零点的存在性定理
- 格式:ppt
- 大小:2.15 MB
- 文档页数:14
零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
高中数学零点存在的原理和应用高中数学中,函数的零点是一个重要的概念。
零点即函数图像与x轴的交点,也就是函数取值为0的点。
零点存在的原理和应用有以下几个方面。
一、零点存在的原理1.介值定理:如果函数在闭区间[a,b]上连续,且函数在区间端点处的值异号(即函数在区间的两个端点处取正值和负值),那么在(a,b)内至少有一个点x0,使得函数取零值。
这个定理也可以叫做柯西中值定理。
2.辛钦定理:如果函数在区间[a,b]上连续,且函数在区间的两个端点处取正值和负值,那么函数至少有一个零点存在于(a,b)内。
二、零点存在的应用1.方程求解:通过函数的零点,我们可以很方便地求解一些方程。
例如,给定一个函数f(x),要求解f(x)=0的解,可以通过找到f(x)的零点来解方程。
这在高中数学的方程求解中经常用到。
通过对函数图像进行观察和分析,我们可以推测方程可能的解的范围,并使用适当的方法来进一步求解方程。
2.函数性质分析:函数的零点可以揭示函数的性质。
例如,我们可以通过求解函数的零点来确定函数的增减区间,凸凹区间等。
通过求解零点,我们可以得到更多的信息,进一步深入地了解函数的性质和特点。
3.物理问题求解:零点的概念在物理问题的求解中也有应用。
例如,对于一些物理模型,我们可以通过建立正确的函数模型,并求解函数的零点,来解决相应的物理问题。
例如,抛物线运动问题中,可以通过建立物体的位移函数模型来求得物体的最高点和落地点等信息。
4.优化问题:在一些优化问题中,我们也可以应用零点的概念。
例如,通过建立其中一种函数模型来描述一个具体的优化问题,然后求解这个函数的零点,就可以找到最优解所对应的参数值。
这在实际生活中的一些决策问题中经常使用。
综上所述,高中数学中函数的零点存在的原理是基于介值定理和辛钦定理,其应用非常广泛。
除了方程求解、函数性质分析、物理问题求解和优化问题,零点的概念还有很多其他的应用,例如图像处理、金融领域的风险评估等。
第 10 炼函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数y f x x D ,我们把方程f x 0的实数根x称为函数y f x x D 的零点2、函数零点存在性定理:设函数f x 在闭区间a,b 上连续,且f a f b 0 ,那么在开区间a,b 内至少有函数f x 的一个零点,即至少有一点x0a,b ,使得f x0 。
(1)f x 在a,b 上连续是使用零点存在性定理判定零点的前提( 2)零点存在性定理中的几个“不一定” (假设f x 连续)① 若f a f b 0 ,则f x 的零点不一定只有一个,可以有多个② 若f a f b 0 ,那么f x 在a,b 不一定有零点③ 若f x 在a,b 有零点,则 f a f b 不一定必须异号3、若f x 在a,b 上是单调函数且连续,则f a f b 0 f x 在a,b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为y f x ,则f x 的零点即为满足方程f x 0的根,若f x g x h x , 则方程可转变为g x h x ,即方程的根在坐标系中为g x ,h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程1lnx x 0 ,无法直接求出根,构造函数f x lnx x ,由f 1 0, f 0 即可判定21其零点必在1,1 中22、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
零点存在定理的前提条件-回复零点存在定理是实分析中的一个重要定理,它断言了一个连续函数在某个区间上必然存在一个零点。
在讨论前提条件之前,我们首先来了解一下零点存在定理的具体表述。
零点存在定理(Bolzano 定理):设函数f(x)在闭区间[a,b]上连续,且f(a)和f(b)异号,即f(a)f(b)<0,则必存在一个c\in(a,b)使得f(c)=0。
这个定理非常直观,它告诉我们,只要一个函数在某个区间上连续,并且函数在这个区间的两个端点上的函数值异号,那么在这个区间上一定存在至少一个点,使得函数的值等于零。
现在让我们来分析零点存在定理的前提条件,即函数连续和函数值异号。
首先,我们来了解一下连续函数的定义。
一个函数f(x)在某个区间上连续,意味着对于任意给定的x_0,当x足够接近x_0时,f(x)也会足够接近f(x_0)。
换句话说,函数在这个区间上没有断点、无间断。
接下来,我们考虑定理中的第二个前提条件:函数在区间的两个端点上的函数值异号。
这意味着函数在区间的两个端点上的函数值一个为正,一个为负。
这个条件比较容易满足,因为只要函数在区间的两个端点的函数值异号,我们就可以找到一条连接这两个端点的连续曲线,而且这个曲线肯定会与x轴相交,即存在函数的零点。
所以,零点存在定理的前提条件可以简单总结为,函数在某个区间上连续,并且函数在这个区间的两个端点上的函数值异号。
接下来,我们需要思考为什么这些前提条件是成立的。
这涉及到实数的基本性质和函数连续性的相关知识。
首先,我们知道实数集上存在公理,例如阿基米德性公理、稠密性公理等。
这些公理保证了实数集的完备性,即实数集中没有空隙,任意两个实数之间都存在有理数。
这个完备性是实分析理论的重要基础之一。
其次,函数连续性的概念也是基于实数集的完备性。
连续函数的定义就是基于实数集中的点之间的距离来描述的。
因此,当我们讨论函数在某个区间上连续时,实际上是在讨论实数集中点与点之间的距离的性质。
零点定理官方定义
一、背景介绍
零点定理是数学分析中的一个重要定理,它描述了在特定条件下函数零点的存在性。
在数学分析的学习和研究中,零点定理有着重要的地位和广泛的应用。
为了更好地理解和掌握零点定理,我们需要对其官方定义进行深入研究和报告。
二、零点定理官方定义
零点定理的官方定义如下:
设函数f(x)在闭区间[a, b]上连续,且f(a) 与 f(b) 异号,即f(a)*f(b) < 0 ,那么在开区间(a, b) 内至少存在一点(c),使得 f(c) = 0 ,这个点(c)被称为函数f(x)在区间[a, b]内的零点。
三、零点定理的意义和应用
零点定理的直观含义是,如果一个连续函数在区间的两端取不同符号的值,那么在从一端变化到另一端的过程中至少有一点函数值为零。
这可以理解为函数图像从x轴的一侧穿过x轴到另一侧。
零点定理在求解方程、证明函数性质以及进行函数图像分析等方面有着广泛的应用。
例如,我们可以利用零点定理来证明方程的解的存在性,判断函数的零点个数以及分析函数的图像特征等。
四、总结
通过对零点定理的官方定义的研究和报告,我们可以更好地理解和掌握零点定理的基本内容和应用。
零点定理是数学分析中的一个重要定理,它为我们解决实际问题提供了有力的工具和方法。
在今后的学习和研究中,我们应该深入研究和应用零点定理,发挥其在数学分析中的重要作用。
函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =Î,我们把方程()0f x =的实数根x 称为函数()()y f x x D =Î的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b Î,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <Þ在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f æö><ç÷èø即可判定其零点必在1,12æöç÷èø中2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。