气溶胶力学资料
- 格式:ppt
- 大小:314.00 KB
- 文档页数:23
气溶胶本节内容要点:气溶胶的定义、分类、源、汇、粒径分布、气溶胶粒子的化学组成、气溶胶的危害、气溶胶污染源的推断等1)气溶胶的定义和分类气溶胶(aerosol)是指液体或固体微粒均匀地分散在气体中形成的相对稳定的悬浮体系。
微粒的动力学直径为0.002~100μm。
由于粒子比气态分子大而比粗尘颗粒小,因而它们不象气态分子那样服从气体分子运动规律,但也不会受地心引力作用而沉降,具有胶体的性质,故称为气溶胶。
实际上大气中颗粒物质的直径一般为0.001~100μm;大于10μm的颗粒能够依其自身重力作用降落到地面,称为降尘;小于10μm的颗粒,在大气中可较长时间飘游,称为飘尘。
按照颗粒物成因不同,可将气溶胶分为分散性气溶胶和凝聚性气溶胶两类。
分散性气溶胶是固态或液态物质经粉碎、喷射,形成微小粒子,分散在大气中形成的气溶胶。
凝聚性气溶胶则是由气体或蒸汽(其中包括固态物升华而成的蒸汽)遇冷凝聚成液态或固态微粒,而形成的气溶胶。
例如二氧化硫转化成硫酸或硫酸盐气溶胶的过程如下:●二氧化硫气体的氧化过程● 气相中的成核过程(液相硫酸雾核)在过饱和的H2SO4蒸气中,由于分子热运动碰撞而使分子(n个)互相合并成核,形成液相的硫酸雾核。
它的粒径大约是几个埃。
硫酸雾核的生成速度,决定于硫酸的蒸气压和相对湿度的大小。
●粒子成长过程硫酸粒子通过布朗运动逐渐凝集长大。
如果与其他污染气体(如氨、有机蒸气、农药等)碰撞,或被吸附在空中固体颗粒物的表面,与颗粒物中的碱性物质发生化学变化,生成硫酸盐气溶胶。
根据颗粒物的物理状态不同,可将气溶胶分为以下三类:(1)固态气溶胶--烟和尘;(2)液态气溶胶--雾;(3)固液混合态气溶胶--烟雾(smog)。
烟雾微粒的粒径一般小于1μm (见表2-13)。
气溶胶按粒径大小又可分为:(1)总悬浮颗粒物(total suspended particulates或TSP),用标准大容量颗粒采样器(流量在1.1~1.7m3/min)在滤膜上所收集到的颗粒物的总质量,通常称为总悬浮颗粒物,它是分散在大气中各种粒子的总称。
气溶胶详细资料大全气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。
其分散相为固体或液体小质点,其大小为0.001~100μm,分散介质为气体。
液体气溶胶通常称为雾,固体气溶胶通常称为雾烟。
天空中的云、雾、尘埃,工业上和运输业上用的锅炉和各种发动机里未燃尽的燃料所形成的烟,采矿、采石场磨材和粮食加工时所形成的固体粉尘,人造的掩蔽烟幕和毒烟等都是气溶胶的具体实例。
气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。
基本介绍•中文名:气溶胶•外文名:aerosol•大小:0.001~100μm•消除方法:降水、粒子碰并、聚合、沉降等•别称:胶体分散体系,气体分散体系•颗粒形状:近球形、片状、针状、不规则状等简介,物理性质,特性,粒度,分类,自然产生,人类产生,研究历史,浓度分布,化学组成,制备方法,物质影响,全球变暖,环境污染,农业影响,套用举例,学术研究,研究进展,MODIS影像,简介悬浮在气体介质中的固态或液态颗粒所组成的气态分散系统。
这些固态或液态颗粒的密度与气体介质的密度可以相差微小,也可以悬殊很大。
颗粒的大小一般从0.001~100μm。
颗粒的形状多种多样,可以是近乎球形,诸如液态雾珠,也可以是片状、针状及其它不规则形状。
在工程技术中,特别是劳动保护和环境保护工程中,为区别于洁净空气,常通俗地使用含尘气体或污染气体来称呼气溶胶。
从流体力学角度,气溶胶实质上是气态为连续相,固、液态为分散相的多相流体。
气溶胶分为烟、雾和灰尘,可自然产生或人工形成。
用物理或化学凝结法获得的小于10μm固体微粒构成的气溶胶称为烟。
在蒸气凝结或液体分散过程液体微粒构成的气溶胶称为雾。
固体物质分散时由大于10μm固体微粒构成的气溶胶叫做灰尘。
气溶胶在多数情况下是粗分散物系,所以在引力场中它们迅速沉降于表面气溶胶中不断进行能导致本身破坏的自发过程:微粒的附着(凝聚)、汽滴的汇合(聚结)、沉积(沉降)、蒸发、等温升华。
气溶胶的原理及应用1. 气溶胶的定义气溶胶是指在气体中悬浮的固体或液体微粒子,其大小在0.001μm到100μm之间。
2. 气溶胶的形成原理气溶胶的形成主要有以下几种原理:2.1. 气溶胶的机械生成气溶胶的机械生成是指通过机械活动产生的气体微粒子。
例如,在机械加工过程中产生的金属粉尘就是一种机械生成的气溶胶。
2.2. 气溶胶的雾化生成气溶胶的雾化生成是指通过雾化器将液体分散成小液滴,并在空气中形成气溶胶。
这种方式通常用于喷雾器和雾化器等设备中。
2.3. 气溶胶的凝聚生成气溶胶的凝聚生成是指气体中的微小粒子在空气中互相碰撞,聚集成较大的粒子,形成气溶胶。
这种过程常见于燃烧过程中产生的烟尘。
3. 气溶胶的应用领域气溶胶在许多领域都有重要的应用,以下列举了几个典型的应用领域:3.1. 大气环境研究气溶胶对气候变化和大气环境有着重要的影响,研究气溶胶的特性和组成可以帮助我们更好地理解大气的变化和污染程度。
3.2. 工业生产气溶胶在工业生产中起着重要的作用。
例如,在粉尘颗粒的处理和收集过程中,常常需要使用气溶胶来捕获和过滤颗粒。
3.3. 医疗保健气溶胶在医疗保健领域也有着广泛的应用。
例如,医院中常常使用气溶胶消毒剂来杀灭细菌和病毒,保持医疗环境的清洁。
3.4. 空气净化气溶胶的净化技术在空气净化领域中得到了广泛的应用。
通过使用空气净化设备,可以有效去除空气中的气溶胶和有害物质,改善室内空气质量。
3.5. 药物传递气溶胶还可用于药物的传递。
通过喷雾器等设备将药物制剂雾化成气溶胶,可以使药物更容易进入呼吸道和肺部,从而提高药物的吸收效率。
4. 总结气溶胶是在气体中悬浮的固体或液体微粒子,其形成原理包括机械生成、雾化生成和凝聚生成。
气溶胶在大气环境研究、工业生产、医疗保健、空气净化和药物传递等领域都有着重要的应用。
了解气溶胶的原理和应用对于保护环境和改善生活质量具有重要意义。
气溶胶相关知识点总结气溶胶是指在气体中悬浮的微小液滴或固体颗粒。
气溶胶在大气中广泛存在,对人类健康和环境产生了重大影响。
在本文中,我们将讨论气溶胶的定义、特性、来源、组成、影响以及大气污染等相关知识点。
1. 气溶胶的定义和特性气溶胶是由气体中微小的液滴或固体颗粒组成的混合物。
这些微粒具有直径范围从几纳米到几百微米不等。
气溶胶通常通过悬浮在空气或其他气体中的微粒形式存在,由于其微小的颗粒大小和轻微的密度,它们通常具有非常长的停留时间,因此对空气的稳定性和质量产生了显著的影响。
2. 气溶胶的来源气溶胶的来源多种多样,包括自然来源和人为来源。
自然来源的气溶胶主要包括粉尘、气体的排放、植物的挥发物质等。
人为来源的气溶胶主要包括工业排放、交通尾气、燃烧排放等。
气溶胶的来源对其成分和影响有着明显的影响。
3. 气溶胶的组成气溶胶的组成十分复杂,主要包括水、硝酸盐、硫酸盐、碳、金属盐、有机物等多种成分。
这些成分来源于不同的排放源,并且对于大气的化学和物理特性产生了显著的影响。
4. 气溶胶的影响气溶胶对大气环境、气候和人类健康都有着重要的影响。
首先,气溶胶对大气能见度的影响非常显著,它会导致雾霾天气的出现。
其次,气溶胶的成分还与气候变化有关,例如硫酸盐和硝酸盐等气溶胶可以影响云的形成和湿度的分布,并通过直接和间接效应对地球气候产生重要的影响。
同时,气溶胶的成分和浓度与人类健康密切相关,高浓度的气溶胶可能对人类的呼吸系统和心血管系统产生不良影响。
5. 大气污染中的气溶胶气溶胶在大气污染中扮演着重要的角色。
在工业、交通和能源的发展过程中,大量的废气排放和粉尘颗粒等污染物排放进入大气中,其中大部分以气溶胶的形式存在。
这些气溶胶会影响大气的透明度,降低大气能见度,增加雾霾的出现频率。
同时,气溶胶中的有害成分也会对人类健康产生不利影响。
因此,对气溶胶的监测和治理成为大气环境保护的重要课题。
6. 气溶胶的监测和治理为了有效监测和治理气溶胶的污染,人们开展了大量的研究工作。
气溶胶物理及其应用研究1. 前言气溶胶是指在气态环境中悬浮的固体或液体微粒,其大小在10纳米至100微米之间,具有很强的空气动力学特性。
气溶胶经常出现于人们生产和生活的各个方面,如壅塞空气滤芯、影响大气质量、制造云和雾、传播传染病等。
气溶胶在环境和健康领域具有重要的研究价值。
本文旨在介绍气溶胶物理及其应用研究,探讨其研究意义和未来发展趋势。
2. 气溶胶物理2.1 气溶胶的形成气溶胶的形成可分为两种情况:一种是通过气态化学反应形成,另一种是当空气中的气溶胶超过饱和度时形成。
前者是指气态物质在大气中通过化学反应和凝聚作用形成气溶胶;后者是当空气中的气溶胶浓度超过了饱和点,便会形成气溶胶。
在人类活动中,如火车运行、工厂生产、木材燃烧和汽车行驶等,都会产生大量的气态物质,这些物质在大气环境中通过氧化和光反应等化学过程形成气溶胶。
2.2 气溶胶的特性气溶胶具有多种特性,如流动性、表面活性、光学、热学和电学等,这些特性使得气溶胶在多种领域具有广泛的应用。
气溶胶颗粒的流动特性是指它们在空气中的运动,受到重力、浮力和扩散等力的影响。
气溶胶颗粒的表面活性决定了它们与其他材料的相互作用和吸附能力。
光学特性意味着气溶胶颗粒对光的反射、散射和吸收能力。
热学特性包括热传导和热辐射等,电学特性则是指在电场和静电场中的表现。
3. 气溶胶应用研究3.1 气溶胶在大气环境中的应用气溶胶在大气环境中的应用研究主要包括其对大气环境的影响以及污染控制等方面。
气溶胶可以通过多种途径进入人体,对健康和环境造成威胁。
在大气环境中,气溶胶对大气颗粒物浓度的提高、空气质量和能见度的影响及对大气辐射平衡的影响等都有显著贡献。
此外,气溶胶的形成机制、特性、来源和演化过程也是大气科学研究中的重要方面。
3.2 气溶胶在医疗领域中的应用气溶胶在医疗领域中的应用研究包括药物递送、防止粉尘吸入和传染病防治等方面。
气溶胶药物递送是指将微米和纳米级别的药物通过吸入方式送达到人体深处,利用气溶胶在人体内的流动特性和表面活性实现药效的高效释放。