两位数乘法速算
- 格式:doc
- 大小:20.50 KB
- 文档页数:2
两位数乘法速算技巧原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。
注:下文中“--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B方法:百位为二,个位相乘,得数为后积,满十前一。
例:13×1713 + 7 = 2- - (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)3 × 7 = 21-----------------------221即13×17= 2211.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 22- (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)5 × 7 = 35-----------------------255即15×17 = 2551.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56 × 54(5 + 1) × 5 = 30- -6 × 4 = 24----------------------30241.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67 × 64(6+1)×6=427×4=287+4=1111-10=14228+60=4288----------------------4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
2位数乘法速算技巧
以下是 6 条关于 2 位数乘法速算技巧:
1. 嘿,你知道吗,有一种速算技巧超厉害呢!比如 34 乘以 11,这不就等于把 3 和 4 拉开,中间加上 3 与 4 的和嘛!那就是 374 呀!这样算起来多快呀,岂不妙哉?
2. 哇塞,两位数乘两位数也有绝招哦!就像 23 乘以 45,你可以先算 20 乘以 45 等于 900,再加上 3 乘以 45 等于 135,加起来就是 1035 啦!是不是很神奇呀!
3. 嘿嘿,还有一个超有用的技巧呢!当遇到十几乘十几时,比如 13 乘以14,可以先把其中一个数加上另一个数的个位,也就是 13 加 4 等于 17,再乘以 10,得到 170,然后加上两个数个位相乘的积 3 乘以 4 等于 12,最后就是 182 啦!想一想,多简单呀!
4. 哎呀呀,要是碰到一个数接近整十数,那就更好办啦!像 48 乘以 52,把 48 看成 50 减 2,把 52 看成 50 加 2,利用平方差公式,不就等于 50 的平方减 2 的平方嘛,也就是 2500 减 4 等于 2496 呀!这就很容易算出来了呀!
5. 你瞧,对于末位是 5 的两位数相乘也有特别的办法哦!比如说 35 乘以45,先让 3 乘以 4 加 1 等于 13,这就是前面的数,后面直接写上 25,结果就是 1575 呀!多有意思啊!
6. 还有哦,当两个两位数相同且个位与十位相同的数相乘时,比如 66 乘以66,先算 6 乘以 6 加 1 等于 37,后面再写上两个 6 相乘的积 36,就是4356 啦!这可太棒啦!
我的观点就是这些 2 位数乘法速算技巧真的超级实用,能让我们的计算变得又快又准确,为啥不好好掌握呢!。
两位数乘法速算技巧两位数乘法速算技巧原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。
注:下文中“--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B方法:百位为二,个位相乘,得数为后积,满十前一。
例:13×1713 + 7 = 2- - (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)3 × 7 = 21-----------------------221即13×17= 2211.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B(6+1)×6=427×4=287+4=1111-10=14228+60=4288----------------------4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:67 × 646 ×6 = 36- -(4 + 7)×6 = 66 -4 × 7 = 28----------------------4288二、后数相同的:2.1. 个位是1,十位互补即B=D=1, A+C=10 S=10A×10C+101方法:十位与十位相乘,得数为前积,加上101.。
任意两位数乘法速算技巧口诀
一位数×一位数:都在1—9之间,先把十位上的相乘,结果在个位上,再把个位的数字
相乘,再相加,就是答案。
两位数×一位数:把乘数拆成两个数字,从低位开始逐位与被乘数相乘,相加就是答案。
两位数×两位数:先把乘数拆成个位和十位,以十位乘以被乘数的个位,只在结果的十位
上有数字;接着以十位乘以被乘数的十位,结果同上;再以个位乘以被乘数的十位,结果
在百位上;最后以个位乘以被乘数的个位,结果在千及以上。
三个结果相加,便得最后的
答案。
两位数乘法速算口诀速算口诀两位数乘法速算口诀一般口诀首位之积排在前 首尾交叉积之和十倍再加尾数积。
如37x64=1828+(3x4+7x6)x10=23681、同尾互补 首位乘以大一数 尾数之积后面接。
如 23×27=6212、尾同首互补 首位之积加上尾 尾数之积后面接。
87×27=23493、首位差一尾数互补者 大数首尾平方减。
如76×64=48644、末位皆一者 首位之积接着首位之和 尾数之积后面接。
如 51×21=1071------- “几十一乘几十一”速算特殊 用于个位是1的平方 如21×21=4415、首同尾不同 一数加上另数尾 整首倍后加上尾数积。
23×25=575速算1 首位皆一者 一数加上另数尾 十倍加上尾数积。
17×19=323---- “十几乘十几”速算包括了十位是1 即11~19 的平方 如11×11=121---- “十几平方”速算 2 首位皆二者 一数加上另数尾 廿倍加上尾数积。
25×29=725----“二十几乘二十几”速算 3 首位皆五者 廿五接着尾数积 百位再加尾数之和半。
57×57=3249----“五十几乘五十几”速算 4 首位皆九者 八十加上两尾数 尾补之积后面接。
95×99=9405----“九十几乘九十几”速算 5 首位是四平方者 十五加上尾 尾补平方后面接。
46×46=2116---- “四十几平方”速算 6 首位是五平方者 廿五加上尾 尾数平方后面接。
51×51=2601---- “五十几平方”6、互补乘以叠数者 首位加一乘以叠数头 尾数之积后面接。
37×99=36637、末位是五平方者 首位加一乘以首 尾数之积后面接。
如65×65= 4225---- “几十五平方”8、某数乘以一一者 首尾拉开 首尾之和中间站。
两位数乘法速算技巧
1.两个数字的个位数相乘。
例如,如果要计算14×23,我们只需将4
乘以3,得到12、个位数为2
2.十位数与个位数的乘积。
例如,如果要计算14×23,我们将1乘
以3得到3,并在结果前加一个零,得到30。
3.十位数间的乘积。
例如,如果要计算14×23,我们将1与2相乘,得到2
4.将以上三个结果相加。
在我们的例子中,我们有2+30+12=44、所
以14×23=44
这些技巧看似简单,但需要一些实践才能熟练掌握。
下面将演示一些
实际的例子来帮助您理解和掌握这些技巧。
例子1:32×16
首先,我们计算个位数相乘,2乘以6得到12,所以个位数为2
接下来,计算十位数和个位数的乘积,3乘以6得到18、在这个结果
前面加上一个零,得到180。
最后,计算十位数相乘,3乘以1得到3
将以上三个结果相加,得到2+180+3=185、所以32×16=185
例子2:47×23
首先,计算个位数相乘,7乘以3得到21,所以个位数为1
接下来,计算十位数和个位数的乘积,4乘以3得到12、将这个结果前面加上一个零,得到120。
再计算十位数相乘,4乘以2得到8
将以上三个结果相加,得到1+120+8=129、所以47×23=129
这些技巧可以大大加速两位数相乘的速度,尤其在心算的情况下非常有用。
为了熟练掌握这些技巧,建议多进行练习,并不断挑战更复杂的例子。
掌握这些技巧后,即使是三位数相乘的计算也能得心应手。
两位数乘法速算口诀一般口诀文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)两位数乘法速算口诀一般口诀首位之积排在前,首尾交叉积之和十倍再加尾数积。
如37x64=1828+(3x4+7x6)x10=23681、同尾互补,首位乘以大一数,尾数之积后面接。
如:23×27=6212、尾同首互补,首位之积加上尾,尾数之积后面接。
87×27=23493、首位差一尾数互补者,大数首尾平方减。
如76×64=48644、末位皆一者,首位之积接着首位之和,尾数之积后面接。
如:51×21=1071------- “几十一乘几十一”速算特殊:用于个位是1的平方,如21×21=441 5、首同尾不同,一数加上另数尾,整首倍后加上尾数积。
23×25=575(1),首位皆一者,一数加上另数尾,十倍加上尾数积。
17×19=323---- “十几乘十几”速算包括了十位是1(即11~19)的平方,如11×11=121---- “十几平方”(2)首位皆二者,一数加上另数尾,廿倍加上尾数积。
25×29=725----“二十几乘二十几”(3)首位皆五者,廿五接着尾数积,百位再加尾数之和半。
57×57=3249----“五十几乘五十几”(4)首位皆九者,八十加上两尾数,尾补之积后面接。
95×99=9405----“九十几乘九十几”(5)首位是四平方者,十五加上尾,尾补平方后面接。
46×46=2116---- “四十几平方”( 6)首位是五平方者,廿五加上尾,尾数平方后面接。
51×51=2601---- “五十几平方”6、互补乘以叠数者,首位加一乘以叠数头,尾数之积后面接。
37×99=36637、末位是五平方者,首位加一乘以首,尾数之积后面接。
如65×65= 4225---- “几十五平方”8、某数乘以一一者,首尾拉开,首尾之和中间站。
两位数乘法速算速算是指利用数与数之间的特殊关系进行较快的加减乘除运算。
速算有两个方面的含义:一是指速度快,最起码要比笔算的速度快;二是指不借助于笔、算盘、计算器等传统的运算工具,只利用数与数之间的特殊关系和大脑的思维活动快速算出两数之间的算术运算结果。
因此,速算就是口算,只不过这里的速算题目比教科书上的口算题目难一些而已。
本文重点讲解两位数乘法的速算方法。
其中一个两位数可以写成10m+a的形式,例如76可以写成10×7+6,这里的m是7,a是6。
另一个两位数可以写成10n+b的形式,m,n,a,b为1~9的任意数字。
因此,任意两个两位数相乘可以成(10m+a)(10n+b)的形式。
本文所讲的“首”指任一乘数的十位数字,“尾”指任一乘数的个位数字。
“接”或“随”指前面的数和后面的数连在一起。
一、两位数乘法的一般速算法方法:首积尾积前后接,后积两位不可缺;首尾交叉积之和,十倍之后加上它。
原理:(10m+a)(10n+b)=mn×100+ab+(mb+na)×10解析:“首积尾积前后接”指两个乘数的十位数字的乘积放在前面,个位数字的乘积接在后面,即mn×100+ab。
“后积两位不可缺”指后积不足两位的,高位用零补齐,如例2,个位数字2×4等于8,这时后积不能写成8,而要写成08。
“首尾交叉积之和”指被乘数的十位数字与乘数的个位数字的积,加上被乘数的个位数字与乘数的十位数字的积,即mb+na。
“十倍之后加上它”是指‘首尾交叉积之和’乘以10,然后再与第一句口诀中得到的数相加。
当‘首尾交叉积之和’较大时,口算时还会有一定的困难,这时可以考虑采用“魏式速算法”。
例1:37×64解:37×64=3×6×100+7×4+(3×4+7×6)×10=1828+540=2368例2:42×74解:42×74=4×7×100+2×4+(4×4+2×7)=2808+300=3108二、两位数乘法的魏式速算法原理:(10m+a)(10n+b)=(m+1)n×100+ab+w×10w是魏式系数,w=mb+na-n×10解析:魏式系数等于两个乘数的‘首尾交叉积之和’再减去其中一个乘数的十位数字的10倍。
六种二位数乘法速算方法二位数乘法是数学学习中的一项重要内容,也是日常生活中常用的运算方式之一、但是,对于一些复杂的二位数乘法计算,我们可能需要使用一些速算方法来简化运算过程,提高计算效率。
下面将介绍六种常用的二位数乘法速算方法。
1.十字相乘法:这是最常用的二位数乘法速算方法之一、它的计算步骤如下:(1)将两个乘数分别的十位数和个位数上的数相乘,得到结果的十位数和个位数。
(2)将两个乘数的个位数上的数相乘,得到结果的个位数。
(3)将上述两个结果相加,得到最终结果。
例如,求解24×36:(1)2×3=6(十位数)(2)4×6=24(个位数)(3)6+24=30(最终结果)2.竖式相乘法:这种方法是将两个乘数依次与另一个乘数相乘,并按位相加得到结果。
它的计算步骤如下:(1)先将两个乘数的个位数与另一个乘数相乘。
(2)再将两个乘数的十位数与另一个乘数相乘,并左移一位。
(3)将上述两个结果相加,得到最终结果。
例如,求解24×36:(1)4×6=24(2)2×6=12(左移一位得到120)(3)24+120=144(最终结果)3.交叉相乘法:这种方法在两个乘数中各取一个数相乘,并按位相加得到结果。
它的计算步骤如下:(1)将两个乘数的个位数相乘。
(2)将两个乘数的十位数相乘。
(3)将两个乘数的个位数和十位数相乘,并左移一位。
(4)将上述三个结果相加,得到最终结果。
例如,求解24×36:(1)4×6=24(2)2×3=6(3)4×3=12(左移一位得到120)(4)24+6+120=150(最终结果)4.隔位相乘法:这种方法是将两个乘数的个位数和十位数分别相乘,并按位相加得到结果。
它的计算步骤如下:(1)将两个乘数的个位数相乘。
(2)将两个乘数的十位数相乘。
(3)将上述两个结果相加,得到最终结果。
例如,求解24×36:(1)4×6=24(2)2×3=6(3)24+6=30(最终结果)5.调换乘法:这种方法是在乘法计算时,可以适当调换乘数的位置,使得计算更简便。
两位数乘法速算方法与技巧两位数乘法是我们在学习数学时必须掌握的基本技能之一。
但是,对于一些学生来说,两位数乘法可能是一件比较困难的事情。
因此,我们需要掌握一些速算方法和技巧,以便更快地完成两位数乘法。
一、竖式乘法竖式乘法是我们在学习两位数乘法时最常用的方法。
它的步骤如下:1.将两个数竖着排列,个位数在下面,十位数在上面。
2.将第一个数的个位数与第二个数的个位数相乘,得到个位数的积。
3.将第一个数的十位数与第二个数的个位数相乘,得到十位数的积。
4.将第一个数的个位数与第二个数的十位数相乘,得到十位数的积。
5.将第一个数的十位数与第二个数的十位数相乘,得到百位数的积。
6.将所有的积相加,得到最终的结果。
例如,计算23×45,我们可以按照以下步骤进行:2 3× 4 5———1 1 59 2———1 0 3 5二、快速乘法快速乘法是一种更快速的计算两位数乘法的方法。
它的步骤如下:1.将两个数的个位数相乘,得到个位数的积。
2.将两个数的十位数相乘,得到百位数的积。
3.将两个数的个位数与十位数相加,得到一个新的数。
4.将第三步得到的数与第一步得到的数相乘,得到十位数的积。
5.将第三步得到的数与第二步得到的数相加,得到最终的结果。
例如,计算23×45,我们可以按照以下步骤进行:2 3× 4 5———1 1 5———1 0 3 5三、交叉相乘法交叉相乘法是一种更简单的计算两位数乘法的方法。
它的步骤如下:1.将两个数的个位数相乘,得到个位数的积。
2.将两个数的十位数相乘,得到百位数的积。
3.将第一个数的个位数与第二个数的十位数相乘,得到十位数的积。
4.将第一个数的十位数与第二个数的个位数相乘,得到十位数的积。
5.将所有的积相加,得到最终的结果。
例如,计算23×45,我们可以按照以下步骤进行:2 3× 4 5———1 1 5———1 0 3 5四、倍数法倍数法是一种更快速的计算两位数乘法的方法。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6.十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238。