等离子体物理基础期末考试(含答案)课件
- 格式:doc
- 大小:707.01 KB
- 文档页数:17
大连理工大学一、Write the expressions.(20)(a)Bohm velocity(b)Electron Larmor radius(c)Ion plasma frequency(d)Gravitational drift velocity(e)Magnetic moment.二、For a magnetic mirror system with the mirror ratio 4. Determine the conditionunder which the charged particles are confined in the system and calculates the probability of loss. (15)三、Assuming the electrons at thermal equilibrium, write the Maxwellian distribution with the temperature T e and the expression of electron mean kinetic energy. (10)四、Write the expression of the change in the kinetic energy of a electron as a resultof elastic collision with a atom. (10)五、Assuming that the thermal diffusion is insignificant,write the electron and ion directed velocities respectively. Deduce the ambipolar electric field and the ambipolar directed velocity. (15)六、Deduce the Child-Langmuir law for the collisionless sheath.(15)*七、Write the dispersion relation for electromagnetic waves propagating in a plasma with no dc magnetic field, and then deduces the phase velocity, the group velocity, and the cutoff condition. If k is imaginary, please determine the skin depth.(15)*为考了类似的,其中第一题必会!感谢您的支持与配合,我们会努力把内容做得更好!。
等离⼦体物理基础期末考试(含答案)版权所有,违者必究!!中⽂版低温等离⼦体作业⼀. 氩等离⼦体密度103210n cm -=?, 电⼦温度 1.0e T eV =, 离⼦温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求(1)德拜半径;(2)电⼦等离⼦体频率和离⼦等离⼦体频率;(3)电⼦回旋频率和离⼦回旋频率;(4)电⼦回旋半径和离⼦回旋半径。
解:1、1/2302()8.310()e iD e i T T mm T T neελ-==?+, 2、氩原⼦量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒⼦运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===?===⼆、⼀个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满⾜空间缓变条件。
求:(1)带电粒⼦能被约束住需满⾜的条件。
(2)估计逃逸粒⼦占全部粒⼦的⽐例。
解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1)当粒⼦能被约束时,由粒⼦能量守恒有0m v v ⊥≥,因此带电粒⼦能被约束住的条件是在磁镜中央,粒⼦速度满⾜0022、逃逸粒⼦百分⽐201sin 129.3%2P d d πθθθπ===?? (2)三、在⾼频电场0cos E E t ω=中,仅考虑电⼦与中性粒⼦的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正⽐于速度。
求电⼦的速度分布函数,电⼦平均动能,并说明当t ea ων>>时,电⼦遵守麦克斯韦尔分布。
解:课件6.6节。
版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =,存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。
解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。
求:(1)带电粒子能被约束住需满足的条件。
(2)估计逃逸粒子占全部粒子的比例。
解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。
求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。
解:课件6.6节。
版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。
解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。
求:(1)带电粒子能被约束住需满足的条件。
(2)估计逃逸粒子占全部粒子的比例。
解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。
求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。
解:课件6.6节。
版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求 (1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。
解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。
求:(1)带电粒子能被约束住需满足的条件。
(2)估计逃逸粒子占全部粒子的比例。
解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m mmv mv B B ⊥⊥=,即0m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足002v v ⊥≥2、逃逸粒子百分比201sin 129.3%2P d d πθϕθθπ===⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea ea v νλ=正比于速度。
求电子的速度分布函数,电子平均动能,并说明当t ea ων>>时,电子遵守麦克斯韦尔分布。
解:课件6.6节。
版权所有,违者必究!!中文版低温等离子体作业一. 氩等离子体密度103210n cm -=⨯, 电子温度 1.0e T eV =, 离子温度0.026i T eV =, 存在恒定均匀磁场B = 800 Gauss, 求(1) 德拜半径;(2) 电子等离子体频率和离子等离子体频率; (3) 电子回旋频率和离子回旋频率; (4) 电子回旋半径和离子回旋半径。
解:1、1/2302()8.310()e iD e i T T mm T T neελ-==⨯+, 2、氩原子量为40,221/21/200()8.0,()29pe pi e ine ne GHz MHz m m ωωεε====,3、14,0.19e i e ieB eB GHz MHz m m Ω==Ω== 4、设粒子运动与磁场垂直24.210, 1.3e e i i ce ci m v m v r mm r mm qB qB -===⨯===二、一个长度为2L 的柱对称磁镜约束装置,沿轴线磁场分布为220()(1/)B z B z L =+,并满足空间缓变条件。
求:(1)带电粒子能被约束住需满足的条件。
(2)估计逃逸粒子占全部粒子的比例。
解:1、由B(z)分布,可以求出02m B B =,由磁矩守恒得22001122m m mv mv B B ⊥⊥=,即02m v ⊥⊥= (1) 当粒子能被约束时,由粒子能量守恒有0m v v ⊥≥,因此带电粒子能被约束住的条件是在磁镜中央,粒子速度满足00v ⊥≥2、逃逸粒子百分比201sin 129.3%22P d d πθϕθθπ==-=⎰⎰ (2)三、 在高频电场0cos E E t ω=中,仅考虑电子与中性粒子的弹性碰撞,并且碰撞频率/t t ea eav νλ=正比于速度。
求电子的速度分布函数,电子平均动能,并说明当tea ων>>时,电子遵守麦克斯韦尔分布。
解:课件6.6节。
电子分布函数满足2200010220011cos 1()(())(1.1)32cos (1.2)t a ea e a t ea e f eE t T f v f v vf t m v v v v m v eE t f f f tm v ωκνων∂∂∂∂⎧-=+⎪∂∂∂∂⎪⎨∂∂⎪-=-⎪∂∂⎩因为0f 的弛豫时间远远大于1f 的弛豫时间,因此近似认为0f 不随时间改变,1f 具有ω的频率,即111120 (2.1)(,)()cos ()sin (2.2)f t f v t f v t f v t ωω∂⎧=⎪∂⎨⎪=+⎩(2.2)代入(1.2)中,得0011121112()cos ()sin cos ttea ea e eE df f f t f f t t m dvωνωωνωω+--= (3)对比cos t ω和sin t ω的系数,(3)解得000011122222,()()tea t t e ea e ea eE df eE df f f m dv m dvνωωνων==++ (4) (4)代入(1.1)得2222000222222((1cos 2)()sin 2())6t ea t t e ea ea e E v df df d d v t t m v dv dv dv dvνωωωωνων-++++ 20021(())2t a ea a T f v vf v v m vκν∂∂=+∂∂ (5) 对(5)求时间平均得22220000222221()(())62t t ea a ea t e ea a e E v df T f d v vf m v dv dv v v m v νκνων∂∂-=++∂∂ (6) 引入有效电场2220222()t eaefft ea E E νων=+代入(6)得 222200021()(())32eff t a ea t e ea a e E v df T f d v vf dv m dv v m vκνν∂∂-=+∂∂ (7)对(7)两端积分,得2200022203eff a t e ea a e E df T f vf m dv m vνκ∂++=∂ (8) 所以电子分布函数为 0222200exp()/3()ve t ae ea m vdvf A T e E m κων=-++⎰ (9) 其中A 为归一化系数,电子动能为4002()e e K m f v v dv π∞=⎰(10)当tea ων>>时,0222200exp()/3()ve t ae ea m vdvf A T e E m κων=-++⎰ 22200exp()/3ve ae m vdvA T e E m κω≈-+⎰222/23/202()e ,23e e m v T e e a e e m e E T T T m πκω-==+ (11) 为麦克斯韦分布。
四、设一长柱形放电室,放电由轴向电场维持,有均匀磁场沿着柱轴方向,求:(1)径向双极性电场和双极扩散系数;(2)电子和离子扩散系数相等时,磁场满足的条件; (3)当磁场满足什么条件时,双极性电场指向柱轴。
解:课件8.5节。
1、粒子定向速度u 满足 nu E D nμ⊥⊥⊥∇=- (1) 其中/c eB m ω=,211(/)c m mem μωνν⊥=+,211(/)c m m T D m ωνν⊥=+。
双极性扩散中,电子密度等于离子密度,电子通量等于离子通量,根据(1),因此径向方向上有i i i i i nu nE D n μ⊥⊥⊥Γ==-∇e e e e e nE D n nu μ⊥⊥⊥=--∇==Γ (2) 解方程(2)得径向双极性电场i e i e D D nE nμμ⊥⊥⊥⊥-∇=+ (3)代入(2)得到e i i ei eD D n μμμμ⊥⊥⊥⊥⊥⊥+Γ=-∇+ (4)因此径向双极扩散系数为e i i ea i eD D D μμμμ⊥⊥⊥⊥⊥⊥⊥+=+。
2、电子和离子扩散系数分别为 211(/)i i i i i i T D m eB m νν⊥=+ 211(/)e e e e e e T D m eB m νν⊥==+ (5)解方程(5)得22()i i e e e i i i e e i i i e e em m T m T m e B m T m T νννννν-=- (6)注意到i e m m >>,因此磁场满足22i i e e eim m T B e T νν=。
3、双极性电场指向柱轴等价于22222222222222220i i i e e ei ei i e e i i e ei ei i e e T m T m D D m e B m e B n nE em em n n m e B m e B ννννννμμνν⊥⊥⊥⊥⊥--++∇∇==<++++ (7)当考虑,,i e e i i i e e m m T T Tm T m >>>>>>时,(7)简化为2222i i e e e i i i m m T e B Tm ννν< (8) (8)成立即双极性电场指向柱轴的条件是22i i e e eim m T B e T νν>。
五、如果温度梯度效应不能忽略, 推导无磁场时双极扩散系数和双极性电场。
解:粒子运动方程0m qnE p mn u ν-∇-= (1) 若等离子体温度有梯度,即p T n n T ∇=∇+∇,有m m m q T n T Tu E m m n m Tννν∇∇=--(2) 即/nu nE D n Dn T T μΓ==-∇-∇ (3) 其中,m mq TD m m μνν==。
双极性扩散中,电子密度等于离子密度,电子通量等于离子通量,因此有//i i i i e e e e nE D n Dn T T nE D n D n T T μμΓ=-∇-∇=--∇-∇=Γ (4) 由方程(4)解得双极性电场满足 i e i e i e i e D D D D n TE n Tμμμμ--∇∇=+++ (5) 将(5)带入(4),得 /e i i e e i i ei e i e i eD D D D n n T T μμμμμμμμ++Γ=Γ=-∇-∇++ (6)因此双极性扩散系数为e i i ea i eD D D μμμμ+=+。
六、推导出无碰撞鞘层Child 定律和玻姆鞘层判据。
解:课件9.1节。
在无碰撞鞘层中作如下假设:电子具有麦克斯韦分布;离子温度为0K ;等离子体-鞘层边界处坐标为0,电场电势为0,此处电子离子密度相等,离子速度为s u 。
根据粒子能量守恒得221122s Mu Mu e φ=- (1) 根据粒子通量守恒得i s s n u n u = (2) 解得,1/222(1)i s se n n Mu -Φ=-。
电子满足玻尔兹曼分布/e T e s n n e Φ=,带入泊松方程得 2/1/22201((1/)),2T s s s s en d e eE Mu dx εΦ-Φ=--ΦE = (3) 上式两端乘d dx Φ并对x 积分,注意有00|0,|0x x d dx==ΦΦ==,得/1/20()((1/))T s s en d d d d dx e dx dx dx dx dxεΦ-ΦΦΦ=--ΦE ⎰⎰2/1/201()(2(1/)2)2T s s s s en d Te T E E dx εΦΦ=-+-ΦE - (4) (4)要保证右端为正,当||0Φ>>时显然成立。
当||Φ较小时,对其线形展开得,22221124se e T E ΦΦ≥化简得玻姆鞘层判据1/2()s B eT u u M≥=。
当阴极鞘层的负偏压较大时,/0eT e s n n e Φ=≈,s E <<Φ,此时(4)近似等于21/21/2012()2()()2s s en u d e dx Mε-Φ=-Φ (5) 记0s s J en u =,(5)两边开方再积分,注意边界条件00|0,|0x x d dx==ΦΦ==得 3/41/21/40032()()()2J ex Mε--Φ= (6) (6)中带入边界条件0()s V Φ=-,化简得无碰撞鞘层Child 定律3/21/2000242()9V e J M s ε=七、设一无碰撞朗谬尔鞘层厚度为S ,电压为V ,证明:一个初始能量为零的离子穿过鞘层到达极板所需时间为03/t s v =,这里1/20(2/)v eV m =。
解:朗缪尔鞘层中电势的分布为 3/41/21/4032()()2J ex mε---Φ= (1) Child 定律为3/21/20242()9e V J m sε=,带入(1)得鞘层电势分布满足 4/3()xV sΦ=- (2)由粒子能量守恒得212mv e =-Φ (3) 带入得(2),化简得2/30()dx xv v dt s== (4) 对于方程(4)将含x 项移到左边,两边乘dt 再积分,注意到初始条件0|0t x ==,得2/31/33s x t v = (5) 当粒子到达极板时,有x s =,带入(5)得03/t s v =八、 一个截面为正方形(边长为a )长方体放电容器内,纵向电场维持了定态等离子体,设直接电离项为i nn tδνδ=,并忽略温度梯度效应,求: (1)在截面内等离子体密度分布和电离平衡条件:(2)设纵向电流密度为e j en E μ=,给出穿过放电室截面的总电流表达式。