继电保护算法分析报告
- 格式:doc
- 大小:356.17 KB
- 文档页数:14
竭诚为您提供优质文档/双击可除继电保护实验报告线路保护篇一:继电保护实验报告实验一电磁型电流继电器和电压继电器实验一.实验目的1.熟悉DL型电流继电器和DY型电压继电器的实际结构,工作原理、基本特性。
2.掌握动作电流、动作电压参数的整定。
二.实验原理线圈导通时,衔铁克服游丝的反作用力矩而动作,使动合触点闭合。
转动刻度盘上的指针,可改变游丝的力矩,从而改变继电器的动作值。
改变线圈的串联并联,可获得不同的额定值。
三.实验设备四.实验内容1.整定点的动作值、返回值及返回系数测试(1)电流继电器的动作电流和返回电流测试:返回系数是返回与动作电流的比值,用Kf表示:Kf?IfjIdj1(2)低压继电器的动作电压和返回电压测试:返回系数Kf为Kf?ufjudj五.思考题1、电流继电器的返回系数为什么恒小于1?电流继电器的返回系数是返回与动作电流的比值,电流继电器动作电流大于返回电流,所以电流继电器的返回系数为什么恒小于1。
2、返回系数在设计继电保护装置中有何重要用途?对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。
因此,整定公式中引入返回系数,可使故障消失后继电器可靠返回。
2实验二电磁型时间继电器实验一.实验目的熟悉Ds-20c系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法,二.原理说明当电压加在时间继电器线圈两端时,铁芯被吸入,瞬时动合触点闭合,瞬时动断触点断开,同时延时机构开始起动。
在延时机构拉力弹簧作用下,经过整定时间后,滑动触点闭合。
再经过一定时间后,终止触点闭合。
从电压加到线圈的瞬间起,到延时动合触点闭合止的这一段时间,可借移动静触点的位置以调整之,并由指针直接在继电器的标度盘上指明。
当线圈断电时,铁芯和延时机构在塔形反力弹簧的作用下,瞬时返回到原来的位置。
继电保护及整定计算方法【摘要】继电保护是电力系统中保护重要设备和线路的关键技术,其作用是防止系统故障和事故,保护设备和人员的安全。
本文从继电保护的作用、原理、分类入手,详细介绍了整定计算方法及步骤。
整定计算方法是确定保护装置参数的重要步骤,需要考虑系统的各种因素,确保保护可靠性和灵敏度。
文章最后分析了继电保护及整定计算方法的重要性,探讨了未来发展方向,并总结了本文的主要观点。
继电保护及整定计算方法的研究对电力系统运行和设备保护起着至关重要的作用,也是未来电力系统发展的重要方向。
【关键词】继电保护,整定计算方法,作用,原理,分类,步骤,重要性,发展方向,总结1. 引言1.1 继电保护及整定计算方法继电保护及整定计算方法是电力系统中非常重要的一部分,它们可以确保电力系统运行的安全稳定。
继电保护是指根据电力系统不同的故障类型和位置,及时采取保护措施,保护系统设备不受损坏,在故障发生时迅速切除故障区域,保障系统的可靠运行。
整定计算方法是指根据电力系统的参数特性和工作条件,确定保护装置的动作值,以实现对设备的可靠保护。
整定计算方法是确定保护装置动作参数的重要手段,它根据系统的特性和故障情况,通过计算得出保护装置的整定值。
整定计算方法通常包括确定保护装置的动作时间、动作电流、动作灵敏度等参数,以确保保护装置可以及时准确地切除故障区域,保护系统的安全运行。
整定计算方法的步骤一般包括确定保护对象、收集系统参数、选择保护方法、确定整定值等过程。
整定计算方法对于电力系统的安全运行和设备的保护起着至关重要的作用。
2. 正文2.1 继电保护的作用继电保护是电力系统中非常重要的一个环节,它主要的作用是保护电力设备和线路,防止系统发生故障时对设备和人员造成可怕的伤害。
继电保护系统能够及时检测发生在电力系统中的故障,并在故障发生时迅速切除故障部分,确保电力系统的安全稳定运行。
继电保护系统有着多种不同的保护功能,包括过载保护、短路保护、过电压保护、欠压保护等。
继电保护整定计算方法的探究及改善措施在电力系统实际运行中,由自然因素、人为因素和设备故障引起的事故不断增多,不仅干扰电网正常运行,而且导致配电网频繁断开,造成区域性停电,甚至造成重大事故。
本文将对目前继电保护整定计算方法中存在的问题进行分析和探讨,研究这一问题的改进措施。
标签:继电保护;整定计算方法;探究及改善措施1 继电保护整定计算方法的介绍为了保证电力系统继电保护装置的安全可靠运行,设计者必须考虑继电保护装置的制造工艺、机械部件设计、安全运行、整定计算和全面维护等方面的问题。
其中,准确使用继电保护整定计算可以保证继电保护装置的稳定运行,具有极其重要的作用和意义。
近年来,我国电网规模不断扩大,继电保护整定计算方法从手工计算方法转变为计算机计算方法。
这种变化在一定程度上适应了大数据时代的发展趋势,解决了计算中的时间延迟、工作量大、计算精度高等问题。
在电力系统中,继电保护整定计算是一项综合性的计算工作。
它要求相关的计算器准确地了解继电保护整定计算的基本原理,熟练掌握电网运行的具体特点。
在实际继电保护整定计算中,首先要考虑的是电力系统的运行结构和运行要求。
其次,必须制定科学有效的整定计算方案。
常规分量法和相分量法在电力系统整定计算中有着广泛的应用。
在此基础上,从整定计算的原理出发,提出了实用的计算方法。
例如,采用相分量法和序列分量法计算相关电量,继而根据故障电量计算继电保护整定值。
2 继电保护整定计算方法存在的问题2.1 无法找到对电力系统最不利的运行方式在计算继电保护整定值时,为了计算其动作值和校验灵敏度,工作人员必须首先找出电力系統最不利的运行方式。
在计算继电保护动作值的过程中,若要找出电力系统最不利的运行方式,就需要轮流断开与电路相关联的母线上的继电器。
而且,折断线的数目通常是一到两次。
在检查继电保护灵敏度时,为了找到电力系统的最小运行模式,只需轮流中断与电路相关联的母线上的继电保护。
然而,某些情况下这两种轮流开断的方式都无法确切地找到对电力系统最不利的运行方式。
继电保护算法分析1 引言根据继电保护的原理可知,微机保护系统的核心容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。
图1是目前在微机保护常采用的提取故障信号特征量的信号处理过程。
从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。
很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。
因此计算精度是正确作出保护反应的重要条件。
就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。
目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。
本章将对其中几种较典型的算法作简要介绍和分析。
2 基于正弦量的特征提取算法分析 2.1 两点乘积算法设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。
这时电流和电压可分别表示为:)sin(20i t I i αω+=和 )sin(20u t U u αω+= 表示成离散形式为:)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和故障图1 故障信号特征的提取过程Fig. 1 Character extraction process of fault signal电压的初相角。
设1i 和2i 分别为两个相隔2π的采样点1n 和2n 处的采样值(图2),即: 212πωω=-S S T n T n由式(1): 10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3) )sin(2)(0222i S S T n I T n i i αω+==101cos 2)2sin(2i i S I T n I ααπω=++= (4)式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。
继电保护实验报告
继电保护实验报告
一、实验目的
本实验的主要目的是了解继电保护的原理,运用继电保护系统,对电力系统中的电力设备进行有效的保护,保证电力系统的安全稳定运行。
二、实验内容
1. 综述继电保护的基本原理及功能。
2. 搭建、设置、测试继电保护实验仪器,分别熟练操作和应用它们。
3. 了解继电保护装置的种类、接线及作用原理,以及各种保护动作的原理。
4. 熟练掌握继电保护装置的作用及保护试验的实施方法,并且能够对电力系统中的电力设备进行有效的保护。
5. 熟练掌握继电保护装置的维护与检查,并能够找出系统中存在的负荷覆盖不足、响应时间过长等问题。
三、实验结果
1. 实验中熟练掌握了继电保护装置的作用及保护试验的实施方法,完成了对电力系统中的电力设备进行有效的保护的任务。
2. 熟悉了继电保护装置的维护与检查,了解了电力系统中存在的负荷覆盖不足、响应时间过长等问题,并可以采取相应的措施来解决。
四、结论
本次实验对继电保护的理论基础、原理及其应用有了更加深入的了解,掌握了电力系统中电力设备的保护原理,以及对继电保护的维护与检查等工作的熟练运用。
继电保护试验报告摘要:继电保护是电力系统中非常重要的一项技术,它能够及时检测故障和异常情况,并采取保护措施,使电力系统保持稳定运行。
本试验报告主要介绍了继电保护试验的目的、方法和结果分析。
试验目的是验证继电保护装置的可靠性和准确性,通过模拟各种故障情况,检测继电保护装置的动作和判别能力。
一、试验目的1.验证继电保护装置是否符合设计要求,是否能够在故障情况下快速切除故障线路;2.检测继电保护装置的判别和动作能力,评估其可靠性和准确性;3.分析继电保护装置在各种故障情况下的动作特性和动作时间,为系统的故障排除提供参考。
二、试验方法1.根据电力系统的拓扑结构和故障类型,制定试验方案,确定试验对象和试验参数;2.利用模拟设备和实际硬件进行试验,根据试验方案进行故障模拟,并记录继电保护装置的动作和判别情况;3.根据试验结果进行数据分析和处理,评估继电保护装置的性能和可靠性。
三、试验结果分析1.故障判据能力:在各种故障情况下,继电保护装置能够准确判别故障位置和类型,能够迅速切除故障线路,保证电力系统的稳定运行。
2.动作时间:试验结果表明,继电保护装置的动作时间符合设计要求,能够在短时间内响应故障信号并切除故障线路,最大限度地减少电力系统的损坏。
3.可靠性评估:根据试验数据分析,继电保护装置的误动率非常低,能够在故障情况下稳定工作,并可靠地切除故障线路。
四、存在问题及改进措施根据试验结果分析,本次试验中继电保护装置的性能表现较好,但仍存在以下问题:1.动作时间略长:尽管继电保护装置的动作时间符合设计要求,但仍可以通过优化硬件和软件的结构,进一步缩短动作时间,提高故障切除的效率。
2.对复杂故障情况的判别能力有待提高:在复杂故障情况下,继电保护装置的判别能力有一定的局限性,需要进一步优化算法和数据处理方法,提高判别的准确性。
改进措施:1.更新继电保护装置的硬件和软件版本,采用先进的算法和数据处理方法,提高故障判别的准确性;2.加强继电保护装置的定期维护和检修,确保其正常运行和可靠工作。
报告编号:YT-FS-8685-31继电保护实验报告(完整版)After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas.互惠互利共同繁荣Mutual Benefit And Common Prosperity继电保护实验报告(完整版)备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。
文档可根据实际情况进行修改和使用。
电流方向继电器特性实验一、实验目的1、了解继电器的結构及工作原理。
2、掌握继电器的调试方法。
二、构造原理及用途继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。
继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。
当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。
利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。
继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。
电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。
三、实验内容1. 外部检查2. 内部及机械部分的检查3. 绝缘检查4. 刻度值检查5. 接点工作可靠性检查四、实验仪器1、微机保护综合测试仪2、功率方向继电器3、DL-31 型电流继电器4、电脑、导线若干。
五、实验步骤1、外部检查检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。
继电保护整定计算实列分析继电保护整定计算是电力系统中非常重要的一环,它的准确与否直接关系到电力系统的安全运行。
在电力系统中,继电保护的作用是在电力系统发生故障时,对故障进行检测、定位并切除故障,保障正常电力供应和设备的安全运行。
继电保护的整定计算主要包括对各个保护装置的参数进行计算,确保保护装置能够在故障发生时迅速、准确地动作。
整定计算的过程通常包括以下几个关键步骤:选择保护装置类型、确定保护继电器的定值、根据电力系统的参数进行计算、进行整定试验等。
接下来,我们以负荷电流保护为例,来分析继电保护整定计算的实例。
假设一些电力系统的额定电压为10kV,额定频率为50Hz,负荷电流保护的带动保护时间为0.2秒,负荷电流保护的整定系数为1.2,故障电流为1000A,额定电流为200A。
首先,我们需要计算负荷电流保护的动作电流。
负荷电流保护的动作电流通常为额定电流的整定系数乘以额定电流。
根据给定条件,负荷电流保护的动作电流为1.2乘以200A,即240A。
接下来,我们计算负荷电流保护的动作时间。
负荷电流保护的动作时间通常为带动保护时间加上故障电流通过继电器的时间。
根据给定条件,带动保护时间为0.2秒,故障电流为1000A。
假设负荷电流保护的系数为K,则通过继电器进行计算得动作时间为:0.2秒+K/1000秒。
根据保护动作表,当动作时间小于0.4秒时,应选择K为0.2秒。
接下来,我们进行整定试验。
首先,我们设置负荷电流为240A,然后通过继电保护进行试验。
如果继电器动作时间在0.2秒到0.4秒之间,我们可以确定整定计算是正确的。
如果继电保护的动作时间不符合要求,我们需要重新进行整定计算,或检查电力系统是否存在异常。
以上就是对继电保护整定计算的一个实例分析。
在实际应用中,继电保护的整定计算通常是一个复杂的过程,需要根据电力系统的具体参数和保护装置的特性进行计算和试验。
合理的继电保护整定可以提高电力系统的可靠性和安全性,保障电力供应的连续和稳定运行。
电力系统中继电保护算法研究在现代社会,电力系统的稳定运行对于各行各业的正常运转以及人们的日常生活至关重要。
而继电保护作为电力系统中的重要组成部分,其算法的优劣直接影响着电力系统的安全性和可靠性。
继电保护的主要任务是在电力系统发生故障时,迅速、准确地将故障部分从系统中隔离,以避免故障的扩大,保护电力设备和人员的安全。
为了实现这一目标,继电保护算法需要具备高准确性、快速性和可靠性。
常见的继电保护算法包括基于电流、电压的算法,以及基于阻抗的算法等。
基于电流、电压的算法,如傅里叶算法,是通过对电流和电压信号进行傅里叶变换,提取出基波分量,从而计算出故障的特征量。
这种算法原理简单,计算精度较高,但在处理非周期分量和暂态信号时可能存在一定的误差。
阻抗算法则是通过测量故障时的电压和电流,计算出故障点的阻抗,从而确定故障的位置。
然而,这种算法在系统运行方式变化较大时,计算结果的准确性可能会受到影响。
随着电力系统的不断发展和复杂化,传统的继电保护算法逐渐难以满足需求。
近年来,一些新的算法和技术不断涌现。
智能算法在继电保护中的应用逐渐受到关注。
例如,人工神经网络算法具有强大的学习和自适应能力,能够处理复杂的非线性问题。
通过对大量的故障样本进行训练,神经网络可以自动提取故障特征,实现对故障的准确判断。
遗传算法则可以用于优化继电保护的参数设置,提高保护装置的性能。
它通过模拟自然选择和遗传变异的过程,在众多的参数组合中寻找最优解。
小波变换算法在继电保护中也展现出了独特的优势。
它能够在时域和频域上同时对信号进行分析,有效地捕捉到暂态信号中的突变和奇异点,提高了继电保护对暂态故障的检测能力。
在实际应用中,选择合适的继电保护算法需要综合考虑多种因素。
首先是电力系统的结构和运行方式。
不同的系统结构和运行方式会导致故障特征的差异,因此需要选择适应能力强的算法。
其次是保护装置的性能要求。
对于一些对快速性要求极高的场合,如超高压输电线路,需要采用能够快速响应的算法。
继电保护算法分析1 引言根据继电保护的原理可知,微机保护系统的核心容即是如何采用适当而有效的保护算法提取出表征电气设备故障的信号特征分量。
图1是目前在微机保护常采用的提取故障信号特征量的信号处理过程。
从图中可以看出,自故障信号输入至A/D 输出的诸环节由硬件实现,在此过程中故障信号经过了预处理(如由ALF 滤除信号中高于5次的谐波分量),然后通过保护算法从中提取出故障的特征分量(如基波分量)。
很明显,只有准确且可靠地提取出故障的特征量,才能通过故障判据判断出是否发生了故障,是何种性质的故障,进而输出相应的保护动作。
因此计算精度是正确作出保护反应的重要条件。
就硬件部分而言,为了减少量化误差,通常采用12位甚至16位A/D 转换芯片;而就保护算法而言,提高精度除了与算法本身的性能有关,还与采样频率、数据窗长度和运算字长有关。
目前针对故障特征的提取有许多不同类型的保护算法,本课题研究的是电动机和变压器的保护,根据相应的保护原理,主要涉及基于正弦量的算法和基于序分量过滤器的算法。
本章将对其中几种较典型的算法作简要介绍和分析。
2 基于正弦量的特征提取算法分析故障图1 故障信号特征的提取过程Fig. 1 Character extraction process of fault signal2.1 两点乘积算法设被采样信号为纯正弦量,即假设信号中的直流分量和高次谐波分量均已被理想带通滤波器滤除。
这时电流和电压可分别表示为:)sin(20i t I i αω+=和 )sin(20u t U u αω+= 表示成离散形式为:)sin(2)(0i S S k T k I kT i i αω+== (1) )sin(2)(0u S S k T k U kT u u αω+== (2)式中,ω为角频率,I 、U 为电流和电压的有效值,S T 为采样频率,0i α和0u α为电流和电压的初相角。
设1i 和2i 分别为两个相隔2π的采样点1n 和2n 处的采样值(图2),即: 212πωω=-S S T n T n由式(1):10111sin 2)sin(2)(i i S S I T n I T n i i ααω=+== (3))sin(2)(0222i S S T n I T n i i αω+==101cos 2)2sin(2i i S I T n I ααπω=++= (4)式中011i S i T n αωα+=为第n 1个采样时刻电流的相位角。
kT S图2 两点乘积算法的采样Fig. 2 Sampling of two-point product algorithm将式(3)和式(4)平方后相加可得:222122i i I +=由此可求得电流的有效值为:22221i i I +=将式(3)和式(4)相除可求得S T n 1时刻的电流相位为:211i i arctgi =α 同理,由式(2)可得:11sin 2u U u α= (5) 12cos 2u U u α= (6)类似于电流的情况,由式(5)和式(6)可得:221u u U +=211u u arctgu =α 式(3)~(6)表明,若输入量为纯正弦函数,只要得到任意两个相隔2π的瞬时值,就可以计算出其有效值和相位。
为了避免涉及三角函数,在计算测量阻抗时可采用复数法,即把电流和电压表示为:1111sin cos sin cos i i i i jU U U jI I I αααα+=+=利用式(3)~(6)得:1212ji i ju u I U Z ++== (7) 由式(7)可求得测量阻抗的电阻分量和电抗分量为:22212211i i u i u i R ++=(8) 22212112i i u i u i X +-=(9) 式(8)和式(9)中用到了两个采样点的乘积,故称为两点乘积算法。
该算法使用了两个相隔2π的采样值,即算法本身所需的数据窗长度为41周期,在工频场合该长度为5mS ,这即是算法的响应时间。
文献表明,用正弦量任何两点相邻的采样值都可以计算出有效值和相位角,亦即理论上两点乘积算法本身所需的数据窗可以是很短的一个采样间隔,但事实上由于此时的算法公式将比前者复杂得多,实际应用中由于实现算法所需的运算时间加长反而抵消了采样间隔的缩短。
此外,由于算法所针对的是纯正弦量,实际的故障信号很难满足这一要求,可见算法的精度严重依赖于信号波形的正弦度。
因此,尽管算法本身没有理论误差,但为了使信号尽可能接近于正弦,必须通过数字滤波的方法先滤除信号中的高频分量,这将额外地增加很大的运算工作量,使实际的算法响应时间大大超过理论值。
2.2 导数算法设电流和电压分别为:)sin(2)sin(200u i t U u t I i αωαω+=+=则1t 时刻的电流和电压分别为:1011sin 2)sin(2i i I t I i ααω=+= (10) 1011sin 2)sin(2u u U t U u ααω=+= (11)式中011i i t αωα+=,011u u t αωα+=。
而1t 时刻电流和电压的导数分别为:11cos 2i I i αω=' 或 11cos 2i I i αω=' (12) 11cos 2u U u αω=' 或 11cos 2u U u αω=' (13)由式(10)~(13)可得:基波有效值 212121⎪⎭⎫ ⎝⎛'+=ωi i I (14) 212121⎪⎭⎫ ⎝⎛'+=ωu u U (15)阻抗分量 21211111⎪⎭⎫ ⎝⎛'+'⋅'+=ωωωi i u i i u R (16) 21211111⎪⎭⎫⎝⎛'+'-'=ωωωi i u i i u X (17) 可见,只要获得了电流电压在某一时刻的采样值和在该时刻的导数,就可以计算出相应的电流电压基波有效值、相位和阻抗。
在微机的离散系统中,无法通过采样直接得到该点的导数,为此,可取t 1为两个相邻采样时刻k 和k +1的中间时刻,用差分近似表示该时刻的导数(图3)。
即:)(111+-='k k Si i T i (18) )(111+-='k k Su u T u (19) 这实际上是用直线ab 的斜率近似表示直线mn 的斜率,当S T 足够小时,这种近似将会有足够的精度。
从图3可以看到,t 1并不在采样点上,为了使采样值与导数尽可能在同一点上,对相邻两点采样值求平均值:)(2111++=k k i i i (20))(2111++=k k u u u (21)显然,当S T 足够小时,t 1与导数点将足够接近。
虽然与两点乘积算法相似,导数算法也使用了两个相邻的采样值,但其采样间隔很小,因此算法的响应速度很快。
由于算法在求导数时是用差分近似微分,即算法的精度与采样频率有关,所以采样频率越高则精度越高。
此外,由于算法中采用了差分方法,对信号中的直流分量具有一定的滤除能力,但对高次谐波则具有放大作用,因此类似于两点乘积算法,该算法也需要通过数字滤波器滤除高次谐波,因而算法的实际响应速度主要取决于算法本身和数字滤波器的运算时间。
2.3 半周绝对值积分算法半周绝对值积分算法的原理是依据一个正弦量在任意半个周期绝对值积分为一常1 kT S图3 差分近似求导原理Fig, 3 Approximate derivative calculation by difference method数S ,且积分值S 与积分起始点的初相位无关,如图4中两个从不同起始点算起的半周的两部分面积是相等的。
即:t td Idt t I S T t ωωωαωαπααsin 2)sin(22⎰⎰+=+=ωωωωπIt td I22sin 20==⎰(22)由式(22)可求得基波分量的有效值为:S I 22ω=(23)式(23)的离散形式可以用梯形法或矩形法推出。
如采用梯形法,可以设若干个小梯形面积之和为S '(图5),则有:S T i i i i i i S NN ⎪⎪⎪⎭⎫⎝⎛++++++='-2222212110 S k kT i i i NN ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=∑-=1102221(24)式中:0i ,1i ,,2N i 为半周的采样值,N 为一周的采样点数,S T 为采样间隔(周期)。
式(24)是式(22)的近似,其精度与采样频率有关。
当采样频率足够高(S T 足够小)时,误差也可以足够小,即S '与S 足够接近。
i (t )tπ2ππ+αtπ 2πα )(t i图4 半周积分算法原理Fig. 4 Principle of half-cycle integral algorithm半周积分算法需要的数据窗长度为10mS ,较两点乘积算法和导数算法长。
但由于这种算法只有加法运算,算法的工作量很小,可以用低端MCU 实现。
此外,算法本身具有一定的滤除高频分量的能力,因为叠加在基波分量上的高频分量(通常幅度不大)在半周积分中其对称的正负半周互相抵消,剩余的未被抵消部分所占的比重减小,极端情况(正负半周刚好相等)时,可以完全抵消。
但该算法不能滤除直流分量,因此对于一些要求不高的保护场合可以采用该算法,必要时可以在前级配以简单的差分滤波器来滤除直流分量。
2.4 付立叶算法(付氏算法) 2.4.1 付氏算法的基本原理付氏算法的基本思想来自付立叶级数,它假定被采样信号是一个周期时间函数,除了基波分量,还含有不衰减直流分量和高次谐波分量,可以表示为:t图5 梯形法面积计算原理Fig. 5 Principle of acreage calculation with trapezia method∑∑∞=∞=++=++=1010)cos sin ()sin()(k k k k k k t k b t k a X t X X t x ωωαω (25)式中:0X 为直流分量,k X 为k 次谐波分量的幅值,k α为k 次谐波分量的初相位,ω为基波角频率,k k k X a αcos =为k 次谐波的正弦分量系数,k k k X b αsin =为k 次谐波的余弦分量系数。
由付氏级数原理可求得系数k a 和k b 分别为:⎪⎪⎩⎪⎪⎨⎧==⎰⎰dt t k t x T b tdtk t x T a Tk Tk 00cos )(2sin )(2ωω 式中T 为x (t )的周期。
由此可计算出各次谐波分量的幅值和初相位。
继电保护常对基波分量感兴趣,此时基波(k =1)的正弦和余弦分量系数为:⎰=Ttdt t x T a 01sin )(2ω (26)⎰=Ttdt t x T b 01cos )(2ω (27)基波分量的幅值和初相位分别为:21211b a X += 111a b arctg=α 根据数据窗的长度,在微机上实现式(26)和式(27)时可分为全波付氏算法和半波付氏算法。