现代分析测试技术第二章 红外光谱
- 格式:ppt
- 大小:1.96 MB
- 文档页数:45
材料分析测试技术一、名词解析:1.红外光谱(Infrared Spectroscopy, IR)是利用试样吸收红外光的特征对物质进行结构鉴定的表征技术。
2.拉曼光谱(Raman Spectroscopy)就是利用光经过试样产生的拉曼散射特征对物质进行结构鉴定的表征技术。
3.Raman位移就是Stokes或Anti-Stokes线频率与入射光频率的差值。
4.核磁共振(Nuclear Magnetic Resonance, NMR)是记录处于外磁场中磁核能级之间跃迁的一种技术。
5.化学位移:由于质子所处的化学环境不同,其周围的微磁场自然不同,因此,核磁共振发生时外加的磁场强度并不相同,而是相对有一定的位移,这种吸收峰位置的差距被称为化学位移。
6.凝胶渗透色谱(Gel Permeation Chromatography, GPC)是一种色谱技术,它用高度多孔性的、非离子型的凝胶小球将溶液中多分散的聚合物逐级分开,配合分子量检测器使用即可得到分子量分布,是目前测定分子量分布最广泛应用的方法。
7.X射线衍射如果试样具有周期性结构(结晶),则X射线被相干散射(相对于入射光,散射光没有波长和相关系的改变),该现象被称为X射线衍射8.漫射X射线衍射如果试样具有不同电子密度的非周期性结构,则X射线被不相干散射(相对于入射光,散射光有波长和相关系的改变),该现象被称为漫射X 射线衍射(简称散射)。
9.热分析(Thermal Analysis, TA)是指在程序控温下测量物质的物化性质与温度关系的一类技术10.热重分析(Thermalgravimetry or Thermalgravimetric analysis, TG or TGA)是在程序控温下测量试样质量对温度的变化。
11.热机械分析(Thermomechanical analysis, TMA)是在程序控温和加载静态载荷(压或拉)下测量样品尺寸对温度的变化。
一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044的吸光度的某元素的浓度称为特征浓度。
计算公式: S=0.0044×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度 0.0044——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。
通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。
只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。
计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。
5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。
6.差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
材料现代分析测试技术(安徽理工大学版)知到章节测试答案智慧树2023年最新第一章测试1.K值法属于内标法参考答案:对2.K值法,不适合于n≥2的混合样品的定量分析参考答案:错3.K值法,需要在试样中加入标准相来进行分析。
参考答案:对第二章测试1.在某元素的K系辐射中,Kα2的波长比Kα1的波长长。
()参考答案:对2.X射线具有波长,显示了其粒子性。
()参考答案:错3.定性分析XRD谱图常用的软件是()参考答案:Jade4.满足布拉格方程是得到XRD衍射峰的()。
参考答案:必要条件5.关于K值法,下列说法正确的是()。
参考答案:适合于n≥2的混合样品的定量分析;K值法属于内标法;需要在试样中加入标准相来进行分析6.XRD主要实验参数包括()。
参考答案:扫描范围;狭缝宽度;扫描速度第三章测试1.透射电镜的分辨本领主要取决于照明束的波长,此外还收到像差的限制。
()参考答案:对2.蚀刻就是人为的在复型表面制造一层密度比较大的元素膜厚度差,以改善复型图形的衬度。
()参考答案:错3.SEM的放大倍数的表达式是()参考答案:荧光屏上图像的边长与电子束在样品上的扫描振幅之比4.波谱仪和能谱仪中检测的物理信号是()。
参考答案:特征X射线5.关于TEM衍射花样分析,下列说法正确的是()。
参考答案:分析衍射花样,可以与标准花样对照;衍射花样遵循晶体消光规律;衍射花样满足布拉格方程6.SEM的成像物理信号中,()可以得到原子序数衬度。
参考答案:背散射电子;吸收电子第四章测试1.DTA是在程序控制温度下,样品的热能对温度变化的方法。
()参考答案:错2.DSC与DTA不同,DSC既可以用于定性分析,又可以用于定量分析。
()参考答案:对3.差示扫描量热法按照测量方式不同分为()两种。
参考答案:功率补偿型;热流型4.DTA谱线中,试样吸热效应时()。
参考答案:ΔT<05.热重分析其特点是定量性强,能准确的测量物质()。
参考答案:质量变化6.对于熟知的热塑性丁苯橡胶(SBS)和丁苯橡胶(SBR)说法正确的是。
红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。
通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。
红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。
原理红外光谱分析基于物质分子的振动和转动产生的谱线。
大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。
红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。
不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。
2.波数:红外光谱中使用波数来表示振动频率。
波数与波长的倒数成正比,常用的单位是cm-1。
波数越大,振动频率越高。
3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。
力常数与振动能量相关,可以通过红外光谱数据计算得到。
4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。
FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。
实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。
在制备过程中需要注意去除杂质和保持样品的均匀性。
2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。
校准样品通常是有明确红外光谱特征的化合物,如苯环等。
3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。
扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。
得到光谱数据后,可以进行后续的数据处理和分析。
4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。
现代近红外光谱分析技术的原理及应用1 简介近红外光(near infrared,NIR)是介于可见光(VIS)和中红外光(MIR或IR)之间的电磁波美国材料检测协会(ASTM)将近红外光谱区定义为波长780-2526nm的光谱区(波数为12820-3959cm-1)习惯上又将近红外区划分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两个区域。
从20世纪50年代起,近红外光谱技术就在农副产品分析中得到广泛应用,但是由于技术上的原因,在随后的20多年中进展不大。
进入20世纪80 年代后,随着计算机技术的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,加之近红外光谱在测试技术上所独有的特点,人们对近红外光谱技术的价值有了进一步的了解从而进行了广泛的研究。
数字化光谱仪器与化学计量学方法的结合标志着现代近红外光谱技术的形成。
数字化近红外光谱技术在20 世纪90年代初开始商品化。
近年来,近红外光谱的应用技术获得了巨大发展,在许多领域得到应用,对推进生产和科研领域的技术进步发挥了巨大作用。
近红外光谱技术是90年代以来发展最快、最引人注目的光谱分析技术,测量信号的数字化和分析过程的绿色化使该技术具有典型的时代特征。
由于近红外光在常规光纤中有良好的传输特性,使近红外光谱技术在实时在线分析领域中得到很好的应用。
在工业发达国家,这种先进的分析技术已被普遍接受,例如1978年美国和加拿大采用近红外法代替凯氏法,作为分析小麦蛋白质的标准方法。
20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。
但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。