测试技术与信号分析第二章
- 格式:ppt
- 大小:1.63 MB
- 文档页数:81
第二章 信号分析基础(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
7、信号x(t)的均值μx 表示信号的 分量,方差2x σ描述信号的 。
7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。
9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。
10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。
11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2x ψ= ,均方根值为x rms = 。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
(√)p39-402、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( ×)(离散傅立叶变换)4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
(×)5、 随机信号的频域描述为功率谱。
(√)6、 互相关函数是偶实函数。
( × )(三)单项选择题1、下列信号中功率信号是( B )。
A.指数衰减信号B.正弦信号、C.三角脉冲信号D.矩形脉冲信号2、周期信号x(t) = sin(t/3)的周期为(B )。
A. 2π/3B. 6πC. π/3D. 2π3、下列信号中周期函数信号是(C )。
A.指数衰减信号B.随机信号C.余弦信号、D.三角脉冲信号4、设信号的自相关函数为脉冲函数,则自功率谱密度函数必为(D )。
重大或者西华大学《测试技术与信号分析》习题与题解适用专业: 机械类、自动化课程代码:学时: 42-48编写单位:机械工程与自动化学院编写人:余愚审核人:审批人:第二章 习题解答2-1.什么是信号?信号处理的目的是什么?2-2.信号分类的方法有哪些?2-3.求正弦信号()t A t x ωsin =的均方值2x ψ。
解:()24sin 4222cos 12sin 2sin 11222022022022022A T T A T dt t A T tdt A T dtt A T dt t x T T T T T x=⎪⎭⎫ ⎝⎛-=-====⎰⎰⎰⎰ωωωωωψ也可先求概率密度函数:221)(xA t p -=π则:⎰∞∞-==2)(222A dx x p x xψ。
2-4.求正弦信号())sin(ϕω+=t A t x的概率密度函数p(x)。
解: 2221)(111,arcsinxA Ax A dx dt A x t -=-=-=ωωϕω代入概率密度函数公式得:22222200122221lim 1lim )(x A xA x A T Tdt dx T t x x p x x -=-=-=⋅=⎥⎥⎦⎤⎢⎢⎣⎡∆∆=∑→∆→∆πωπωω2-5.求如下图所示周期性方波的复指数形式的幅值谱和相位谱解 在x(t)的一个周期中可表示为⎩⎨⎧<<≤=21)(11T t T T t t x该信号基本周期为T ,基频ω0=2π/T ,对信号进行傅里叶复指数展开。
由于x (t )关于t =0对称,我们可以方便地选取-T /2≤t ≤T /2作为计算区间。
计算各傅里叶序列系数c n 当n =0时,常值分量c 0:TT dt T a c T T 1002111===⎰- txT 1-T 1T-T当n ≠0时,110110011T T tjn T T t jn n e Tjn dt e Tc -----==⎰ωωω最后可得⎥⎦⎤⎢⎣⎡-=-j e e T n c t jn t jn n 22000ωωω注意上式中的括号中的项即sin (n ω0 T 1)的欧拉公式展开,因此,傅里叶序列系数c n 可表示为0)(sin 2)sin(210010≠==n T n c TT n T n c n ,ωπωω其幅值谱为:)(sin 211T n c TT c o n ω=,相位谱为:ππϕ-=,,0n 。
第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===22Δ0Δ0000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x πx x →→<≤+====-x (t )正弦信号xx +ΔxΔtΔtt2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
第二章 习题2-1:典型的测量系统有几个基本环节组成?其中哪个环节的繁简程度相差最大?典型的测试系统,一般由输入装置、中间变换装置、输出装置三部分组成。
其中输入装置的繁简程度相差最大,这是因为组成输入装置的关键部件是传感器,简单的传感器可能只由一个敏感元件组成,如测量温度的温度计。
而复杂的传感器可能包括敏感元件,变换电路,采集电路。
有些智能传感器还包括微处理器。
2-2:对某线性装置输入简谐信号x(t)=asin(φω+t ),若输出为y(t)=Asin(Φ+Ωt ),请对幅值等各对应量作定性比较,并用不等式等数学语言描述它们之间的关系。
x(t)=asin(φω+t )→y(t)=Asin(Φ+Ωt ), 根据线性装置的输入与输出具有的频率保持特性可知,简谐正弦输入频率与输出频率应相等,既有:Ω=ω,静态灵敏度:K=aA= 常数,相位差:△ϕϕ-Φ== 常数。
2-3:传递函数和频响函数在描述装置特性时,其物理意义有何不同?传递函数定义式:H (s )=)()(s x s y =01110111a s a s a s a b s b s b s b n n n n m m m m ++++++++----ΛΛ,其中s=+αj ω称拉氏算子。
H(s)是描述测量装置传输,转换特性的数学模型,是以测量装置本身的参数表示输入与输出之间的关系,与装置或结构的物理特性无关。
频率响应函数定义式:H (ωj )=)()(ωωj x j y =01110111)())()()()(a j a j a j a b j b j b j b n n n n n n n n ++++++++----ωωωωωωΛΛ 反映了信号频率为ω时输出信号的傅氏变换与输入信号的傅氏变换之比。
频率响应函数H (ωj )是在正弦信号激励下,测量装置达到稳态输出后,输出与输入之间关系的描述。
H (s )与H (ωj )两者含义不同。
H (s )的激励不限于正弦激励。