常规数列基础大题
- 格式:docx
- 大小:138.68 KB
- 文档页数:4
1,6,20,56,144,( )A.256B.312C.352D.3843, 2, 11, 14, ( ) 34A.18B.21C.24D.271,2,6,15,40,104,( )A.329B.273C.225D.1852,3,7,16,65,321,( )A.4546B.4548C.4542D.45441 1/2 6/11 17/29 23/38 ( )A. 117/191B. 122/199C. 28/45D. 31/47答案1.C6=1x2+4 20=6x2+8 56=20x2+16 144=56x2+32 144x2+64=288+64=352 2.D分奇偶项来看:奇数项平方+2 ;偶数项平方-23 = 1^2 +22 = 2^2 -211= 3^2 +214= 4^2 -2(27)=5^2 +234= 6^2 -23.B273几个数之间的差为:1 4 9 25 64为别为:1的平方2的平方3的平方5的平方8的平方1+2=3 2+3=5 3+5=8 5+8=13即后面一个为13的平方(169)题目中最后一个数为:104+169=2733.A4546设它的通项公式为a(n)规律为a(n+1)-a(n)=a(n-1)^24.D原式变为:1/1、2/4、6/11、17/29、46/76,可以看到,第二项的分子为前一项分式的分子+分母,分母为前一项的分母+自身的分子+1;答案为:122/1 992011年国家公务员考试数量关系:数字推理的思维解析近两年国家公务员考试中,数字推理题目趋向于多题型出题,并不是将扩展题目类型作为出题的方向。
因此,在题目类型上基本上不会超出常规,因此专家老师建议考生在备考时要充分做好基础工作,即五大基本题型足够熟练,计算速度与精度要不断加强。
首先,这里需要说明的是,近两年来数字推理题目出题惯性并不是以新、奇、变为主,完全是以基本题型的演化为主。
特别指出的一点是,多重数列由于特征明显,解题思维简单,基本上可以说是不会单独出题,但是通过近两年的各省联考的出题来看,简单多重数列有作为基础数列加入其它类型数列的趋势,如2010年9.18中有这样一道题:【例1】10,24,52,78,( ) .,164A. 106B. 109C. 124D. 126【答案】D。
一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+ B .212n n -+C .221n n -+D .222n n -+4.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项5.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭7.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .458.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511B .513C .1025D .102410.已知函数()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( )A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭11.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-二、填空题13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________.15.已知:等比数列{}n a 的前n 项和23nn S a =⋅-,则5a =______.16.已知数列{}n a 的前n 项和22n S n =,*n N ∈.求数列{}n a 的通项公式为______.设2(1)n n n n b a a =+-,求数列{}n b 的前2n 项和n T =______.17.已知等差数列{}n a 的前n 项和为n S ,且2718a a =-,8S =__________. 18.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.19.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.20.正项数列{}n a 满足222112n n n a a a -+=+,若11a =,22a =,则数列{}n a 的通项公式为______.三、解答题21.在等比数列{}n a 中,24a =,532a =. (1)求n a(2)设23log n n b a =,n n n c b a =⋅,求数列{}n c 的前n 项和n T . 22.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .23.已知数列{}n a 的前n 项和n S ,21n n S a =-,数列{}n b 是等差数列,且11b a =,43b a =.(1)求数列{}n a 和{}n b 的通项公式; (2)若121n n n n c a b b +=-,求数列{}n c 的前n 项和n T . 24.设数列{}n a 的前n 项和为n S ,从条件①()11n n na n a +=+,②()12n n n a S +=,③22n n n a a S +=中任选一个,补充到下面问题中,并给出解答.已知各项都为正数的数列{}n a 的前n 项和为n S ,11a =,____. (1)求数列{}n a 的通项公式;(2)若2nn n b a =-,求数列{}n b 的前n 和n T .25.在数列{}n a 中,已知11a =,121n n a a n +=++. (1)求数列{}n a 的通项公式; (2)设141n n b a =-,求数列{}n b 的前20项和20T .26.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.D解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (111)123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈,又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+.故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合.4.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论.【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=. 故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 7.B解析:B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 由,,m k n a a a 成等比,即2k m n a a a =; 等差数列前n 项和公式1()2n n n a a S +=的应用. 8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.B解析:B 【分析】根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值.【详解】因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-,所以1121n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,所以112n n a --=,所以121n n a -=+,所以91021513a =+=,故选:B. 【点睛】本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方法进行求解.10.B解析:B 【分析】 由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a a n -⎧--≤=⎨>⎩()n N *∈且数列{}na 为递增数列,得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.11.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.12.C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广.二、填空题13.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.14.已巳【分析】本题由题意可得数列天干是10个为一个循环的循环数列地支是以12个一个循环的循环数列以2020年的天干和地支分别为首项即可求解【详解】由题意可知数列天干是10个为一个循环的循环数列地支是以解析:已巳 【分析】本题由题意可得数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,以2020年的天干和地支分别为首项,即可求解. 【详解】由题意可知数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,从2020年到2049年一共有30年,且2020年为庚子年, 则30103÷=,2049年的天干为已,30122÷=余6,2049年的地支为巳, 故2049年为已巳年, 故答案为:已巳. 【点睛】关键点点睛:本题主要考查了循环数列的实际应用,能否根据题意得出天干是10个为一个循环的循环数列以及地支是以12个一个循环的循环数列是解决本题的关键,着重考查了分析问题和解答问题的能力,是中档题.15.48【分析】由求出结合等比数列求得值从而可得【详解】由题意时又是等比数列所以解得所以故答案为:48【点睛】易错点睛:由前项和求时要注意中有不包括而解题时要注意否则易出错解析:48 【分析】由n S 求出n a ,结合等比数列求得a 值,从而可得5a . 【详解】由题意2n ≥时,11123(23)2n n n n n n a S S a a a ---=-=⋅--⋅-=⋅,又1123a S a ==-,{}n a 是等比数列,所以32222223a a aa a a ===-.解得3a =. 所以453248a =⨯=. 故答案为:48. 【点睛】易错点睛:由前n 项和n S 求n a 时,要注意1n n n a S S -=-中有2n ≥,不包括1a ,而11a S =,解题时要注意,否则易出错.16.【分析】根据写式子两式子相减整理得再验证时是否成立即可写出通项公式由已知可得运用分组求和即可得到答案【详解】∵①∴②由②﹣①可得:即又当时有满足∴;由已知可得:∴所以故答案为:;【点睛】本题考查已知 解析:42n a n =-2164n +n【分析】 根据()2*2n S nn N =∈写式子()2121n Sn++=,两式子相减整理得42n a n =-,再验证1n =时是否成立,即可写出通项公式.由已知可得()()422)24(1nn b n n =-+-⨯-,运用分组求和即可得到答案. 【详解】 ∵()2*2n S nn N =∈①,∴()2121n Sn++=②,由②﹣①可得:14+2n a n +=,即42n a n =-,又当1n =时,有2112111S a ==⨯⇒=满足42n a n =-,∴42n a n =-;由已知可得:()()422)24(1nn b n n =-+-⨯-,∴12322342112333n n n n b b b b ++++a T a a a a +a -==+++⋅+⋅⋅+()()32122143n n a a a a +++a +++a -=+()()28484316242n n n n+n +n -=+⨯=, 所以2641n T n +n =,故答案为:42n a n =-;2641n T n +n =.【点睛】本题考查已知数列前n 项和为n S 与n a 的关系求通项,注意验证1n =是否满足,考查分组求和,属于中档题.17.72【解析】因为所以故填解析:72 【解析】因为2718a a =-,所以182718a a a a +=+=,1888()722a a s +==,故填72. 18.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.19.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-,—可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.20.【分析】由得出为等差数列进而求出首项和公差得出的通项公式即可得的通项公式【详解】由题得得为等差数列又因为则有所以是以首项为1公差的等差数列得又因为所以故答案为:【点睛】本题考查利用等差数列的定义法证 解析:32n a n -【分析】由222112n n n a a a -+=+得出{}2n a 为等差数列,进而求出首项和公差,得出{}2n a 的通项公式,即可得{}n a 的通项公式. 【详解】由题得222112n n n a a a -+=+,得{}2n a 为等差数列,又因为11a =,22a =则211a =,224a =,有22213a a -=所以{}2n a 是以首项为1,公差3d =的等差数列 得()211332n a n n =+-⨯=-又因为0n a >,所以32n a n =- 故答案为:32n a n =-【点睛】本题考查利用等差数列的定义法证明等差数列,以及考查等差数列的通项公式.三、解答题21.(1)2n n a =;(2)13(1)26n n T n +=-⋅+【分析】(1)利用等比数列的通项公式,结合已知条件24a =,532a =,可得1,a q ,即可求得n a ;(2)由(1)知3n b n =,23nn c n =⋅,利用错位相减法即可求数列{}n c 的前n 项和.【详解】(1)设等比数列{}n a 的首项为1a ,公比为q ,由已知24a =,532a =,可得141432a q a q =⎧⎨=⎩,解得122a q =⎧⎨=⎩, 所以112n nn a a q -== (2)由(1)知223log 3log 23nn n b a n ===,23n n c n =⋅12336222293n n T n =+++⨯+∴⨯⋅⨯ ① 2341236922223n n T n +=++++⋅⨯⨯⨯ ②①-②得:12312223333232n n n T n +=++++-⨯⨯⋅-⨯⨯()111231122222223331232n nn n n n +++-=++++-⋅=-⋅⨯⨯-()11122332n n n ++=--⋅⨯()13126n n +=⨯-⋅-13(1)26n n T n +∴=-⋅+【点睛】方法点睛:本题考查求等比数列的通项公式及数列求和,求数列和常用的方法: (1)等差+等比数列:分组求和法;(2)倒序相加法; (3)11n n n b a a +=(数列{}n a 为等差数列):裂项相消法; (4)等差⨯等比数列:错位相减法. 22.(1)证明见解析;(2)1n n T n =+. 【分析】(1)已知等式变形为113(1)n n a a ++=+,再计算出1130a +=≠,可证结论; (2)由(1)求出1n a +后可得n b ,然后用裂项相消法求和. 【详解】(1)∵132n n a a +=+,∴113(1)n n a a ++=+,又1130a +=≠, ∴{1}n a +是等比数列,公比为3,首项为3.(2)由(1)13nn a +=,∴3113(1)1n n n b n n n n ==-⋅++,∴11111111223111n n T n n n n =-+-++-=-=+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(1)12n n a ;n b n = (2)211321n n --++ 【分析】(1) 当1n =时11a =,由1n n n a S S -=-可得122n n n a a a -=-,可求出n a ,根据111b a ==,434b a ==,可求出n b(2)由条件()11121212112121n n n n n n n n c a b b n n -+-+⎛⎫=-=-=-- ⎪+⎝⎭,由等比数列的求和公式和裂项相消法可求和. 【详解】(1)当1n =时,11121S a a ==-,得11a = 当2n ≥时,21n n S a =- ……①1121n n S a --=- ……②由①-② 得122n n n a a a -=-,即12n n a a -=所以数列{}n a 是以1为首项,2为公比的等比数列,所以12n na所以111b a ==,434b a ==.则等差数列{}n b 的公差为1d = 所以n b n = (2)()11121212112121n n n n n n n n c a b b n n -+-+⎛⎫=-=-=-- ⎪+⎝⎭21111111112112222231n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++--+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2111112213112112nn n n -⎛⎫- ⎪⎛⎫⎝⎭=⨯--=-+ ⎪++⎝⎭- 【点睛】关键点睛:本题考查利用递推关系求数列的通项公式和利用公式法以及裂项相消法求和,解答本题的关键是由()11n n n a S S n -=->求通项公式,和将n c 化为121121n n c n n -⎛⎫=-- ⎪+⎝⎭用等比数列的求和公式和裂项相消法求和,属于中档题. 24.(1)()*n a n n N =∈;(2)()1122n nT n +=-⋅-.【分析】 (1)若选①可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选②利用1n n n a S S -=-可得()11n n n a na --=,即可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选③利用1n n n a S S -=-可得11n n a a --=,即可得到数列{}n a 是以1为首项,1为公差的等差数列,从而得解;(2)利用错位相减法求和; 【详解】 选条件①时,(1)()11n n na n a +=+时,整理得11111n n a a a n n +===+,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①, 231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n nn n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件②时, (1)由于()12n n n a S +=,所以()21nn Sn a =+①,当2n ≥时,112n n S na --=②,①-②得:()121n n n a n a na -=+-,()11n n n a na --=,整理得1111n n na a a n n -===-,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①,231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n n n n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件③时,由于22n n n a a S +=, ①21112n n n a a S ---+= ②①-②时,2211n n n n a a a a ---=+,整理得11n n a a --=(常数),所以数列{}n a 是以1为首项,1为公差的等差数列. 所以n a n =.(2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅①, 231212222n n C n +=⨯+⨯++⋅②,①-②得:()()12112212222221n nn n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 25.(1)()2*n a n n =∈N ;(2)202041=T. 【分析】(1)由累加法结合等差数列的前n 项和公式即可得解; (2)转化条件为11122121n b n n ⎛⎫=- ⎪-+⎝⎭,利用裂项相消法运算即可得解. 【详解】(1)因为121n n a a n +=++,所以121n n a a n +-=+, 所以213a a -=,325a a -=,⋅⋅⋅,()1212n n a a n n --=-≥, 以上各式相加可得()()211321352112n n n a a n n -+--=++⋅⋅⋅+-==-,又11a =,所以()22n a n n =≥,显然11a =符合上式, 所以()2*n a nn =∈N ;(2)由(1)知2n a n =,所以()()21111141212122121n b n n n n n ⎛⎫===- ⎪--+-+⎝⎭.所以12111111123352121n n T b b b n n ⎛⎫=++⋅⋅⋅+=⨯-+-+⋅⋅⋅+- ⎪-+⎝⎭11122121nn n ⎛⎫=⨯-= ⎪++⎝⎭, 所以202020220141T ==⨯+.【点睛】关键点点睛:解决本题的关键是要注意裂项相消法的适用条件及用法. 26.(1)n a =;(2)存在,2m =. 【分析】(1)先证明出21n a ⎧⎫⎨⎬⎩⎭是等差数列,进而求出n a ;(2)利用裂项相消法求出n T ,解不等式得出m 的范围,进而求值即可. 【详解】(1)由()11n n f a a +=得:11n a +=221114n n a a +-=, 故21n a ⎧⎫⎨⎬⎩⎭是以2111a =为首项,4为公差的等差数列,2143n n a ∴=-,由()0f x =>可得0n a >,故n a =. (2)211141n n n n b S S a n ++=-==+, 111111414544145n n b b n n n n +⎛⎫∴=⨯=- ⎪++++⎝⎭, 1223341n n n T b b b b b b b b +∴=⋅+⋅+⋅++⋅11111111111145949134131744145n n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111145991313174145n n ⎛⎫=⨯-+-+-++- ⎪++⎝⎭1114545n ⎛⎫=⨯- ⎪+⎝⎭, 由题干对任意*n N ∈,都有25n m T <成立得()max 25n m T <, 由1114545n T n ⎛⎫=- ⎪+⎝⎭得120nT <, 12520m ∴≥,解得:54m ≥, 又m 为正整数, 2m ∴=,综上,存在2m =,使得对任意*n N ∈,都有25n mT <成立. 【点睛】方法点睛:本题考查等差数列的通项公式,考查数列的求和,数列求和的方法总结如下: 公式法,利用等差数列和等比数列的求和公式进行计算即可;裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.。
高考数学数列超经典裂项求和真题总结一、 常规题型(1)等差型1. (2013新课标一17)()已知等差数列{}n a 的前n 项和n S 满足350, 5.S S ==-(1)求数列{}n a 的通项公式; (2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和2. (2015新课标一17)() n S 为数列}{n a 的前n 项和,已知342,02+=+>n n n n S a a a .(1)求数列}{n a 的通项公式; (2)设11+=n n n a a b ,求数列}{n b 的前n 项和值.3. (2020浙江20)()已知数列{}n a ,{}n b ,{}n c 中,11111121,,()nn n n n n n b a b c c a a c c n b ++++====-=⋅∈*N . (1)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与a n 的通项公式; (2)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d+++<+.(2)根式型4. (2018华侨、港澳、台联考高考数学试卷20题)()已知数列{}n a 的前n 项和为n S ,1112,0,() 2.n n n n a a a S S ++=>⋅+=(1)求n S ; (2)求12231111.n n S S S S S S +++⋅⋅⋅++++(3) 指数型5. (2015安徽18)()已知数列{}n a 是递增的等比数列,且14239,8a a a a +==.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(4)三角型6. (2011安徽文21(2))()设tan(2)tan(3)n b n n =++,求数列求数列{}n b 的前n 项和n S .二、 变形题型1. (2013江西17)()正项数列{}n a 的前n 项和n S 满足:()()22210n n s n n s n n -+--+=(1)求数列{}n a 的通项公式n a ; (2)令()2212n nn b n a+=+,数列{}n b 的前n 项和为n T .证明:对于任意 n ∈N*,都有564n T <.2. (2014山东19)()已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列}{n a 的通项公式; (2)令n b =,4)1(11+--n n n a a n求数列}{n b 的前n 项和n T .3. (2018天津18)()设{}n a 是等比数列,公比大于0,其前n 项和为n S ()n *∈N ,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为n T ()n *∈N ,(i)求n T ;(ii)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=-+++∑()n *∈N .4. (2010湖南20)()给出下面的数表序列:其中表n (n =1,2,3)有n 行,第1行的n 个数是1,3,5,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(2)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为{}n b 求和:32412231n n n bb b b bb b b b ++++*()n N ∈ .124 4 8表1 表2 表3 ∙∙∙1 1 3 1 3 5。
专题2-1 数列重难点、易错点突破(建议用时:120分钟) 1 求数列通项的四大法宝1.公式法题设中有a n 与S n 的关系式时,常用公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2来求解.例1 已知数列{a n }的前n 项和S n =3n -2,求其通项公式a n . 2.累加法若数列{a n }满足a n -a n -1=f (n -1)(n ≥2),且f (1)+f (2)+…+f (n -1)可求,则可用累加法求通项. 例2 已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2),求其通项公式a n . 3.叠乘法若数列{a n }满足a na n -1=f (n -1)(n ≥2),其中f (1)·f (2)·…·f (n -1)可求,则可用叠乘法求通项.例3 已知数列{a n }中,a 1=3,a n =3n -43n -1a n -1(a n ≠0,n ≥2),求其通项公式a n .4.构造法当题中出现a n +1=pa n +q (pq ≠0且p ≠1)的形式时,把a n +1=pa n +q 变形为a n +1+λ=p (a n +λ),即a n +1=pa n +λ(p -1),令λ(p -1)=q ,解得λ=qp -1,从而构造出等比数列{a n +λ}. 例4 数列{a n }满足a 1=1,a n +1=14a n +3(n ∈N *),求其通项公式a n .2提高运算速度七妙招数列问题的灵活性、技巧性较强,因此,在解数列问题时必须研究技巧与策略,以求做到:选择捷径、合理解题,本文归纳了七种常见策略.第一招活用概念数列的概念是求解数列问题的基础,灵活运用数列的概念,往往能出奇制胜.例1已知{a n}是公差为2的等差数列,若a1+a4+a7+…+a97=100,那么a2+a5+a8+…+a98等于() A.166 B.66 C.34 D.100第二招巧用性质数列的性质是数列的升华,巧妙运用数列的性质,往往可以使问题简单明了,解题更快捷方便.例2各项均为正数的等比数列{a n}中,若a7a8=9,则log3a1+log3a2+…+log3a14等于()A.12B.14C.10D.10+log32第三招灵用变式在求解数列问题过程中,可以利用等差或等比数列的变形公式来处理有关问题.例3已知等差数列{a n}中,a3=3,a10=388,则该数列的通项a n=________.第四招整体考虑通过研究问题的整体形式、整体结构,避免局部运算的困扰,达到简捷解决问题的目的.例4设S n表示等差数列{a n}的前n项和,且S9=18,S n=240,若a n-4=30,试求n的值.第五招数形结合数列是一类特殊的函数,所以可以借助函数的图象,通过数形结合解数列问题.例5在公差d<0的等差数列{a n}中,已知S8=S18,则此数列的前多少项的和最大?第六招分解重组在处理数列求和问题时,若数列的通项公式可分解为几个容易求和的部分,则对数列的前n项和进行重新分解,分别求和.例6 在数列{a n }中,已知a 1=56,a 2=1936,且{b n }是公差为-1的等差数列,b n =log 2⎪⎭⎫ ⎝⎛-+n n a a 311,{c n }是公比为13的等比数列,c n =a n +1-12a n ,求数列{a n }的通项公式a n 及前n 项和S n .第七招 合理化归化归意识是把待解决的问题转化为已有知识范围内问题的一种数学意识,包括将复杂式子化简、为达某一目的对数学表达式进行变形、从目标入手进行分析等. 例7 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n =1,2,3,…),证明:数列⎭⎬⎫⎩⎨⎧n S n 是等比数列.3 盘点数列中的易错问题1.对数列的概念理解不准而致错例1 已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 2.忽视数列与函数的区别而致错例2 设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a的取值范围是________.3.公式使用条件考虑不周全而致错例3 已知数列{a n }的前n 项和为S n =3n +2n +1,求a n .4.审题不细心,忽略细节而致错例4首项为9的等差数列,从第7项起开始为负数,求公差d的取值范围.5.忽略概念中的隐含条件而致错例5一个凸n边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n边形的边数.6.忽视等差数列前n项和公式的基本特征而致错例6已知两个等差数列{a n}和{b n}的前n项和分别为S n和T n,且对一切正整数n都有S nT n=5n+32n+7,试求a9b9的值.7.等差数列的特点考虑不周全而致错例7在等差数列{a n}中,已知a1=20,前n项和为S n,且S10=S15,求当n取何值时,S n有最大值,并求出它的最大值.8.忽略题目中的隐含条件而致错例8 已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,求a 2-a 1b 2的值.9.求和时项数不清而致错例9 已知点(1,2)是函数f (x )=a x (a >0且a ≠1)的图象上一点,数列{a n }的前n 项和S n =f (n )-1.(1)求数列{a n }的通项公式;(2)若b n =log a a n +1,求数列{a n b n }的前n 项和T n .10.利用等比数列求和公式忽视q =1的情形而致错例10 已知等比数列{a n }中,a 3=4,S 3=12,求数列{a n }的通项公式.专题2-1 数列重难点、易错点突破参考答案1 求数列通项的四大法宝例1 解 当n =1时,a 1=S 1=31-2=1;当n ≥2时,a n =S n -S n -1=3n -2-(3n -1-2)=3n -3n -1=2×3n -1, 又a 1=1≠2×31-1,所以数列{an }的通项公式a n =⎩⎪⎨⎪⎧1,n =1,2×3n -1,n ≥2. 例2 解 由已知,得a n -a n -1=3n -1(n ≥2),所以a 2-a 1=3,a 3-a 2=32,a 4-a 3=33,…,a n -a n -1=3n -1, 以上各式左右两边分别相加,得a n -a 1=3+32+33+…+3n -1, 所以a n =3(1-3n -1)1-3+1=3n -12(n ≥2),又n =1时,a 1=1=31-12,所以a n =3n -12(n ∈N *).例3 解 由a 1=3,a n =3n -43n -1a n -1,得a n a n -1=3n -43n -1,所以a 2a 1=25,a 3a 2=58,a 4a 3=811,a 5a 4=1114,…,a n a n -1=3n -43n -1(n ≥2),以上各式左右两边分别相乘,得a n a 1=23n -1,所以a n =63n -1(n ≥2), 又a 1=3=63×1-1,所以a n =63n -1(n ∈N *).例4 解 设a n +1+t =14(a n +t ),则a n +1=14a n -34t ,与已知比较,得-34t =3,所以t =-4,故a n +1-4=14(a n -4),又a 1-4=1-4=-3≠0,故数列{a n -4}是首项为-3,公比为14的等比数列,因此a n -4=-3×141-⎪⎭⎫⎝⎛n ,即a n =4-3×141-⎪⎭⎫⎝⎛n (n ∈N *).2 提高运算速度七妙招例1 解析 若先求出a 1,再求和,运算较为繁琐.注意到两个和式中的项数相等,且均是等差数列.由于(a 2+a 5+a 8+…+a 98)-(a 1+a 4+a 7+…+a 97)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)+…+(a 98-a 97)=33d =66,所以a 2+a 5+a 8+…+a 98=100+66=166,故选A. 答案 A点评 活用等差、等比数列的概念,沟通有关元素间的内在联系,使运算得以简化.例2 解析 若设出a 1和q ,利用基本量法求解,显然运算量较大.若利用性质a 1a 14=a 2a 13=…=a 7a 8=9,则a 1a 2…a 14=(a 7a 8)7=97,所以log 3a 1+log 3a 2+…+log 3a 14=log 397=14,故选B. 答案 B点评 数列的性质是对数列内涵的揭示与显化,是求解数列问题的有力武器.例3 解析 利用等差数列的变形公式求得公差,再结合等差数列的变形公式求得通项.设等差数列{a n }的公差为d ,则d =a 10-a 310-3=388-37=55,a n =a 3+(n -3)d =3+(n -3)×55=55n -162.答案 55n -162点评 常规方法是联立方程组,求出首项与公差,再由数列的通项公式求解.而利用变形公式可以回避求解数列的首项,直接求解公差,再结合变形公式求得通项.例4 分析 常规解法是设出基本量a 1,d ,列方程组求解,但较繁琐;若能利用整体思维,则可少走弯路,使计算合理又迅速.解 由S 9=18,即9(a 1+a 9)2=18,则a 1+a 9=4=2a 5,故a 5=2,又S n =n (a 1+a n )2=n (a 5+a n -4)2=n (2+30)2=240,所以n =15.点评 本题解法不在a 1,d 上做文章,而是将S n 变形整理用a 5+a n -4表示,使解题过程大大简化. 例5 分析 用数形结合法解等差数列问题应抓住两个方面:①通项a n 联系一次函数,对于等差数列的有关问题通过构造点共线模型,可简化解题过程;②前n 项和S n 联系二次函数,利用二次函数的对称性及最值.解 设f (x )=xa 1+x (x -1)2d =d 2x 2+⎝⎛⎭⎫a 1-d2x , 则(n ,S n )在该二次函数的图象上,由于S 8=S 18,d <0, 所以y =f (x )的对称轴是x =8+182=13,且开口向下,故当n =13时,S n 取得最大值, 故数列{a n }的前13项的和最大.点评 从直观性角度研究数列问题,可使问题变得生动形象,易于求解.例6 分析 由已知条件,事先无法估计a n 解析式的结构,因此不能用待定系数法求a n .但是利用等差数列{b n }和等比数列{c n }可以得出关于a n +1和a n 的两个等式,消去a n +1,即可得a n .再根据a n 求解对应的前n 项和. 解 因为a 1=56,a 2=1936,所以b 1=log 2⎝⎛⎭⎫1936-13×56=-2, c 1=1936-12×56=132,又{b n }是公差为-1的等差数列, {c n }是公比为13的等比数列,所以⎩⎪⎨⎪⎧b n=-n -1,c n =⎝⎛⎭⎫13n +1,即⎩⎨⎧log 2⎝⎛⎭⎫a n +1-13a n =-n -1,an +1-12a n =⎝⎛⎭⎫13n +1,则⎩⎨⎧an +1-13a n =12n +1,an +1-12a n =13n +1,解得a n =32n -23n ,所以S n =3·⎝⎛⎭⎫12+122+…+12n -2·⎝⎛⎭⎫13+132+…+13n =2-32n +13n . 点评 通项虽不是等比数列,但可拆为两个等比数列的和的形式,再分别利用等比数列的求和公式求和. 例7 分析 要证明数列⎭⎬⎫⎩⎨⎧n S n 是等比数列,必须把问题化成与S n n 这个整体有关的问题,通过等比数列的定义加以证明.证明 由于a n +1=n +2n S n,a n +1=S n +1-S n ,则(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1)S n ,即S n +1n +1=2S nn, 又S n ≠0,所以数列⎭⎬⎫⎩⎨⎧n S n 是以1为首项,2为公比的等比数列. 点评 将数列中的复杂问题进行转化,关键是找准方向,再利用已知等差或等比数列的相关知识求解.3 盘点数列中的易错问题例1 [错解] 因为a n =n 2+λn 是关于n 的二次函数,且n ≥1,所以-λ2≤1,解得λ≥-2.[点拨] 数列是以正整数N *(或它的有限子集{1,2,…,n })为定义域的函数,因此它的图象只是一些孤立的点.[正解1] 设f (x )=x 2+λx ,则其图象的对称轴为x =-λ2,因为a n =n 2+λn ,所以点(n ,a n )在f (x )的图象上,由数列{a n }是递增数列可知,若-λ2≤1,得λ≥-2;如图所示,当2-⎝⎛⎭⎫-λ2>-λ2-1,即λ>-3时,数列{a n }也是单调递增的. 故λ的取值范围为(-3,+∞).[正解2] 因为数列{a n }是递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0. 所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围是(-3,+∞).温馨点评 利用函数观点研究数列性质时,一定要注意数列定义域是{1,2,3,4,…,n ,…}或其子集这一特殊性,防止因扩大定义域而出错. 例2 [错解] 因为数列{a n }是递增数列,且点(n ,a n )在函数f (x )的图象上,所以分段函数f (x )是递增函数,故实数a 满足不等式组⎩⎪⎨⎪⎧3-a >0,a >1,7(3-a )-3<a ,解得94<a <3.[点拨] 上述解法把数列单调递增完全等同于所在的函数单调递增,忽视了二者的区别,事实上,数列是递增数列时,所在函数不一定单调递增. [正解] 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7的图象上.因此当3-a >0时,a 1<a 2<a 3<…<a 7; 当a >1时,a 8<a 9<a 10<…; 为使数列{a n }递增还需a 7<a 8. 故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f (7)<f (8),解得2<a <3,故实数a 的取值范围是(2,3).例3 [错解] a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.[点拨] 公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2是分段的,因为n =1时,S n -1无意义.在上述解答中,应加上限制条件n ≥2,然后验证n =1时的值是否适合n ≥2时的表达式. [正解] a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.由于a 1不适合此式,故a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.例4 [错解] a 7=a 1+6d =9+6d <0,∴d <-32.[点拨] 忽略了“开始”一词的含义,题目强调了第7项是该等差数列中的第一个负项,应有a 6≥0. [正解] 设a n =9+(n -1)d ,由⎩⎪⎨⎪⎧a 6=9+5d ≥0,a 7=9+6d <0,得-95≤d <-32.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败. 例5 [错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°. 另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得n 2-25n +144=0,所以n =9或n =16. 即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15×5°=195°>180°应该舍掉. [正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180, 解得n =9或n =16.当n =9时,最大内角为120°+8×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例6[错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0,则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k ,b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k , 所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点. [正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k , b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k =41k , 所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,点(n ,S n )在二次函数f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x 的图象上.当d =0时,S n =na 1,但是本题不属于这种情况⎝ ⎛⎭⎪⎫否则S n T n =na 1nb 1=a 1b 1与S n T n =5n +32n +7矛盾. 例7 [错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130. ∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 设等差数列{a n }的公差为d .由a 1=20,S 10=S 15,得10×20+10×92d =15×20+15×142d ,解得公差d =-53. ∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0,∵a 11+a 15=a 12+a 14=2a 13,∴a 13=0.∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数,而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.例8 [错解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1. ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.当b 2=2时,a 2-a 1b 2=-12=-12, 当b 2=-2时,a 2-a 1b 2=-1-2=12. ∴a 2-a 1b 2=±12. [点拨] 注意b 2的符号已经确定,且b 2<0,忽视了这一隐含条件,就容易产生上面的错误.[正解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1, ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.若设公比为q ,则b 2=(-1)q 2, ∴b 2<0.∴b 2=-2,∴a 2-a 1b 2=-1-2=12.例9 [错解] 1+2+22+…+2n -1=21121---n =2n -1-1. [点拨] 错因在于没有搞清项数,首项为1=20,末项为2n -1,项数应为n .[正解] (1)把点(1,2)代入函数f (x )=a x 得a =2,所以数列{a n }的前n 项和为S n =f (n )-1=2n -1.当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,对n =1时也适合,∴a n =2n -1.(2)由a =2,b n =log a a n +1得b n =n ,所以a n b n =n ·2n -1.T n =1·20+2·21+3·22+…+n ·2n -1, ∴2T n =1·21+2·22+3·23+…+(n -1)·2n -1+n ·2n . ∴由∴-∴得:-T n =20+21+22+…+2n -1-n ·2n ,所以T n =(n -1)2n +1.例10 [错解] 设等比数列的公比为q ,则⎩⎪⎨⎪⎧ a 3=a 1q 2=4,S 3=a 1(1-q 3)1-q =12,解得q =-12.所以a n =a 3q n -3=4·⎝⎛⎭⎫-12n -3=⎝⎛⎭⎫-12n -5. [点拨] 上述解法中忽视了等比数列前n 项和公式中q =1这一特殊情况.[正解] 当q =1时,a 3=4,a 1=a 2=a 3=4,S 3=a 1+a 2+a 3=12,所以q =1符合题意,a n =4.当q ≠1时,⎩⎪⎨⎪⎧a 3=a 1q 2=4,S 3=a 1(1-q 3)1-q =12,解得q =-12,a n =a 3q n -3=⎝⎛⎭⎫-12n -5. 故数列通项公式为a n =4或a n =⎝⎛⎭⎫-12n -5.。
豊圍韋(2020・全国卷III)设数列{a ”}满足a 1 = 3,a ”+1 = 3a n -4n .冋考引航玩转高考真题——数列篇苏玖(1)计算a 2, a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S ”.思维延伸:本题是递推数列问题,(1)利用递推公式得出a 2,a 3,猜想得出{a ”}的通 项公式,利用待定系数法构造等比数列,求出通项公式.(2)由错位相减法求解即可.主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,难度不大.改编本题的递推关系中的变量n 可以改为常数,于是改编为:—1 如设数列{a ”}满足 a 1 = 4,a ”+] = 3a n -2 .(1)求{a ”}的通项公式;(2)求数列{2” a ”}的前n 项和S ”.利用待定系数法a n +1+2 = 3(a ” +2),求出2的值,再用等比数列的通项公式求出 a ”,最后利用分组求和方法求出S ”.若将上题中的常量“2”改为“一次函数kn + b ”的形式,于是改编为:]改编 设数列{a ”}满足a 1 = -1, a n +1 = 2a n + 2n -1. ^^2(1) 求{a ”}的通项公式;(2) 求数列{2” a ”}的前n 项和S n .利用待定函数法求解,可以设a n +i+ a(n +1) + b = 2(a n + an + b ),比较系数可以求 出系数a ,b ,由等比数列定义求出通项公式,再利用分组求和法求出结果.改编3若将“一次函数”改编为“二次函数类a ” + bn + c ”,于是改编为:设数列{a ”}满足a 1 = 1, a n +1 = 2a n - 2n 2,求{a ”}的通项公式.仍然利用待定系数函数法求解本题,可以设a ”增加函数a ” + bn + c 后 构成类似等比数列问题,即可求出通项公式.做中悟道:从一道全国高考递推数列题出发,经过改变递推关系式演变出几类求递推数列通项公式问题,蕴含着丰富的数学思想方法.策略一:将变量“4n”改为常量“2”,改编为常规的递推数列问题,如改编题1,考查了待定系数法及错位相减法;策略二:将变量的一次单项式“4n”改编为“一次多项式2n-1或二次单项式2n2”,如改编题2,3,考查了待定函数法(一次函数或二次函数),函数与方程思想,分组求和法;策略三:将高考引航变量“4n”改编为指数函数“2””,如改编4,5,6,考查了累加求和法、构造法、裂项求和法、两次错位相减法等;策略四:将递推关系改编为分式形式,利用取倒数构造等差数列,最后与2020年新高考山东卷第18题接轨,考查二项式定理应用、构造法、分类讨论思想.点拨解析---------------------------------------------------------------真题:略.改编1:由a=4,a*=3a n-2,得a2=10,设a*+2=3(a n+几),即a n+1=3a n+2几,令22=-2,即2=-1,因此1=3(a n-1)•而a-1=3,所以数列{a n-1}是以3为首项,3为公比的等比数列,所以a”-1=3n,即a n=3n+1(”e N*).(2)数列{2”a”}的通项公式为2”a”=6”+2n(”e N*),利用分组求和的方法可得S”=+2(2n-1),即S n=6+2"+1-16(”e N*).改编2.(待定系数法)因为a”+i=2a”+2n-1,设a”+1+a(n+1)+b=2(a”+a”+b),即a”*]=2a”+a”+b-a,与a*=2a”+2n-1对比系数得a”+b-a=2n-1对一'切”e N*都成立,所以a=2且b-a=-1,即a=2且b=1,所以数列{a”}递推公式转化为a”+1+2(n+1)+1=2(a”+2n+1).因为a x+2x1+1=2,所以数列{a”+2n+1}是首项为2,公比为2的等比数列,因此a”+2n+1=2",即a n=2"—2n—1.(2)因为a”=2"-2n-1,所以2”a”=4"-(2n+1)x2".4"+1-4分组求和法,41+42+…+4"=,由真题(2)知数列{(2n+1)x2"}的前”项和为(2n-1)2"+1+2,所4"+1+2以S"=—+(2n-1)2"+1.改编3.因为a”+i=2a”-2”?,设a*-a(”+1)2一b(”+1)-c=2(a”-a”?一b”-c),即 a”+i=2a”一an2+(2a一b)n+a+b一c,与a”+i=2a”一2”?只寸比得-a”2+(2a一b)n+a+b一c=-Z”?只寸一'切”e N*都成立,所以a=2且2a—b=0且a+b—c=0,所以a=2,b=4,c=6.所以递推关系式化为a”+i-2(”+1)2—4(”+1)—6=2(a”-2”-4”-6).因为a-2x12-4X1-6=-11,所以数列{a"-2n2-4n-6}是首项为-11,公比为2的等比数列,即a”—2/-4n-6=-11x2"-1,所以数列{a”}的通项公式为a”=-11x2"-1+2^+4n+6.2”}以2为首项和公差的等差改编4.因为%+严2a”+2",两边同时除以2”+1,得=*+1,所以数列数列,所以a”=”x2”-1.(2)因为m”=”x2"-1,所以S"=12x20+22x21+32x22+…+”x2"-1,①因此2S"=12x21+22x22+32x23+…+(”-1)2x2"-1+”x2",②①一②得(1-2)S"=1+(22-12)x2+(32-22)x22+…+[”?-(n-1)2]x2"-1-”x2",即-S”=1+3x2 +5x22+…+(2”-1)x2"-1-”x2".令T=3x2+5x22+…+(2”-1)x2"-1(”M2),③因此2T n=3x22+5x23+…+(2”-1)x2",④③-④得,-T=3x2+2x22+…+2x2"-1-(2n-1)x2"=2+22+23+...+2"-(2n-1)x2"=2(2一1)-(2”-1)x2" =-(2”-3)x2"-2,所以T”=(2n-3)x2"+2(n M2),所以-S”=1+(2n-3)x2"+2-”x2",故S"=(/-2n+3)x2"-3(”e N*).改编5.因为a””=2a”+2"+1,两边同时除以2”+1,得姑=牛+2+£,n +1 1累加求和得,a =玉+ 口 +丄x ]1 +丄+…+2 2 2 4 I 2所以 a n = (n +1)- 2n —1 -1 ( n e N * ).(2) S ” = 2-20 + 3x 21 + 4x 22 + …+ (n +1)-2n —1 -n ,3 3n -1+1 n n +1 当n 为奇数时,S n - 2 三+ 口 -乙二■” 3 3 3令 T = 2x 20 + 3x 21 + 4x 22 + …+ (n +1)x 2n —1,利用错位相减法求得,T n — n • 2n .所以 S ” = n • 2n — n ( n e N * ).改编 6.因为 a ,+I = * a * +(2 一 ”一 1),两边同时乘酸可得 2n +1 a ,+I = 2"a , +(?n ]”一 1),即酸 a ,+I = 2"a ”+2〔2^—r - 士]累加求和法得,2乜=21 q + 2[右-右+占- + +…+ 士-±],(”22) 21即 2n a n = -2 + 2 - 2n —1,当 ” =1 时也满足,所以 a n = - 2"-y ?"一 ])( ” e N )•丄」,两边取倒数得丄=丄+3,所以数列 是首项为1,公差为3的等差数列,2 + 3a n 色+1 a n 2 21 3 2因此——1 + 3 x (n -1),即 a n —^― ( n e N * ).a n 2 ” 3n -1(2)设a n e 改编7.因为a n +12”+i 1 2 1,即关于n 的不等式的整数解的个数为b m ,2 3n -1 22m +1 2 +1化简得 W n < .3 3当 m 为奇数时,2m +1 — (3 -1)m +1 能被 3 整除,2m +1 +1 — (3 -1)m +1 +1 被 3 除余 2, (2m +1 +1 2 \ 2m +1 2m +1所以不等式正整数解的个数为b m = I —上-2 I- —1 +1 — —1 ;\ 3 3) 3 3当m 为偶数时,2m +1 +1 — (3 -1严+1能被3整除,2m +1 — (3 -1)m +1被3除余2,2m +1 +1 ] 2m +1 1 I 2m _1所以不等式正整数解的个数为b m = - — I —1 + 1 | = 土二■3 I 3 3 丿 3所以b m —-2m +1―1, m 为奇数,32m _1m 为偶数.321 + 22 + 23 + …+ 2 2n +1 一 2所以当n 为偶数时,S n = 2 + 2 + 2 + + 2 2 2根据高考真题和上述改编题的过程,请你再提出3道改编题.改编提示:改编a n 前面的系数,或者改编a n 后面的变量为指数函数形式,或者尝试将递推关系改编为分式形式,但是取倒数后变为改编题1的形式等.改编1 :设数列{an }满足a 】—4, a n +i — 2a n -3 .(1)求{a n }的通项公式;(2)求数列{na n }的前n 项和S n . 改编 2 :设数列{an }满足 a 1 — 1,a n +1 — 3a n + 2n .(1)求{a n }的通项公式;(2)求数列{an }的前n 项和S n .改编3 :设数列{an }满足a 1 — 1,a n +1-丄」,求{a n }的通项公式.3 + 2a n 扫码看答案。
常规数列基础大题 Prepared on 24 November 2020
1、设等差数列{}n a 满足35a =,109a =-。
(Ⅰ)求{}n a 的通项公式;
(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值。
2、设数列{}n a 的前N 项和为n S ,已知26,a =12630,a a +=求n a 和n S 3、已知等差数列{}n a 满足:73=a ,2675=+a a ,{}n a 的前n 项和为n S (Ⅰ)求n a 及n S ; (Ⅱ)令1
12
-=
n n a b (*
N n ∈),求数列{}n b 的前n 项和为n T 。
4、已知||n a 为等差数列,且36a =-,60a =。
(Ⅰ)求||n a 的通项公式;
(Ⅱ)若等差数列||n b 满足18b =-,2123b a a a =++,求||n b 的前n 项和 5、已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列⎭
⎬⎫
⎩⎨
⎧-12n n a 的前n 项和.
6、已知等比数列{}n a 中,11
3
a =,公比13
q =. (I )n S 为{}n a 的前n 项和,证明:12
n
n a S -= (II )设31323log log log n n b a a a =++
+,求数列{}n b 的通项公式.
7、等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.
(2)设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨
⎬⎩⎭
的前项和. 8、设数列{}n a 满足21112,32n n n a a a -+=-=
(1) 求数列{}n a 的通项公式;
(2) 令n n b na =,求数列的前n 项和n S
9、已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;
(Ⅱ)求数列{2an }的前n 项和S n .
1、a n =11-2n 。
S n =-(n-5)2+25.所以n=5时,S n 取得最大值。
2.
3.12+=n a n ,)2(+=n n S n {}n b 的前n 项和)
1(4+=
n n
T n
4、10(1)2212n a n n =-+-⋅=-1(1)
4(13)1n n n b q S q
-=
=-- 5.2.n a n =-11{
}.22
n n n n a n n S --=的前项和 6、解:(Ⅰ).31)31(311n n n a =⨯=-,231
1311)311(31n
n n S -=--=所以,21n n
a S -- (Ⅱ)所以}{n
b 的通项公式为.2
)
1(+-=n n b n
7、解:(Ⅰ)219q =a>0,故13q =。
113a =。
故数列{a n }的通项式为a n =1
3
n 。
(Ⅱ)111111log log ...log n b a a a =+++故
1211
2()(1)1
n b n n n n =-=--++ 8、解(Ⅰ){n a }的通项公式为21
2n n a -=。
(Ⅱ)由21
2n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅++⋅① 23572121222322n n S n +⋅=⋅+⋅+⋅+
+⋅②
①-②得235
2121(12)22222n n n S n -+-⋅=+++
+-⋅。
即211[(31)22]9
n n S n +=-+
=1+(n -1)×1=n . S n =2+22+23+…+2n =2(12)12
n
--=2n+1
-2。