若b ∉M ,则a ∈MC .若b ∈M ,则a ∉MD .若a ∉M ,则b ∈M5.某公司的班车分别在8:00,8:30时刻发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过15分钟的概率是( )A .13B .38C .23D .586.函数()()sin f x x ωϕ=+ (0,2πωϕ><)的图像如图所示,为了得到sin y x ω=的图像,只需把()y f x =的图像上所有点( )A .向右平移6π个单位长度 B .向右平移π个单位长度A U7.下列函数中,其图像与函数x y ln =的图像关于)0,2(对称的是( )A .)2ln(x y --=B .)2ln(x y +-=C .)4ln(x y +-=D .)4ln(x y --=8.直线3y kx =+与圆22(2)(2)4x y -+-=相交于M,N两点,若MN ≥k 的取值范围是( )A.4[,0]3-B. 4(,][0,)3-∞-+∞C.[D.2[,0]3-9.函数2()(1)sin f x x x =-的图象大致是( )A B C D10.设F 为抛物线x y 82=的焦点,A B C ,,为该抛物线上三点,若FAFB FC ++=0,则FA FB FC ++=( )A .18B .12C .8D .611.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,(2)cos (2cos cos )a b C c B A -=-,则角A 的取值范围是( )A .⎥⎦⎤⎝⎛30π,B .⎪⎭⎫ ⎝⎛30π,C .⎥⎦⎤ ⎝⎛60π,D .,6ππ⎡⎫⎪⎢⎣⎭12.已知A ,B ,C ,D 是球面上不共面的四点,AB=BC=AD=2,BD=AC=22, BC ⊥AD,则此球的表面积为( )A.π3B.π6C.π12D.π34二、填空题:本题共4小题,每小题5分,共20分。
【精品】2019届高三数学(文科)10月联考试题★答案一、选择题:1.已知全集U R =,集合1{|30},{|2}4x A x x B x =-<=>,则=)(B C A U ( )A .{|23}x x -≤≤B .{|23}x x -<<C .{|2}x x ≤-D .{|3}x x < 2.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3-3.已知54sin -=α,且α是第四象限角,则)4sin(απ-的值为( ) A .1025 B .523 C .1027 D .524 4.已知命题:p 函数tan()6y x π=-+在定义域上为减函数,命题:q 在ABC ∆中,若30A > ,则1sin 2A >,则下列命题为真命题的是( ) A .q p ∧⌝)(B .()()p q ⌝∧⌝C .()p q ∧⌝D .q p ∨5.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥-≤+,0,1,33y y x y x 则y x z +=2的最小值为( )A .0B .1C .2D .36.已知2.05.1=a ,5.1log 2.0=b ,5.12.0=c ,则( )A .a b c >>B .b c a >>C .c a b >>D .a c b >>7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,3π=A ,2=b ,33=∆ABC S ,则=-+-+CB A c b a sin 2sin sin 2( ) A .372 B .3214C .4D .426+ 8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .8B .16C .24D .489.在ABC ∆中,点D 是AC 上一点,且AD AC 4=,P 为BD 上一点,向量)0,0(>>+=μλμλ,则μλ14+的最小值为A .16B .8C .4D .210.已知函数)cos 1(sin )(x x x g -=,则|)(|x g 在],[ππ-的图像大致为( )11.已知直线21y x =+与曲线x y ae x =+相切,其中e 为自然对数的底数,则实数a 的值为( )A .1B .2C .eD .2e12.已知函数⎪⎩⎪⎨⎧≥+-<=0,1640,)(23x x x x e x f x ,则函数2)(3)]([2)(2--=x f x f x g 的零点个数为( )A .2B .3C .4D .5二、填空题:13.命题“1,000+>∈∃x e R x x ”的否定是 ;14.已知数列}{n a 满足:111+-=n n a a ,且21=a ,则=2019a _____________; 15.已知向量,a b 满足||=5a ,||6a b -= ,||4a b += ,则向量b 在向量a 上的投影为 ;16.函数)(x f y =的图象和函数0(log >=a x y a 且)1≠a 的图象关于直线x y -=对称,且函数3)1()(--=x f x g ,则函数)(x g y =图象必过定点___________。
2019年高三上学期10月月考数学试卷(文科)含解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁UA)∩B等于()A.{x|﹣2≤x<4} B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1} D.{x|﹣2<x<﹣1或3<x<4}2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题3.在等差数列{an }中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.194.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.36.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=.11.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是.13.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=.14.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h向量”,其中=(sinx,cosx),=(2cosx,2sinx).设在平面直角坐标系中有一点列Q1.Q2,Q3,…,Q n满足:Q1为坐标原点,Q2为的位置向量的终点,且Q2k+1与Q2k关于点Q1对称,Q2k+2与Q2k+1(k∈N*)关于点Q2对称,求||的最小值.参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合A={x|x≤﹣2或x≥3},B={x|x<﹣1或x>4},那么集合(∁U A)∩B等于()A.{x|﹣2≤x<4}B.{x|﹣2<x<3}C.{x|﹣2<x<﹣1}D.{x|﹣2<x<﹣1或3<x<4}【考点】交、并、补集的混合运算.【分析】求出集合A的补集,从而求出其和B的交集即可.【解答】解:集合A={x|x≤﹣2或x≥3},∴∁U A={x|﹣2<x<3},B={x|x<﹣1或x>4},∴(∁U A)∩B={x|﹣2<x<﹣1},故选:C.2.已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题【考点】全称命题;复合命题的真假.【分析】先判断出命题p与q的真假,再由复合命题真假性的判断法则,即可得到正确结论.【解答】解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故答案为C.3.在等差数列{a n}中,首项a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为()A.37 B.36 C.20 D.19【考点】数列的求和;等差数列.【分析】利用等差数列的通项公式可得a m=0+(m﹣1)d,利用等差数列前9项和的性质可得a1+a2+…+a9=9a5=36d,二式相等即可求得m的值.【解答】解:∵{a n}为等差数列,首项a1=0,a m=a1+a2+…+a9,∴0+(m﹣1)d=9a5=36d,又公差d≠0,∴m=37,故选A.4.若点P在曲线y=x3﹣3x2+(3﹣)x+上移动,经过点P的切线的倾斜角为α,则角α的取值范围是()A.[0,)B.[0,)∪[,π)C.[,π)D.[0,)∪(,]【考点】导数的几何意义;直线的倾斜角.【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.【解答】解:∵函数的导数y′=3x2﹣6x+3﹣=3(x﹣1)2﹣≥﹣,∴tanα≥﹣,又0≤α<π,∴0≤α<或≤α<π,故选B.5.i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.3【考点】复数的基本概念;复数代数形式的乘除运算.【分析】利用复数的乘法求出复数z,然后求解结果即可.【解答】解:复数z满足zi=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.6.已知m、n为两条不同的直线α、β为两个不同的平面,给出下列四个命题①若m⊂α,n∥α,则m∥n;②若m⊥α,n∥α,则m⊥n;③若m⊥α,m⊥β,则α∥β;④若m∥α,n∥α,则m∥n.其中真命题的序号是()A.①②B.③④C.①④D.②③【考点】平面的基本性质及推论.【分析】m⊂α,n∥α,则m∥n或m与n是异面直线;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,故m⊥l,m⊥n;若m⊥α,m⊥β,则α∥β;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.【解答】解:m⊂α,n∥α,则m∥n或m与n是异面直线,故①不正确;若m⊥α,则m垂直于α中所有的直线,n∥α,则n平行于α中的一条直线l,∴m⊥l,故m⊥n.故②正确;若m⊥α,m⊥β,则α∥β.这是直线和平面垂直的一个性质定理,故③成立;m∥α,n∥α,则m∥n,或m,n相交,或m,n异面.故④不正确,综上可知②③正确,故答案为:②③.7.已知函数f(x)满足:4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R)且,则fA. B. C. D.【考点】抽象函数及其应用.【分析】由,令y=1代入题中等式得f(x)=f(x+1)+f(x﹣1),由此证出f(x+6)=f(x),可得函数f(x)是周期T=6的周期函数.令y=0代入题中等式解出f(0)=,再令x=y=1代入解出f(2)=﹣,同理得到f(4)=﹣.从而算出f=f(4)=﹣.【解答】解:∵,∴令y=1,得4f(x)f(1)=f(x+1)+f(x﹣1),即f(x)=f(x+1)+f(x﹣1),即f(x+1)=f(x)﹣f(x﹣1)…①用x+1替换x,得f(x+2)=f(x+1)﹣f(x),…②①+②得:f(x+2)=﹣f(x﹣1),再用x+1替换x,得f(x+3)=﹣f(x).∴f(x+6)=f[(x+3)+3]=﹣f(x+3)=﹣[﹣f(x)]=f(x),函数f(x)是周期T=6的周期函数.因此,f=f(4).∵4f(x)f(y)=f(x+y)+f(x﹣y)∴令y=0,得4f(x)f(0)=2f(x),可得f(0)=.在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=1,得4f2(1)=f(2)+f(0),∴4×=f(2)+,解之得f(2)=﹣同理在4f(x)f(y)=f(x+y)+f(x﹣y)中令x=y=2,解得f(4)=﹣.∴f=﹣.故选:A8.在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)•(++)的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M 满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0【考点】平面向量数量积的运算;进行简单的合情推理.【分析】利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.【解答】解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)•(++)的最小值、最大值,∴m<0,M<0故选D.二、填空题:(本大题共6小题;每小题5分,共30分.)9.设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.【考点】复数的基本概念.【分析】根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.10.已知等差数列{a n}的前n项和为S n,若a3=4,S3=3,则公差d=3.【考点】等差数列的前n项和.【分析】由等差数列的性质可得S3=3a2=3,解得a2的值,由公差的定义可得.【解答】解:由等差数列的性质可得S3===3,解得a2=1,故公差d=a3﹣a2=4﹣1=3故答案为:311.若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.【考点】两角和与差的余弦函数;二倍角的余弦.【分析】已知等式左边利用两角和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式子利用二倍角的余弦函数公式化简后,将cos(x﹣y)的值代入计算即可求出值.【解答】解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.12.已知函数若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是m≥2或m=0.【考点】分段函数的应用.【分析】作出函数f(x)的图象,判断函数的单调性和取值范围,利用数形结合进行判断即可.【解答】解:作出函数f(x)的图象如图,则当x<1时,f(x)∈(0,2),当x≥1时,f(x)≥0,则若直线y=m与函数f(x)的图象只有一个交点,则m≥2或m=0,故答案为:m≥2或m=013.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,20,则输出的a=2.【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当a=14,b=20时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=14,b=6,当a=14,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=8,b=6,当a=8,b=6时,满足a≠b,且满足a>b,执行a=a﹣b后,a=2,b=6,当a=2,b=6时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=4,当a=2,b=4时,满足a≠b,但不满足a>b,执行b=b﹣a后,a=2,b=2,当a=2,b=2时,不满足a≠b,故输出的a值为2,故答案为:214.已知A、B为函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)图象上任意一点,其中x=λa+(1﹣λ)b,λ∈[0,1],又已知向量=λ+(1﹣λ),若不等式||≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数f(x)=x﹣在[1,2]上“k阶线性近似”,则实数k的取值范围为.【考点】平面向量的综合题.【分析】先得出M、N横坐标相等,再将恒成立问题转化为求函数的最值问题.【解答】解:由题意,M、N横坐标相等,恒成立,即,由N在AB线段上,得A(1,0),B(2,),∴直线AB方程为y=(x﹣1)∴=y1﹣y2=﹣(x﹣1)=﹣(+)≤(当且仅当x=时,取等号)∵x∈[1,2],∴x=时,∴故答案为:三、解答题:(本大题6小题,共80分.解答写出文字说明,证明过程或演算步骤.)15.已知数列{a n}的前n项和S n=n﹣5a n﹣85,(Ⅰ)求{a n}的通项公式;(Ⅱ)令b n=log+log+…+log,求数列{}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,两式相减得a n+1=1﹣5a n+1+5a n,化为,再利用等比数列的通项公式即可得出.(2)利用对数的运算可得=n,利用等差数列的前n项和公式即可得出b n,再利用“裂项求和”即可得出T n.【解答】解:(Ⅰ)当n=1时,a1=S1=1﹣5a1﹣85,解得a1=﹣14.∵S n=n﹣5a n﹣85,S n+1=(n+1)﹣5a n+1﹣85,∴两式相减得a n+1=1﹣5a n+1+5a n,即,从而{a n﹣1}为等比数列,首项a1﹣1=﹣15,公比为.∴,即.∴{a n}的通项公式为.(Ⅱ)由(Ⅰ)知,∴=n,∴b n=1+2+3+…+n=.∴,∴T n==.16.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.【考点】两角和与差的正弦函数;正弦函数的单调性;正弦定理.【分析】(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由S=ab•sinC,运算求得结果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab•sinC==.17.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)等比数列{b n}满足:b1=a1,b2=a2﹣1,若数列c n=a n•b n,求数列{c n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(Ⅰ)设等差数列{a n}的公差为d,d>0,利用等差数列的通项表示已知,求解出d,a1,结合等差数列的通项即可求解(Ⅱ)由b1=1,b2=2可求,,结合数列的特点,考虑利用错位相减求解数列的和【解答】解:(Ⅰ)设等差数列{a n}的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16 ①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由a3a6=55得(a1+2d)(a1+5d)=55 ②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由①得2a1=16﹣7d将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0∴d=2,代入①得a1=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴a n=1+(n﹣1)•2=2n﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)b1=1,b2=2∴∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣两式相减可得:=1+2×﹣(2n﹣1)•2n∴=2n+1﹣3﹣(2n ﹣1)•2n﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣18.在△ABC中,2cos2cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣.(1)求cosA的值;(2)若a=4,b=5,求在方向上的投影.【考点】两角和与差的余弦函数;向量数乘的运算及其几何意义;二倍角的正弦;二倍角的余弦;余弦定理.【分析】(Ⅰ)由已知条件利用三角形的内角和以及两角差的余弦函数,求出A的余弦值,然后求sinA的值;(Ⅱ)利用,b=5,结合正弦定理,求出B的正弦函数,求出B的值,利用余弦定理求出c 的大小.【解答】解:(Ⅰ)由可得,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.19.已知函数f(x)=x3﹣bx+c(b,c∈R)(Ⅰ)若函数f(x)在点(1,f(1))处的切线方程为y=2x+1,求b,c的值;(Ⅱ)若b=1,函数f(x)在区间(0,2)内有唯一零点,求c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|≤,求b的取值范围.【考点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数f′(x),根据f′(1)=2可求出b的值,再根据切点既在切线上又在函数图象上可求出c的值;(Ⅱ)先利用导数研究函数的单调性,从而得到f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解之即可求出c的取值范围;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,讨论b的取值范围,求出f(x)在[﹣1,1]上的最大值与最小值之差M,建立关系式,解之即可.【解答】解:(Ⅰ)∵f(x)=x3﹣bx+c,∴f′(x)=x2﹣b,∴f′(1)=1﹣b=2,解得b=﹣1,又f(1)=2+1=3,∴﹣b+c=3,解得c=;(Ⅱ)∵b=1,∴f(x)=x3﹣x+c,则f′(x)=x2﹣1,当x∈(0,1)时,f′(x)<0,当x∈(1,2)时,f′(x)>0,∴f(x)在(0,1)上单调递减,在(1,2)上单调递增,又f(0)=c<f(2)=+c,可知f(x)在区间(0,2)内有唯一零点等价于f(1)=0或,解得c=或﹣<c≤0;(Ⅲ)若对任意的x1,x2∈[﹣1,1],均有|f(x1)﹣f(x2)|等价于f(x)在[﹣1,1]上的最大值与最小值之差M≤,(ⅰ)当b≤0时,在[﹣1,1]上f′(x)≥0,f(x)在[﹣1,1]上单调递增,由M=f(1)﹣f(﹣1)=﹣2b≤,得b≥﹣,所以﹣≤b≤0,(ⅱ)当b>0时,由f′(x)=0得x=±,由f(x)=f(﹣)得x=2或x=﹣,∴f(2)=f(﹣),同理f(﹣2)=f(),①当>1,即b>1时,M=f(﹣1)﹣f(1)=2b﹣>,与题设矛盾,②当≤1≤2,即≤b≤1时,M=f(﹣2)﹣f()=﹣+2b=≤恒成立,③当2<1,即0<b<时,M=f(1)﹣f(﹣1)=﹣2b≤恒成立,综上所述,b的取值范围为[﹣,1].20.对于一组向量,,,…,(n∈N*),令=+++…+,如果存在(p∈{1,2,3,…,n},使得||≥|﹣|,那么称是该向量组的“h向量”.(1)设=(n,x+n)(n∈N*),若是向量组,,的“h向量”,求实数x的取值范围;(2)若=(()n﹣1•(﹣1)n(n∈N*),向量组,,,…,是否存在“h向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“h 向量”,其中=(sinx ,cosx ),=(2cosx ,2sinx ).设在平面直角坐标系中有一点列Q 1.Q 2,Q 3,…,Q n 满足:Q 1为坐标原点,Q 2为的位置向量的终点,且Q 2k +1与Q 2k 关于点Q 1对称,Q 2k +2与Q 2k +1(k ∈N *)关于点Q 2对称,求||的最小值.【考点】函数的最值及其几何意义.【分析】(1)由“h 向量”的定义可知:丨丨>丨+丨,可得≥,即可求得实数x 的取值范围;(2)由=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),丨++…+丨=<<,同理当n 为偶数时, ++…+=(﹣•()n ﹣1,1),即可求得丨丨>丨++…+丨,因此是向量组,,,…,的“h 向量”;(3)由题意可得:丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,以上各式相加,整理可得:丨丨+丨丨+丨丨=0,设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,根据向量相等可知:(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),(x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2),可知:Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,由向量的模长公式即可求得丨Q 1•Q 2丨最小值,即可求得||的最小值. 【解答】解:(1)由题意,得:丨丨>丨+丨,则≥…..2’解得:﹣2≤x ≤0; …..4’(2)是向量组,,,…,的“h 向量”,证明如下:=(1,﹣1),丨丨=,当n 为奇数时, ++…+=(,0)=(﹣()n ﹣1,0),…..6’ ∵0≤﹣()n ﹣1<,故丨++…+丨=<<,…8’即丨丨>丨++…+丨当n 为偶数时, ++…+=(﹣•()n ﹣1,1),故丨++…+丨=<<, 即丨丨>丨++…+丨综合得:是向量组,,,…,的“h 向量”,证明如下:”…..10’(3)由题意,得丨丨>丨+丨,丨丨2>丨+丨2,即(丨丨)2≥(丨+丨)2,即丨丨2>丨丨2+丨丨2+2丨丨•丨丨,同理丨丨2>丨丨2+丨丨2+2丨丨•丨丨,丨丨2>丨丨2+丨丨2+2丨丨•丨丨,三式相加并化简,得:0≥丨丨2+丨丨2+丨丨2+2丨丨•丨丨+2丨丨•丨丨+2丨丨•丨丨, 即(丨丨+丨丨+丨丨)2≤0,丨丨丨+丨丨+丨丨丨≤0,∴丨丨+丨丨+丨丨=0,…..13’设=(u ,v ),由丨丨+丨丨+丨丨=0,得:,设Q n (x n ,y n ),则依题意得:, 得(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2k ,y 2k ), 故(x 2k +2,y 2k +2)=2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), (x 2k +1,y 2k +1)=﹣2k [(x 2,y 2)﹣(x 1,y 1)]+(x 2,y 2), ∴Q 2k +1•Q 2k +2=(x 2k +2﹣x 2k +1,y 2k +2﹣y 2k +1)=4k [(x 2,y 2)﹣(x 1,y 1)]=4kQ 1•Q 2,…16’ 丨Q 1•Q 2丨2=丨丨2=(﹣sinx ﹣2cosx )2+(﹣cosx ﹣2sinx )2=5+8sinxcosx=5+4sin2x ≥1, 当且仅当x=k π﹣,(k ∈Z )时等号成立, 故||的最小值4024.xx1月2日25425 6351 捑31591 7B67 筧P~+ 39544 9A78 驸#36141 8D2D 购Pq38373 95E5 闥33824 8420 萠•。
2019届高三文科数学10月月考试题(带答案)2019届高三文科数学10月月考试题(带答案)第I卷(选择题共50分)一、选择题:(本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求)1、集合,,则AB=( )A、B、C、D、2、下列函数中,既是奇函数又是增函数的为( )A、B、C、D、3、设,若,则( A )A. B. C. D.4、给出下列五个命题:①命题使得的否定是:② a R,1是1的必要不充分条件③为真命题是为真命题的必要不充分条件④命题若则x=1的逆否命题为若其中真命题的个数是( )A、1 B、2 C、3 D、45、已知f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x (0,2)时f(x)=2x2,( )A、B、C、D、6、设,则a,b,c的大小关系是A、bB、cC、cbD、b7、函数的零点一定位于下列哪个区间( )A、B、C、D、8、把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的图像关于直线y=x对称,则f(x)=( )A、B、C、D、9、设函数则不等式的解集是( )A、B、C、D、10、若函数满足:对于区间(1,2)上的任意实数,恒成立,则称为完美函数.在下列四个函数中,完美函数是( )A. B. C. D.第Ⅱ卷(非选择题共100分)二、填空题:(本大题共5小题,每小题5分,满分25分)11、函数的定义域为_______.12、已知则=________.13、函数的单调递减区间为__________14、函数为奇函数,则实数15、定义在(-,+)上的偶函数f(x)满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,下面五个关于f(x)的命题中:① f(x)是周期函数② f(x) 的图象关于x=1对称③ f(x)在[0,1]上是增函数,④f(x)在[1,2]上为减函数⑤ f (2)=f(0)正确命题的是__________三、解答题:(本大题共6小题,共75分。
2019届高三10月月考文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知为第二象限角,且,则的值是()A、B、C、D、2、若复数满足,则的虚部为( )A、B、C、D、43 、集合,,则( )A、B、C、D、4、已知命题:,都有,命题:,使得,则下列命题中为真是真命题的是()A、p且qB、或qC、p或qD、且5、已知命题则成立的一个充分不必要条件是()A、B、C、D、6、已知则的最小值为( )A、4B、8C、9D、67、已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为()A、B、C、2 D、38、设,则( )A、B、C、D、9、已知是定义在上的函数,并满足当时,,则A、B、C、D、10、若在,其外接圆圆心满足,则()A、B、C、D、111、函数的部分图像如图所示,若方程在上有两个不相等的实数根,则的取值范围是()A、B、C、D、12、数列满足,对任意,满足若则数列的前项和为( )A、B、C、D、第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13、若向量,且与垂直,则实数的值为14、数列满足,则此数列的通项公式__________.15、若函数为上的奇函数,且当时,,则________.16、函数满足:,且,则关于的方程实数根的个数为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17、(本题满分10分)某玩具生产厂计划每天生产卡车模型、赛车模型、小汽车模型这三种玩具共个,生产一个卡车模型需分钟,生产一个赛车模型需分钟,生产一个小汽车模型需分钟,已知总生产时间不超过小时,若生产一个卡车模型可获利元,生产一个赛车模型可获利润元,生产一个小汽车模型可获利润元,该公司应该如何分配生产任务使每天的利润最大,并求最大利润是多少元?18、(本题满分12分)已知存在使不等式成立. 方程有解.(1)若为真命题,求的取值范围;(2)若为假命题,为真命题,求的取值范围.19、(本题满分12分)设△ABC的三边a,b,c所对的角分别为A,B,C,(Ⅰ)求A的值;(Ⅱ)求函数的单调递增区间.20. (本题满分12分)已知数列的首项,前项和为. (1)求数列的通项公式;(2)设,求数列的前项和;21、(本题满分12分)已知函数,为的导函数,若是偶函数且⑴求函数的解析式;⑵若对于区间上任意两个自变量的值,都有,求实数的最小值;⑶若过点,可作曲线的三条切线,求实数的取值范围.22、(本题满分12分)已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.。
2019学年月考卷 数学(文科)第Ⅰ卷(选择题)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N ⊆,则k 的取值范围是( ) A .2k ≤ B .1k ≥- C .1k >- D .2k ≥2.若复数|43|34i z i+=-,则z 的虚部为( )A .-4B .45-C .4D .453.已知等差数列{}n a 的前n 项和为n S ,若1476a a a ++=,则7S =( ) A .10 B .12 C .14 D . 164.下列命题中正确的是( )A .若αβ>,则sin sin αβ>;B .命题:“1x ∀>,21x >”的否命题是“1x ∃≤,21x ≤” C.直线20ax y ++=与40ax y -+=垂直的充要条件为1a =±; D .“若0xy =,则0x =或0y =”的逆否命题为“若0x ≠或0y ≠,则0xy ≠” 5.已知双曲线的一个焦点与圆2240x y y +-=的圆心重合,且其渐近线的方程为0y ±=,则该双曲线的标准方程为( )A .2213x y -=B .2213y x -= C.221916x y -= D .221169y x -= 6.执行如下图所示的程序框图,则输出的结果为( )A.8 B.9 C.10 D.117.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18,抽到的40人中,编号落在区间[1,200]的人做试卷A,编号落在[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为()A.10 B.12 C.18 D.288.设实数x,y满足约束条件324040640x yx yx y-+≥⎧⎪+-≤⎨⎪--≤⎩,则2z x y=+的最小值为()A.-5 B.-8 C.5 D.89.《九章算术》“竹九节”问题:现有一根九节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为()A.6766升 B.4744升 C.3733升 D.1升10.某几何体的三视图如图所示,则该几何体的体积为()A.176πB.173πC.5π D.136π11.已知函数()sin f x x x ωω=(0ω>)的图象的相邻两对称轴间的距离为2π,则当[,0]2x π∈-时,()f x 的最大值和单调区间分别为( )A .1,[,]26ππ-- B .1,[,]212ππ--,[,0]6π- D [,0]12π-12.已知函数()y f x =是R 上的可导函数,当0x ≠时,有()()0f x f x x+>,则函数1()()F x xf x x=+的零点个数是( ) A .0 B .1 C.2 D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知平面向量a ,b 满足||||||2a b a b ==-=,则|2|b a -= . 14.已知数列{}n a 满足112n n na a +=+,11a =,则n a = . 15.M 为抛物线28y x =上一点,过点M 作MN 垂直该抛物线的准线于点N ,F 为抛物线的焦点,O 为坐标原点,若四边形OFMN 的四个顶点在同一个圆上,则该圆的面积为 .16.三棱锥P ABC -中,AB BC ==,6AC =,PC ⊥平面ABC ,2PC =,则该三棱锥的外接球表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,cos (2C b A =. (1)求角A 的大小; (2)求25cos()2sin 22CB π--的取值范围. 18. 某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?(2)(1)条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.19. 如图,在四棱锥P ABCD -中,底面ABCD 为梯形,90ABC BAD ∠=∠=︒,BC =AP AD AB ===60PAB PAD ∠=∠=︒(1)试在棱PA 上确定一点E ,使得PC 平面BDE ,并求出此时AEEP的值; (2)求证:CD ⊥平面PBD .20. 已知过椭圆C :22221x y a b+=(0a >,0b >)的两个顶点分别为(,0)A a -,(,0)B a ,点P 为椭圆上异于A ,B 的点,设直线PA 的斜率为1k ,直线PB 的斜率为2k ,1212k k =-. (1)求椭圆C 的离心率;(2)若1b =,设直线l 与x 轴交于(1,0)D -,与椭圆交于M 、N 两点,求OMN ∆的面积的最大值.21. 设函数2()ln f x x x b x =++(b R ∈) (1)若1b =-,求过原点与()f x 相切的直线方程; (2)判断()f x 在[1,)+∞上的单调性并证明. 22.选修4-4:坐标系与参数方程已知曲线1C 的参数方程为431x ty t =⎧⎨=-⎩(t 为参数),当0t =时,曲线1C 上对应的点为P ,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρ=(1)求证:曲线1C 的极坐标方程为3cos 4sin 40ρθρθ--=; (2)设曲线1C 与曲线2C 的公共点为A ,B ,求||||PA PB 的值. 23.选修4-5:不等式选讲 已知函数()|2||1|f x x x =-++. (1)解关于x 的不等式()4f x x ≥-;(2)设a ,b {|()}y y f x ∈=,试比较2()a b +与4ab +的大小.试卷答案一、选择题1-5:DDCCB 6-10:CBAAA 11、12:DB 二、填空题13.12(1)2n - 15.272π 16.832π 三、解答题 17.【解析】(1cos 2sin cos cos A C B A C A =,)2sin cos A C B A +=2sin cos B B A =,又B 为三角形的内角,所以sin 0B ≠,于是cos A =又A 为三角形内角,因此,6A π=. (2)255cos()2sin sin cos 1sin cos()1226C B B C B B ππ--=+-=+--,553sin coscos sin sin 1sin 1)16626B B B B B B πππ=++-=-=-- 由6A π=可知,5(0,)6B π∈,所以2(,)663B πππ-∈-,从而1sin()(,1]62B π-∈-,)1(1]6B π--∈,故25cos()2sin 22CB π--的取值范围为(1]. 18.【解析】(1)第3组的人数为0.310030⨯=,第4组的人数为0.210020⨯=,第5组的人数为0.110010⨯=,因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为第3组:306360⨯=;第4组:206260⨯=;第5组:106160⨯=. (2)记第3组的3名志愿者为1A ,2A ,3A ,第4组的2名志愿者为1B ,2B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种.其中第4组的2名志愿者1B ,2B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种.所以第4组至少有一名志愿者都被抽中的概率为710. 19.【解析】(1)连接AC ,BD 交于点F ,在平面PCA 中作EFPC 交PA 于E ,因为PC ⊂平面BDE ,EF ⊂平面BDE ,所以PC 平面BDE ,因为AD BC ,所以12AF AD FC BC ==, 因为PC EF ,所以AE AF EP FC =,此时,12AE AF AD EP FC BC ===.(2)取BC 的中点G ,连结DG ,则ABGD 为正方形. 连接AG ,BD 交于点O ,连接PO ,因为AP AD AB ==,60PAB PAD ∠=∠=︒, 所以PAB ∆和PAD ∆都是等边三角形, 所以PA PB PD ==,又因为OD OB =,所以POB POD ∆≅∆,得90POB POD ∠=∠=︒, 同理POA POB ∆≅∆,90POA ∠=︒,所以PO ⊥平面ABC , 所以PO CD ⊥,因为90ABC BAD ∠=∠=︒,BC =AD AB ==所以2BD =,2CD =,得222BD CD BC +=, 所以BD CD ⊥,CD ⊥平面PBD .20.【解析】(1)设00(,)P x y ,代入椭圆的方程有2200221x y a b+=,整理得:222202()b y x a a=--.又010y k x a =+,020y k x a =-,所以201222012y k k x a ==--, 联立两个方程有212212b k k a =-=-,解得:2c e a ==.(2)由(1)知222a b =,又1b =,所以椭圆C 的方程为22121x y +=. 设直线l 的方程为:1x my =-,代入椭圆的方程有:22(2)210m y my +--=, 设11(,)M x y ,22(,)N x y . 由韦达定理:12222m y y m +=+,12212y y m -=+,所以121||||2OMNS OD y y ∆=-===t =(1t ≥),则有221m t =-,代入上式有221|2||1|2OMNS m t t t∆===≤+++ 当且仅当1t =,即0m =时等号成立, 所以OMN ∆的面积的最大值为2. 21.【解析】(1)设切点坐标为00(,)x y ,则有200000000ln ,,121,y x x x y kx k x x ⎧⎪=+-⎪⎪=⎨⎪⎪=+-⎪⎩解得:2k =,所以过原点与()f x 相切的直线方程为:2y x =. (2)'()21bf x x x=++, 当0b ≥时,'()0f x >,所以()f x 在[1,)+∞上单调递增;当0b <时,由22'()210b x x bf x x x x++=++==得:0x =,所以()f x 在0(0,)x 上单减,在0(,)x +∞上单增. 当01x ≤1≤时,解得3b ≥-,即当30b -≤<时,()f x 在[1,)+∞上单调递增;当01x >1>时,解得3b <-,即当3b <-时,()f x在⎛ ⎝⎭上单减,在⎫+∞⎪⎪⎝⎭上单增. 综上所述,当3b ≥-时,()f x 在[1,)+∞上单调递增;当3b <-时,()f x在11,4⎛-+ ⎝⎭上单减,在14⎛⎫-++∞ ⎪ ⎪⎝⎭上单增. 22.【解析】(1)证明:因为曲线1C 的参数方程为431x ty t =⎧⎨=-⎩(t 为参数),所以曲线1C 的直角坐标方程为3440x y --=.所以曲线1C 的极坐标方程为3cos 4sin 40ρθρθ--=. (2)解:当0t =时,0x =,1y =-,(0,1)P -,由(1)知,曲线1C 是经过P 的直线,设它的倾斜角为α,则3tan 4α=, 所以3sin 5α=,4cos 5α=,曲线1C 的参数方程为45315x T y T ⎧=⎪⎪⎨⎪=-⎪⎩(T 为参数),因为ρ=所以22(3sin )12ρθ+=,所以曲线2C 的直角坐标方程为223412x y +=,将45x T =,315y T =-代入223412x y +=,得22130500T T --=, 所以1150||||||21PA PB TT ==. 考点:坐标系与参数方程. 23.【解析】(1)21(1)()|2||1|3(12)21(2)x x f x x x x x x -+<-⎧⎪=-++=-≤≤⎨⎪->⎩所以13241x x x x <-⎧⇒≤-⎨-+≥-⎩或121234x x x -≤≤⎧⇒≤≤⎨≥-⎩,或22241x x x x>⎧⇒>⎨-≥-⎩.所以不等式的解集为(,3][1,)-∞-+∞.(2)由(1)易知()3f x ≥,所以3a ≥,3b ≥,由于2()(4)224(2)(2)a b ab a ab b a b +-+=-+-=--,因为3a ≥,3b ≥,所以20a ->,20b -<,即(2)(2)0a b --<, 所以2()4a b ab +<+.。
2019年高三10月月考数学(文)试题xx.10一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}x 2M y y 2,x 0,N x y lg 2x x ,M N ====-⋂>为A. B. C. D. 2.函数的极值点的个数是A.2B.1C.0D.由a 确定3.下面为函数的递增区间的是A. B. C. D.4.下列函数中,既是偶函数,又在区间(0.3)内是增函数的是A. B. C. D.5.已知,那么角a 的终边在A.第一象限B.第三或第四象限C.第三象限D.第四象限 6.函数的零点所在的区间是A. B. C.(1,e ) D.7.要得到函数的图象,只需将函数的图象A.向左平移个单位B.向右平移单位C.向左平移个单位D.向右平移个单位8.若112321a log 0.9,b 3,c 3-⎛⎫=== ⎪⎝⎭则A.a <b <cB.a <c <bC.c <a <bD.b <c <a 9.已知函数()()()f x 2sin x 0,0=ω+ϕωϕπ><<,且函数的图象如图所示,则点的坐标是A. B. C. D.10.在△ABC 中,°,C=60°,c=1,则最短边的边长是A. B. C. D.11.R 上的奇函数满足当时,,则A. B.2 C. D.12.函数()()22f x log x ,g x x 2==-+,则的图象只可能是二、填空题:本大题共4个小题,每小题4分,共16分.将答案填在题中横线上.13.设则=___________.14.已知,则的值等于___________.15.△ABC 中,B=120°,AC=7,AB=5,则△ABC 的面积为___________.16.若函数在其定义域内的一个子区间内不是单调函数,则实数k 的取值范围_______________.三、解答题:本大题共6个小题.共74分,解答应写出文字说明,证明过程或演算步骤。
1普宁新世界中英文学校2019届高三文科班10月份月考数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合},5{*N x x x U ∈<=,}065{2=+-=x x x M ,则=M C U ( )A .}3,2{B . }4,1{C . }5,1{D .}4,3{ 2. 已知i 为虚数单位,则复数iiz -+=243的虚部是 ( ) A. 115i B. 113iC. 113D. 1153.双曲线的离心率为( ) A .4B.C.D.4.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 5.设x ∈R ,则“11||22x -<”是“31x <”的( ) A A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分也不必要条件 6. 将函数()sin f x x =的图象向右平移3π个单位长度,再把所得曲线上各点的横坐标缩短为原 来的21,纵坐标不变,所得图象的函数解析式为( ) A .)3221sin(π-=x y B .)321sin(π-=x y C .)322sin(π-=x y D .)32sin(π-=x y 7. 2017年8月1日是中国人民解放军建军90周年纪念日,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米, 面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A .2726mm 5π B .2363mm 10π C .2363mm 5π D .2363mm 20π228.,,bcosA acosB 2,3()A.4.8.9.36ABC ABC B C D ππππ∆+=∆的内解A,B,C 的对边分别为a,b,c 若cosC=则的外接圆的面积为 9、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( ) A. 96 B.8042+π C. ()96421+-π D. ()964221+-π10.函数()21xy x e =-的图象大致为( )A .B .C .D .11.已知函数,0,log 0,1)(3⎪⎩⎪⎨⎧>≤+=x x x x x f 若方程a x f =)(有四个不同的解4321,,,x x x x ,且4321x x x x <<<,则432111x x x x +++的取值范围是( )A . ]34,0[B . )34,0[C . ]34,0( D . )1,0[12.已知函数⎪⎩⎪⎨⎧≥+-<=0,1640,)(23x x x x e x f x,则函数2)(3)]([2)(2--=x f x f x g 的零点个数为( ) A .2 B .3 C .4 D .5二、填空题:本大题共4小题,每小题5分,共20分。
13.已知数列{}n a 满足13n n a a +=,且2469a a a ++=,则()15793log a a a ++= .14.已知两个单位向量的夹角为60°,,,若,则正实数t = .15.已知,x y 满足约束条件4020x y x x y k -+⎧⎪⎨⎪++⎩≥≤≥错误!未找到引用源。
,且3z x y =+的最小值为2,则常数k =_______16.设函数)(x f 的定义域为R ,其图像是连续不断的光滑曲线,设其导函数为)('x f .若对R x ∈∀,有x x f x f 2)()(=--,且在),0(+∞上,恒有1)('<x f 成立.若t t f t f 22)()2(-≥--,则实数t 的取值第7题图2范围是_________________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
17.(12分)在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若223cos cos20A A +=,且ABC V 为锐角三角形,7a =,6c =,求b 的值;(2)若3a =,3A π=,求b c +的取值范围.18、(12分)已知数列}{n a 满足:121+-=+n a a n n ,31=a . (1)设数列}{n b 满足:n a b n n -=,求证:数列}{n b 是等比数列; (2)求出数列}{n a 的通项公式和前n 项和n S .19.(12分)经市场调查:生产某产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为()W x万元,在年产量不足8万件时,()W x 213x x =+(万元),在年产量不小于8万件时,100()638W x x x=+-(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完. (1)写出年利润()L x (万元)关于年产量x (万件)的函数解析式;(2)当产量为多少时利润最大?并求出最大值.20.(12分)为研究患肺癌与是否吸烟有关,做了一次相关调查,其中部分数据丢失,但可以确定的是不吸烟人数与吸烟人数相同,吸烟患肺癌人数占吸烟总人数的45;不吸烟的人数中,患肺癌与不患肺癌的比为1:4. (1)若吸烟不患肺癌的有4人,现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率; (2)若研究得到在犯错误概率不超过0.001的前提下,认为患肺癌与吸烟有关,则吸烟的人数至少有多少?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21、(12分)已知x axxx f ln 1)(+-=. (1)试讨论函数)(x f y =的单调性; (2)若0)(≥x f 对0>∀x 恒成立,求a 的值.(二)选考题:共10分。
请考生在第22、23两题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程选讲](10分)22.已知直线l的参数方程为(t 为参数)以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C的方程为.(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)写出直线l 与曲线C 交点的一个极坐标.23.[选修4—5:不等式选讲](10分) [选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣m |﹣|x +3m |(m >0). (Ⅰ)当m =1时,求不等式f (x )≥1的解集;(Ⅱ)对于任意实数x ,t ,不等式f (x )<|2+t |+|t ﹣1|恒成立,求m 的取值范围.0()P K k ≥0.100 0.050 0.010 0.001 0k2.7063.8416.63510.8283参考答案一、选择题BDB AA D BCCA CB二、填空题13、--5 14、1 15、 2- 16、三、简答题17、(12分)解:(1)∵22223cos cos223cos 2cos 10A A A A +=+-=,∴21cos 25A =, 又∵A 为锐角,1cos 5A =,而2222cos a b c bc A =+-, 即2121305b b --=,解得5b =(舍负),∴5b =................................6分 (2)方法一:(正弦定理)由正弦定理可得22(sin sin )2(sin sin())23sin()36b c B C B B B ππ+=+=+-=+, ∵203B π<<,∴5666B πππ<+<, ∴1sin()126B π<+≤,∴(3,23b c ⎤+∈⎦...............................12分方法二:(余弦定理)由余弦定理2222cos a b c bc A =+-可得223b c bc +-=,即223()33()4b c bc b c +-=+≤, ∴23b c +≤,又由两边之和大于第三边可得3b c +>,∴(3,23b c ⎤+∈⎦................12分18、(12分)(1)证明:na n n a n a n ab b n n n n n n -+-+-=-+-=++)1(12)1(112)(2=--=n a n a n n 又213111=-=-=a b}{n b ∴是以2为首项,2为公比的等比数列 …………5分(2)解:由(1)得n n b 2= n a n n +=∴2)2(...)22()12(21n S n n ++++++=∴ )...321()2...22(21n n ++++++++=2)1(21)21(2++--=n n n2)1(221++-=+n n n …………12分19.(12分)【解析】(1); ……(6分)(2)当时,,∴当时,, ……(8分)当时,,当且仅当,即时等号成立 ,∴. ……(11分)综上,当总产量达到万件时利润最大,且最大利润为15万元. ……(12分)20、(12分)解:(1)设吸烟人数为x ,依题意有145x =,所以吸烟的人有20人,故有吸烟患肺癌的有16人,不患肺癌的有4人.用分层抽样的方法抽取5人,则应抽取吸烟患肺癌的4人,记为a ,b ,c ,d .不吸烟患肺癌的1人,记为A .从5人中随机抽取2人,所有可能的结果有(,)a b ,(,)a c ,(,)a d ,(,)a A ,(,)b c ,(,)b d ,(,)b A ,(,)c d ,(,)c A ,(,)d A ,共10种,则这两人都是吸烟患肺癌的情形共有6种,∴63105P ==,即这两人都是吸烟患肺癌的概率为35. ...............................6分 (2)方法一:设吸烟人数为5x ,由题意可得列联表如下:4患肺癌 不患肺癌 合计吸烟 4xx5x 不吸烟 x4x 5x总计5x 5x10x由表得,2222410(16) 3.6(5)x x x K x x -==,由题意3.610.828x ≥,∴ 3.008x ≥, ∵x 为整数,∴x 的最小值为4.则520x =,即吸烟人数至少为20人. 方法二:设吸烟人数为x ,由题意可得列联表如下:患肺癌不患肺癌合计吸烟 45x 15x x不吸烟 15x 45x x总计xx2x由表得,222241612()182525()25x x x K x x -==,由题意1810.82825x ≥,∴15.04x ≥,∵x 为整数且为5的倍数,∴x 的最小值为20即吸烟人数至少为20人. ................12分21、(12分)解:(1)0,111)()1()(2222>+-=+-=+⋅---='x ax axx x a a x ax a x ax x f ①当0<a 时,),0(0)(+∞>'在x f 上恒成立↑+∞∴),0()(在x f②当0>a 时,a x x f 10)(>⇒>' ax x f 100)(<<⇒<' ↓∴)1,0()(ax f 在,↑+∞),1(a …………5分(2)①当0<a 时,由(1)↑+∞),0[)(在x f 且0)1(=f当)1,0(∈x 时 0)(<x f ,不符合条件 ②当0>a 时,↓)1,0()(a x f 在,↑+∞),1(a aa a f f 1ln 11)1(min +-==∴ ),0(0)(+∞∈∀≥x x f 对 恒成立∴只需0min ≥f 即01ln 11≥+-aa 记0,ln 1)(>+-=x x x x g则1011)(>⇒>+-='x xxg 100)(<<⇒<'x x g ↑+∞↓∴),1(,)1,0()(在xg0)1()(=≤∴g x g 11=∴a1=∴a …………12分22.(10分)解:(Ⅰ)∵,∴,即;(Ⅱ)将,代入得,,即t =0,从而,交点坐标为,所以,交点的一个极坐标为.23.(10分)解:(Ⅰ) ,当m =1时,由或x ≤﹣3,得到,∴不等式f (x )≥1的解集为;(Ⅱ)不等式f (x )<|2+t |+|t ﹣1|对任意的实数t ,x 恒成立,等价于对任意的实数xf (x )<[|2+t |+|t ﹣1|]min 恒成立,即[f (x )]max <[|2+t |+|t ﹣1|]min , ∵f (x )=|x ﹣m |﹣|x +3m |≤|(x ﹣m )﹣(x +3m )|=4m ,|2+t |+|t ﹣1|≥|(2+t )﹣(t ﹣1)|=3, ∴4m <3又m >0,所以.。