(精选)蛋白质与氨基酸
- 格式:ppt
- 大小:2.14 MB
- 文档页数:130
氨基酸和蛋白质结构和功能一、组成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
2、氨基酸的紫外吸收性质芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。
3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。
由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。
(注意与实验一结合)三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。
二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。
10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。
多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。
半胱氨酸的巯基是该化合物的主要功能基团。
GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。
氨基酸和蛋白质氨基酸是构成蛋白质的基本单元,它们在生物体内具有重要的功能和作用。
蛋白质是生命体中最重要的宏大分子,不仅构成了细胞的主要结构基础,还参与了细胞内的信号传导、酶催化以及抗体免疫等重要生物学过程。
本文将探讨氨基酸和蛋白质的相关知识,并简要介绍它们在生物体内的作用。
一、氨基酸的分类氨基酸是由氨基(-NH2)和羧基(-COOH)以及一个特殊的侧链组成的有机化合物。
根据侧链的不同,氨基酸可以分为20种常见的氨基酸,它们具有不同的结构和特性。
其中,8种是人体无法自行合成的必需氨基酸,只能通过食物摄入。
这些必需氨基酸包括赖氨酸、异亮氨酸、亮氨酸、苏氨酸、甲硫氨酸、酪氨酸、缬氨酸和色氨酸。
二、蛋白质的结构蛋白质是由氨基酸通过肽键连接而成的聚合物。
蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。
1. 一级结构:指氨基酸在蛋白质中的线性排列顺序。
通过肽键将氨基酸连接在一起形成多肽链。
2. 二级结构:是指多肽链在空间中的局部折叠模式,常见的二级结构包括α螺旋和β折叠。
3. 三级结构:是指多肽链在整个空间中的立体结构,由二级结构经过进一步的立体构型形成。
4. 四级结构:是指由两个或多个多肽链相互作用形成的完整功能蛋白质的结构。
三、蛋白质的功能蛋白质在生物体内扮演着重要的角色,具有多种功能。
1. 结构功能:蛋白质是构成细胞和组织的主要成分,如细胞膜蛋白、胶原蛋白等,能维持细胞和组织的形态结构。
2. 酶催化功能:蛋白质能够作为酶催化生物化学反应,调节代谢物的转化速率。
3. 运输功能:血红蛋白是一种重要的蛋白质,它能够结合氧气并将其运输到身体各器官,起到供氧的作用。
4. 免疫功能:抗体是身体抵抗外界侵害的重要蛋白质,能够与病原体结合并消灭它们。
5. 调节功能:激素是一类重要的蛋白质,它们能够通过与相应的受体结合来调节体内的生理过程。
四、氨基酸和蛋白质的摄入人体无法合成必需氨基酸,因此需要通过食物摄入。
一、蛋白质与氨基酸的关系一般认为,动物蛋白质的营养实质上是氨基酸的营养。
只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。
饲粮中缺乏任何一种氨基酸,即使其他必需氨基酸含量充足, 体蛋白质合成也不能正常进行。
同样,体蛋白合成潜力越大的动物(如高瘦肉型猪),对氨基酸的需求量就越高。
畜禽饲粮中必需氨基酸的需要量取决于饲粮中的粗蛋白水平。
例如, 仔猪饲粮中蛋白质含量由10%增至22%时, 饲粮赖氨酸的需要量则从0.6 % 增至1.2 % 。
另一方面,饲粮粗蛋白质需要量取决于氨基酸的平衡状况。
一般而言,依次平衡第一至第四限制性氨基酸后,饲粮的粗蛋白质需要量可降低2-4个百分点。
二、氨基酸间的相互关系组成蛋白质的各种氨基酸在机体代谢过程中, 亦存在协同、转化、替代和拮抗等关系。
蛋氨酸可转化为胱氨酸,也可能转化为半胱氨酸, 但其逆反应均不能进行。
因此, 蛋氨酸能满足总含硫氨基酸的需要, 但是蛋氨酸本身的需要量只能由蛋氨酸满足。
半胱氨酸和胱氨酸间则可以互变。
苯丙氨酸能满足酪氨酸的需要, 因为它能转化为酪氨酸, 但酪氨酸不能转化为苯丙氨酸。
由于上述关系,在考虑必需氨基酸的需要时, 可将蛋氨酸与胱氨酸、苯丙氨酸与酪氨酸合并计算。
氨基酸间的拮抗作用发生在结构相似的氨基酸间, 因为它们在吸收过程中共用同一转移系统, 存在相互竞争。
最典型的具有拮抗作用的氨基酸是赖氨酸和精氨酸。
饲粮中赖氨酸过量会增加精氨酸的需要量。
当雏鸡饲粮中赖氨酸过量时, 添加精氨酸可缓解由于赖氨酸过量所引起的失衡现象。
亮氨酸与异亮氨酸因化学结构相似, 也有拮抗作用。
亮氨酸过多可降低异亮氨酸的吸收率, 使尿中异亮氨酸排出量增加。
此外, 精氨酸和甘氨酸可消除由于其他氨基酸过量所造成的有害作用, 这种作用可能与它们参加尿酸的形成有关。
一、蛋白质与氨基酸的关系一般认为,动物蛋白质的营养实质上是氨基酸的营养。
只有当组成蛋白质的各种氨基酸同时存在且按需求比例供给时,动物才能有效地合成蛋白质。