当前位置:文档之家› 聚酮类抗生素组合生物合成

聚酮类抗生素组合生物合成

聚酮类抗生素组合生物合成
聚酮类抗生素组合生物合成

抗生素具体案例

1. 探秘多宝鱼养殖基地 违禁药品怎样进入多宝鱼的养殖过程,对此进行的监管是否存在漏洞?11月22天上午,记者赶到山东省莱州市朱旺村多宝鱼养殖基地,对此展开调查。山东省是我国多宝鱼的主要产地,据山东省海洋与渔业厅统计,年产值约30亿元。而朱旺村多宝鱼养殖基地是该省最大的养殖基地,年产量在1000吨以上。 给鱼“嗑药”并非秘密 提起多宝鱼,当地一名知情者说,多宝鱼“嗑药”在业内早已是公开的秘密。几年前,投资约40万元的一个养殖大棚,当年就可以收回成本。刚开始养多宝鱼那几年,大家都不用违禁药。近几年多宝鱼养殖户越来越多,在竞争形势激烈的情况下,难免有人想办法使用违禁药。 朱旺村多宝鱼养殖技术研究中心负责人滕家麟说,近几年因为获利丰厚,周边许多地方也开始养殖多宝鱼,一些养殖条件差、养殖密度又大的养殖户就可能在养殖过程中使用国家违禁药品另一名养殖户说,一些人为获利便使用催生药,原本养殖1年才能上市的鱼,用催生药只需要8个月就可上市。此外,如果养殖密度偏大,鱼在水中容易因碰撞而擦伤,为防止鱼体腐烂,有些养殖户还会用甲醛做药浴和各种抗生素类的违禁药。因为循环用药,导致鱼种退化,而要保证鱼成活,养殖户往往不断加大药量。现在养殖户用得较多的是高锰酸钾、氯霉素、环丙沙星,甲醛等违禁药。 多名养殖户还告诉记者,有一些鱼贩专门来低价收购病鱼、死鱼,冷冻后作为生鲜鱼出售。有些鱼贩为增加多宝鱼的色泽,会在冷冻材料中加入违禁药物孔雀石绿。 违禁药品监管存在漏洞 记者随养殖户进入一个多宝鱼养殖大棚,在大棚内记者发现一个箱子中有几瓶甲醛。养殖户说,甲醛不是禁药,他们用甲醛来刷池子消毒用。而此次多宝鱼事件中,我国多个地方均检测出多宝鱼体内甲醛超标。对此,莱州市海洋与渔业局一名官员称,甲醛不属于禁药,但在鱼类体内的残留不能超标,因此,根据有关规定,在多宝鱼上市前一个月内,不能在养殖池中使用甲醛。至于这一规定如何实施监管,这名官员未予回答。 记者了解到,对于违禁药品的监管分属不同的部门——药监局负责监管药物的销售环节和对销售药物部门的管理,而渔业局则负责管理养殖户对药物的使用过程,告诉养殖户哪些药物不能使用。 调查组官员称,现有的养殖场检查制度尚有漏洞,如果有养殖户私下购买药物,并且在养殖过程中偷偷使用,很难对其进行系统把关。比如,被列为养殖鱼类不能填加的环丙沙星等药物,却可以使用在养殖牲畜中,并不是完全的禁药,所以这些药物是可以公开销售的,这也对监管造成一定难度。 朱旺村的多名养殖户均称,他们所饲养的鱼在出养殖场时无须任何检疫措施,只是每年烟台的药监部门会随机抽样一两次拿出去检测,检测合格后就能拿到证书,全年都可以销售养殖鱼。当地养殖业深受影响 在养殖基地内,记者遇到一位从外地赶来准备收购多宝鱼的鱼贩。他说,因为现在政府暂停多宝鱼出货,他已经在这里呆了好几天,正在等解禁的消息。

抗生素生产工艺以及发展前景

课程论文 题目: 抗生素生产工艺以及发展前景 姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年10 月30 日

抗生素生产工艺以及发展前景 摘要: 抗生素是青霉素、链霉素、红霉素和四环素等一类化学物质的总称,是生物在其生命过程中产生的能在低浓度下有选择性地抑制或杀灭其他微生物或肿瘤细胞的有机物质。 关键词:抗生素;生产工艺;应用;发展前景 一、抗生素的概述 抗生素是青霉素、链霉素、红霉索等一类化学物质的总称。它是生物,包括微生物、植物和动物,在其生产活动过程中所产生,并能在低微浓度下有选择性地抑制或杀灭其他微生物或肿瘤细胞的有机物质。 抗生素的生产目前主要用微生物发酵法进行生物合成。很少数抗生素如氯霉素、磷霉素等亦可用化学合成法生产。此外还可将生物合成法制得的抗生素用化学或生化方法进行分子结构改造而制成各种衍生物,称半合成抗生素,如氨苄青霉素就是半合成青霉素的一种。 二、抗生素的发展 最初认为,抗生素是微生物在代谢过程中产生,在低浓度下就能抑制它种微生物的生长和活动,甚至杀死它种微生物的化学物质.然而,抗生素的迅速发展很快就突破了这一定义:在来源上,已不局限于微生物,它包括高等动、植物产生的代谢物,也包括用化学方法合成或半合成的化合物;在性能上,从抗菌到抗肿瘤、抗

病毒、抗寄生虫等物质亦属抗生素范畴.纵观抗生素的发展史,抗生素的研究、生产大体可分三个发展阶段: 1.天然抗生素的发展阶段 1928年,英国科学家弗莱明(1881-1955)偶然发现了青霉素.1938年,Chain和Florey等科学家又成功地从点青霉的培养液中分离制得青霉素.40年代初期,随着培养方法的改良,青霉素的生产成本大幅度下降,从而很快开始了大规模的工业化生产,产量迅速增加.由于青霉素的发现,挽救了无数感染性病人的生命,被当时的人们誉为黄色的魔物,科学家Fleming、Florey和Chain因此同时获得了1945年诺贝尔医学生理奖.之后,一系列新抗生素如链霉素、氯霉素、金霉素、新霉素、土霉素、红霉素等相继被发现,对如肠伤寒、斑疹伤寒及赤痢等有特效.随着抗生素的广泛应用,细菌对抗生素的耐药性问题也日益引起人们的关注.例如青霉素G开始使用时只有8%葡萄球菌对它有耐药性,而到了1962年,耐药的葡萄球菌增加到70%,呈现逐年上升的趋势.因此,对抗生素的结构改造及其衍生物的研究显得日益重要. 2.半合成抗生素的发展阶段 1958年,发现了青霉素的活性母核———6-氨基青霉烷酸(6-APA),并通过6-APA的酰化反应合成了一系列新的青霉素.随后,对头孢菌素C结构进行改造研究,分离出母核7-氨基头孢霉烷酸(T-ACA).目前,大多数半合成头孢菌素均为母核7-ACA中的7位氨基酸及3位乙酰甲基进行化学改造制得的衍生物.1960年,通过对四环类抗生素、氨基糖甙类抗生素、大环内酰抗生素、利福平类抗生素等相继进行化学改造,获得了大量具有抗菌谱广、抗菌活力强、稳定、毒性小、易吸收等优点的半合成抗生素.目前,半合成青霉素和半合成头孢菌素品种已不下70个,其产量和销售额占据着抗生素的大半壁江山.

抗生素作用机理0001

抗生素作用机理与分类 1.抗生素作用机理抗生素等抗菌剂的抑菌或杀菌作用,主要是针对“细菌有 而人(或其它高等动植物)没有”的机制进行杀伤,有 5 大类作用机理:阻碍细菌细胞壁的合成,导致细菌在低渗透压环境下膨胀破裂死亡,以这种方式作用的抗生素主要是B -内酰胺类抗生素。哺 乳动物的细胞没有细胞壁,不受这类药物的影响。与细菌细胞膜相互作用,增强细菌细胞膜的通透性、打开膜上的离子通道,让细菌内部的有用物质漏出菌体或电解质平衡失调而死。以这种方式作用的抗生素有多粘菌素和短杆菌肽等。与细菌核糖体或其反应底物(如tRNA、mRNA相互所用, 抑制蛋白质的合成——这意味着细胞存活所必需的结构蛋白和酶不能被合成。以这种方式作用的抗生素包括四环素类抗生素、大环内酯类抗生素、氨基糖苷类抗生素、氯霉素等。阻碍细菌DNA的复制和转录,阻碍DNA复制将导致细菌细胞分裂繁殖受阻,阻碍DNA转录成mRNA则导致后续的mRNA 翻译合成蛋白的过程受阻。以这种方式作用的主要是人工合成的抗菌剂喹诺酮类(如氧氟沙星)。影响叶酸代谢抑制细菌叶酸代谢过程中的二氢叶酸合成酶和二氢叶酸还原酶,妨碍叶酸代谢。因为叶酸是合成核酸的前体物质,叶酸缺乏导致核酸合成受阻,从而抑制细菌生长繁殖,主要是磺胺类和甲氧苄啶。2?抗生素分类一、按化学结构分:(一)主要作用于革兰氏阳性菌(1)青霉素类青霉素G(卞青霉素)PenicillinG(Benzylpenicillin氨卞青霉素(安卞西林.安比西林)Ampicillin(Ampicine)羟氨卞青霉素(阿莫西林)Amoxicillin羧卞青霉素(卡比西林)Amoxicillin(2)头抱菌素(先锋霉素)类头抱氨卞(先锋霉素IV)Cefalexin(Cephalexin头抱羟氨卞Cefadroxil(3)大环内酯类红霉素Erythromycin罗红霉素泰乐菌素替米考星阿奇霉素北里霉素螺旋霉素(4)林可胺(洁霉素)类林可霉素(洁霉 素)Lincomycin 氯林可霉素 (克林霉素.氯洁霉素.克林达霉素)Clindamycin(Clinimycin)(5)其它杆菌Bacitracin新生霉素Novobiocin 那西肽恩拉霉素匚)主要作用于革兰氏阴性⑴氨基糖甘类链霉素Streptomycin庆大霉素(艮 他霉 素)Gentamicin(Gentamycin新霉素Neomycin卡那霉素Kanamycin丁胺卡那霉素(阿米卡星)Amikacin 壮观霉素(大观霉素.奇霉素.奇放线菌素)Spectinomycin(Actinospectacin妥布霉素Tobramycin核糖霉素(维他霉素.维生霉素)Ribostamycin(Vistamycin安普霉素(2)多粘菌素类多粘菌素BPolymyxcinB多粘菌素E粘菌素.抗敌素)PolymyxcinE(Colistin)三)广谱抗生素(1)四环素类土霉素(氧四环素)Oxytetramycin(Oxytetracycline)四环素Tetracline 金霉素(氯四环素)Aureomycin(Chlortetrcycline)强力霉素(多西还素.脱氧土霉素)Doxycycline(Deoxyoxytetracycline 米诺环素(2)氯霉素类氯霉素(左霉素)Chloramphenicol(Chloromycetin)甲枫霉素(硫霉素)Thiamphenicol氟甲枫霉素(氟苯尼考)(Florfenicol)(四)主要作用于霉形体泰牧霉素(泰妙灵.支原

抗生素种类及作用和机制

抗生素种类: 一)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂(β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。(二)氨基糖甙类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类:包括氯霉素、甲砜霉素等。 (五)大环内脂类:临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等、阿奇霉素。 (六)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆菌肽等。 (七)作用于G菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (八)抗真菌抗生素:如灰黄霉素。 (九)抗肿瘤抗生素:如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。(十)具有免疫抑制作用的抗生素如环孢霉素。 β-内酰胺类抗生素: β-内酰胺类抗生素(β-lactams)系指化学结构中具有β-内酰胺环的一大类抗生素,包括临床最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β-内酰胺类等其他非典型β-内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效

好的优点。本类药化学结构,特别是侧链的改变形成了许多不同抗菌谱和抗菌作用以及各种临床药理学特性的抗生素。 各种β-内酰胺类抗生素的作用机制: 各种β-内酰胺类抗生素的作用机制均相似,都能抑制胞壁粘肽合成酶,即青霉素结合蛋白(penicillin binding proteins,PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解。除此之外,对细菌的致死效应还应包括触发细菌的自溶酶活性,缺乏自溶酶的突变株则表现出耐药性。哺乳动物无细胞壁,不受β-内酰胺类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆膜上特殊蛋白PBPs是β-内酰胺类药的作用靶位,PBPs的功能及与抗生素结合情况归纳于图38-1。各种细菌细胞膜上的PBPs数目、分子量、对β-内酰胺类抗生素的敏感性不同,但分类学上相近的细菌,其PBPs类型及生理功能则相似。例如大肠杆菌有7种PBPs,PBP1A,PBP1B与细菌延长有关,青霉素、氨苄西林、头孢噻吩等与PBP1A、PBP1B 有高度亲和力,可使细菌生长繁殖和延伸受抑制,并溶解死亡,PBP2与细管形状有关,美西林、棒酸与硫霉素(亚胺培南)能选择性地与其结合,使细菌形成大圆形细胞,对渗透压稳定,可继续生几代后才溶解死亡。PBP3功能与PBP1A 相同,但量少,与中隔形成,细菌分裂有关,多数青霉素类或头孢菌素类抗生素主要与PBP1和(或)PBP3结合,形成丝状体和球形体,使细菌发生变形萎缩,逐渐溶解死亡。PBP1,2,3是细菌存活、生长繁殖所必需,PBP4,5,6;与羧肽酶活性有关,对细菌生存繁殖无重要性,抗生素与之结合后,对细菌无影响。基本结构:青霉素G是最早应用于临床的抗生素,由于它具有杀菌力强、毒性

含氮大环内酯类抗生素生物合成及其研究进展.

含氮大环内酯类抗生素及其生物合成研究进展 雷帕霉素、他克莫司等一类含氮大环内酯类微生物代谢产物是目前临床重要的药物,它们具有特殊的结构基团,即内酯环上含有1分子非蛋白质组成氨基酸——哌可酸,通过哌可酰基与细胞内一类具有脯氨酰顺反异构酶活性的免疫亲合蛋白(immunophilin)FKBPs(FK506 bingding proteins)相互作用形成复合物,作用于细胞不同靶位,发挥多种不同的生物学功能[1]。这类化合物具有广泛的生物学活性,除抗真菌活性外,临床已用作器官移植抗排斥药物、血管扩张支架涂层药物[2]、靶向抗肿瘤药物[3-4]、炎症治疗药物[5],同时,这类化合物还具有潜在的治疗中风[6]、神经退行性疾病[7]、帕金森综合症[8]、老年痴呆[9]等作用,Harrison等人2009年7月在《Nature》杂志上报道雷帕霉素可以延长哺乳类动物老龄小鼠寿命的研究成果[10],立即引起各国科学家的广泛关注和高度兴趣[11],美国《Science》杂志把此项研究成果评选为当年十大科学进展之一,预计10年左右可望应用于人体。 含有哌可酰基的含氮大环内酯类微生物代谢产物具有相似的生物合成途径,它们都属大环内酯类化合物,由典型的具有模块结构的I型聚酮合酶(Polyketide synthase, PKS)催化合成内酯环碳链骨架,由单模块的非核糖体肽合成酶(Non-ribosomal peptide synthetase, NRPS)催化把哌可酸整合到内酯环骨架,并通过环化酶活性域使含哌可酰基的聚酮链内酯化从PKS/NRPS杂合酶上脱离,最后通过一些列氧化酶、甲基转移酶等进行侧链基团的修饰形成最后的活性产物,由于这类化合物具有相似的结构和合成机制,特别是它们的作用机制独特带来广泛的生物学活性和临床应用前景,已经成为目前国内外关注和研究的热点。 一、微生物产生的含氮大环内酯类化合物 1、Rapamycin(雷帕霉素, 西罗莫司/sirolimus) 1975年,加拿大Ayerst试验室Vezina等在筛选抗真菌抗生素中,从太平洋复活岛土壤样品中分离到一株具有抗白色念珠菌(Candida albicans)等酵母样真菌和石膏样小孢子菌(Microsporum gypseum)等丝状真菌活性的吸水链霉菌(Streptomyces hygroscopicus

抗生素的种类和作用机理

抗生素的种类和作用机理 一抗生素的定义: 抗生素(英语:antibiotic)在定义上是一较广的概念,包括抗细菌药、抗真菌药(anti-fungal medication)以及对付其他微小病原之药物;但临床实务中,抗生素常常是指抗细菌药 二抗生素的种类: 由细菌、霉菌或其它微生物在生活过程中所产生的具有抗病原体不同的抗生素药物或其它活性的一类物质。自1943年以来,青霉素应用于临床,现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。其分类有以下几种: (一)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂 (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。 (二)氨基糖苷类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类:包括氯霉素、甲砜霉素等。 (五)大环内脂类:临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等、阿奇霉素。 (六)糖肽类抗生素:万古霉素、去甲万古霉素、替考拉宁,后者在抗菌活性、药代特性及安全性方面均优于前两者。 (七)喹诺酮类:包括诺氟沙星、氧氟沙星、环丙沙星、培氟沙星、加替沙星等。 (八)硝基咪唑类:包括甲硝唑、替硝唑、奥硝唑等。 (九)作用于G-菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (十)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、杆菌肽等. (十一)抗真菌抗生素:分为棘白菌素类、多烯类、嘧啶类、作用于真菌细胞膜上麦角甾醇的抗真菌药物、烯丙胺类、氮唑类。 (十二)抗肿瘤抗生素:如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。 (十三)抗结核菌类:利福平、异烟肼、吡嗪酰胺等。 (十四)具有免疫抑制作用的抗生素如环孢霉素。 三抗生素的作用机理 抗生素等抗菌剂的抑菌或杀菌作用,主要是针对“细菌有而人(或其它高等动植物)没有”的机制进行杀伤,有4大类作用机理: 1)阻碍细菌细胞壁的合成,导致细菌在低渗透压环境下溶胀破裂死亡,以这种方式作用的抗生素主要是β-内酰胺类抗生素。哺乳动物的细胞没有细胞壁,不受这类药物的影响。 2)与细菌细胞膜相互作用,增强细菌细胞膜的通透性、打开膜上的离子通道,让细菌内部的有用物质漏出菌体或电解质平衡失调而死。以这种方式作用的抗生素有多粘菌素和短杆菌肽等。

抗生素种类及作用和机制汇总

: 抗生素种类近年来内酰胺环。青霉素类和头孢菌素类的分子结构 中含有β-一)β-内酰胺类:-β)、单内酰环类(monobactams),又有较大发展,如硫酶素类(thienamycins (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。内酰酶抑制剂(二)氨基糖甙类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。(三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。(四)氯霉素类:包括氯霉素、甲砜霉素等。乙酰螺旋霉素、白霉素、临床常用的有红霉素、无味红霉素、(五)大环内脂类:麦迪霉素、交沙霉素等、阿奇霉素。 细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆(六)作用于G+ 菌肽等。 菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、(七)作用于G 利福平等。 (八)抗真菌抗生素:如灰黄霉素。 D、博莱霉素、阿霉素等。(九)抗肿瘤抗生素:如丝裂霉素、放线菌素(十)具有免疫抑制作用的抗生素如环孢霉素。: 内酰胺类抗生素β-内酰胺环的一大类抗生素,包括临床--lactams) 系指化学结构中具有ββ-内酰胺类抗生素(β内酰胺类等其他-最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效好-非典型β特别是侧链的改变形成了许多不同抗菌谱和抗菌作用以及各种 临本类药化学结构,的优点。床药理学特性的抗生素。各种β-内酰胺类抗生素的作用机制: 各种β-内酰胺类抗生素的作用机制均相似,都能抑制胞壁粘肽合成酶,即青霉素结合蛋白(penicillin binding proteins,PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解。除此之外,对细菌的致死效应还应包括触发细菌的自溶酶活性,缺乏自溶酶的突变株则表现出耐药性。哺乳动物无细胞壁,不受β-内酰胺类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆膜上特殊蛋白PBPs是β-内酰胺类药的作用靶位,PBPs的功能及与抗生素结合情况归纳于图38-1。各种细菌细胞膜上的PBPs 数目、分子量、对β-内酰胺类抗生素的敏感性不同,但分类学上相近的细菌,其PBPs类型及生理功能则相似。例如大肠杆菌有7种PBPs,PBP1A,PBP1B与细

抗生素及人工合成抗菌药

抗生素及人工合成抗菌药 抗菌药物概论 β-内酰胺类抗生素 大环内酯类、林克霉素类机多肽类抗生素 氨基糖苷类抗生素 四环素类及氯霉素类 人工合成抗菌药 抗病毒药及抗真菌药 抗结核药和抗麻风药 抗寄生虫药 抗恶性肿瘤药物 影响免疫功能的药物 基因治疗 (一)单选题 1.抗菌药物是() A.对病原菌有杀灭作用的药物 B.对病原菌有抑制作用的药物 C.对病原菌有杀灭或抑制作用的药物 D.能用于预防细菌性感染的药物 E.能治疗细菌性感染的药物 2.抗菌谱是() A.药物的治疗指数 B.药物的抗菌范围 C.药物的抗菌能力 D.抗菌药的治疗效果 E.抗菌药的适应证 3.下列药物哪种是静止期杀菌药() A.氯霉素 B.青霉素 C.头孢唑啉 D.万古霉素 E.庆大霉素 4.下列药物哪种是繁殖期杀菌药() A.青霉素 B.庆大霉素 C.多粘菌素 D.四环素 E.阿米卡星 5.化疗指数是指() A. ED95/LD5 B. LD95/ED5 C. LD50/ED50 D. LD50=ED50 E. ED5=LD95 6.有关化疗指数(CI)的描述中错误的是() A. CI反映药物的安全性 B. LD50/ED50反映CI C.CI大说明药物临床应用更安全 D.CI是衡量药物安全性的有效指标 E.CI也可用 LD5/ED95表示 7.可产生抑制骨髓造血功能不良反应的药物是() A.四环素 B.米诺环素 C.氯霉素 D.红霉素 E.氨苄西林 8.四环素的抗菌谱中不包括()。 A.金葡菌 B.真菌 C.大肠埃希菌 D.立克次体 E.支原体 9.大剂量可损伤肝功能的药物是()。 A.青霉素 B.庆大霉素 C.四环素 D.头孢曲松 E.氧氟沙星 10.下列四环素类药物中抗菌作用最强的是()。 A.米诺环素 B.多西环素 C.四环素 D.土霉素 E.金霉素 11. 治疗伤寒和副伤寒的药物是()。 A.氯霉素 B.金霉素 C.四环素 D.红霉素 E.米诺环素 12.四环素类的不良反应中不包括()。 A.二重感染 B.胃肠道反应 C.肝肾毒性 D.内分泌紊乱 E.过敏反应 13. 新生儿使用磺胺类药物易出现脑核黄疸,是因为药物()。

执业药师 抗生素及合成抗菌药

抗生素及合成抗菌藥 單選題:每道題只有一個答案。 1.鏈霉素由鏈霉胍、鏈霉糖和N-甲基葡萄糖胺組成,對結核桿菌的抗菌作用很強。() A.正確 B.錯誤 2.抗生素是某些微生物的代謝產物或合成的類似物,在小劑量的情況下能抑制微生物的生長和存活,而對宿主不會產生嚴重的毒性。() A.正確 B.錯誤 3.長效紅霉素類抗生素,每天給藥() A.一次 B.兩次 C.三次 D.四次 4.舒它西林口服后迅速吸收,在體內非特定酶的作用下使其水解,給出較高的血清濃度的氨芐西林和舒巴坦。() A.正確 B.錯誤 5.氟康唑可以口服,生物利用度近90%,副作用小,已成為該類抗真菌藥中最引入注目的品種。() A.正確 B.錯誤

6.喹諾酮類不宜和牛奶等含鈣、鐵的食物同時服用。() A.正確 B.錯誤 7.下列螺旋霉素類說法錯誤的是() A.雙烯結構16元環大環內酯抗生素在其內酯環的9位糖苷衍生物 B.味苦,口服吸 收較差 C.對其不同位置的羥基酰化:增加抗菌活性、提高生物利用度穩定性 D.屬于 16元環內酯的母核結構,與碳霉胺糖和碳霉糖結合成堿性苷,性狀比較穩定 多選題:每道題有兩個或兩個以上的答案,多選漏選均不得分。 1.三唑類抗真菌藥是指() A.氟康唑 B.伏立康唑 C.咪唑類 D.伊曲康唑 2.喹諾酮類抗菌藥的作用特點有() A.抗菌譜廣 B.抗菌力強 C.副作用輕 D.可以口服與注射 3.氨基糖苷類藥物的共性有() A.結構:含氨基糖,堿性多元醇; B.抗菌谱:广谱,对G-菌的作用强于G+; C.作用機 制相似(抑制細菌蛋白質合成); D.副作用相同;易產生耐藥性 35661 8B4D 譍34683 877B 蝻24583 6007 怇24136 5E48 幈!20203 4EEB 仫22266 56FA 固22882 5962 奢y 27177 6A29 権30834 7872 硲d32982 80D6 胖

滥用抗生素例子

滥用抗生素——是个沉重的话题 抗生素种类繁多、适应证广,是临床上应用最广泛的药物,70年前发现了抗生素,从此人类才有了可以同死神抗争的武器,然而使用抗生素是要有严格的界定的,也就是说任何药物的使用都得有个度,昔日曾被认为?天使?的抗生素,在目前应用却十分混乱,已成为治疗上的严峻的挑战,令医学界的有识之士忧心忡忡,这已经成为一个世界性的沉重课题。如何选好、用好抗生素,以达到?有效、安全?之目的,是值得探讨的问题。 医学上通常把超时、超量、不对症使用或未严格规范使用抗生素,都属于抗生素滥用。中国是世界上抗生素滥用最严重的国家,这就为‘超级细菌’的肆虐开了绿灯,据统计,医院使用最多的10种抗生素中,超过一半都是新型抗生素,因此现在到了需要人们重新认识这一个问题的时候了。熟知,抗生素可以治病,同时也会产生副作用,没有一个抗生素是绝对安全而无副作用的。本文仅就滥用抗生素导致的恶果做一简介。 抗生素滥用主要危害有如下几方面: 一、产生大量的耐药菌(缩写为MRSA):耐药性就使原本有效的抗生素效果变差,或完全无效,目前对许多抗生素的

耐药性的?超级细菌?在中国蔓延的速度十分惊人。1978年上海抽检了200株金黄色葡萄球菌,分离出的MRSA还不到5%。而现在,MRSA在医院内感染的分离率已高达60%以上。这意味着,在医院的病人体内,有超过六成的金黄色葡萄球菌,是难以杀灭的MRSA。而医院由于使用抗生素频率与强度最大,也就成了?超级细菌?产生的温床。 细菌对某种抗生素耐药后,同时其耐药性亦可对其他抗生素耐药即所谓交叉耐药,而且耐药性还可以通过耐药基因遗传,使细菌耐药性复杂化。试想一旦当抗生素细菌失去疗效,就可能造成人类治疗疾病的灾难。像今天的多数结核病病菌就已经变成?超级细菌?,大量耐药菌的产生,使难治性感染越来越多,我们仿佛又要回到了无抗生素时代。再如耐青霉素的肺炎链球菌,过去对青霉素等药品都很敏感,现在几乎对各种抗生素都已?刀枪不入?了。抗生素刚使用时,一种抗生素使用20年才有耐药性;但到了20世纪80年代,这个周期缩短为10年,而如今仅仅是2年即可产生耐药性。在抗生素不断推陈出新的今天,如果继续滥用,终有一天将会导致人类本身对所有抗生素药品都有耐药性,人们同样就会到了对细菌感染的?无药可用?的可怕时期。当有朝一日病菌耐药性?进化?速度超过抗生素的研制速度,我们也将回到抗生素诞生前的黑暗岁月。

抗生素种类及作用和机制

抗生素种类及作用和机制

————————————————————————————————作者:————————————————————————————————日期: ?

抗生素种类: 一)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂(β-lactamadeinhibitor s)、甲氧青霉素类(methoxypeniciuins)等。 (二)氨基糖甙类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类:包括氯霉素、甲砜霉素等。 (五)大环内脂类:临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等、阿奇霉素。 (六)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆菌肽等。 (七)作用于G菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (八)抗真菌抗生素:如灰黄霉素。 (九)抗肿瘤抗生素:如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。 (十)具有免疫抑制作用的抗生素如环孢霉素。 β-内酰胺类抗生素: β-内酰胺类抗生素(β-lactams)系指化学结构中具有β-内酰胺环的一大类抗生素,包括临床最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β-内酰胺类等其他非典型β-内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效好的优点。本类药化学结构,特别是侧链的改变形成了许多不同抗菌谱和抗菌作用以及各种临床药理学特性的抗生素。 各种β-内酰胺类抗生素的作用机制: 各种β-内酰胺类抗生素的作用机制均相似,都能抑制胞壁粘肽合成酶,即青霉素结合蛋白(penici llinbinding proteins,PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解。除此之外,对细菌的致死效应还应包括触发细菌的自溶酶活性,缺乏自溶酶的突变株则表现出耐药性。哺乳动物无细胞壁,不受β-内酰胺类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆膜上特殊蛋白PBPs是β-内酰胺类药的作用靶位,PBPs的功能及与抗生素结合情况归纳于图38-1。各种细菌细胞膜上的PBPs数目、分子量、对β-内酰胺类抗生素的敏感性不同,但分类学上相近的细菌,其PBPs类型及生理功能则相似。例如大肠杆菌有7种PBPs,PBP1A,PBP1B与细菌延长有关,青霉素、氨苄西林、头孢噻吩等与PBP1A、PBP1B 有高度亲和力,可使细菌生长繁殖和延伸受抑制,并溶解死亡,PBP2与细管形状有关,美西林、棒酸与硫霉素(亚胺培南)能选择性地与其结合,使细菌形成大圆形细胞,对渗透压稳定,可继续生几代后才溶解死亡。PBP3功能与PBP1A相同,但量少,与中隔形成,细菌分裂有关,多数青霉素类或头孢菌素类抗生素主要与PBP1和(或)PBP3结合,形成丝状体和球形体,使细菌发生变形萎缩,逐渐溶解死亡。PBP1,2,3是细菌存活、生长繁殖所必需,PBP4,5,6;与羧肽酶活性有关,对细菌生存繁殖无重要性,抗生素与之结合后,对细菌无影响。基本结构:青霉素G是最早应用于临床的抗生素,由于它具有杀菌力强、毒性低、价格低廉、使用方便等优点,迄今仍是处理敏感菌所致各种感染的首选药物。但是青霉素有不耐酸、不耐青霉素酶、抗菌谱窄和容易引起过敏反应等缺点,在临床应用受到一定限制。1959年以来人们利用青霉素的母核6-氨基青霉烷酸(6-APA),进行化学改造,接上不同侧链,合成了几百种“半合成青霉素”,有许多已用于临床,常用青霉素的化学结构和药理特性。 青霉素

抗生素的种类和作用机理

一抗生素的定义: 抗生素(英语:antibiotic)在定义上是一较广的概念,包括抗细菌药、抗真菌药(anti-fungal medication)以及对付其他微小病原之药物;但临床实务中,抗生素常常是指抗细菌药 二抗生素的种类: 由细菌、霉菌或其它微生物在生活过程中所产生的具有抗病原体不同的抗生素药物或其它活性的一类物质。自1943年以来,青霉素应用于临床,现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。其分类有以下几种: (一)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂 (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。 (二)氨基糖苷类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类:包括氯霉素、甲砜霉素等。 (五)大环内脂类:临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等、阿奇霉素。 (六)糖肽类抗生素:万古霉素、去甲万古霉素、替考拉宁,后者在抗菌活性、药代特性及安全性方面均优于前两者。 (七)喹诺酮类:包括诺氟沙星、氧氟沙星、环丙沙星、培氟沙星、加替沙星等。 (八)硝基咪唑类:包括甲硝唑、替硝唑、奥硝唑等。 (九)作用于G-菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (十)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、杆菌肽等. (十一)抗真菌抗生素:分为棘白菌素类、多烯类、嘧啶类、作用于真菌细胞膜上麦角甾醇的抗真菌药物、烯丙胺类、氮唑类。 (十二)抗肿瘤抗生素:如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。

抗生素的作用机理

精品文档 . 抗菌药物的作用机制主要是通过干扰病原体的生化代谢过程,影响其结构和功能,使其失去正常生长繁殖的能力而达到抑制或杀灭病原体的作用。 一、抑制细菌细胞壁的合成 细菌细胞壁位于细胞浆膜之外,是人体细胞所不具有的。它是维持细菌细胞外形完整的坚韧结构,它能适应多样的环境变化,并能与宿主相互作用。细胞壁的主要成分为肽聚糖(peptidoglycan ),又称粘肽,它构成网状巨大分子包围着整个细菌。革兰阳性菌细胞壁坚厚,肽聚糖含量大约50%~80%,菌体内含有多种氨基酸、核苷酸、蛋白质、维生素、糖、无机离子及其它代谢物,故菌体内渗透压高。革兰阴性菌细胞壁比较薄,肽聚糖仅占1%~10%,类脂质较多,占60%以上,且胞浆内没有大量的营养物质与代谢物,故菌体内渗透压低。革兰阴性菌细胞壁与阳性菌不同,在肽聚糖层外具有脂多糖,外膜及脂蛋白等特殊成分。外膜在肽聚糖层的外侧,由磷脂、脂多糖及一组特异蛋白组成,它是阴性菌对外界的保护屏障。革兰阴性菌的外膜能阻止penicillin 等抗生素、去污剂、胰蛋白酶与溶菌酶的进入,从而保护外膜内侧的肽聚糖。 青霉素类(penicillins )、头孢菌素类(cephalosporins )、磷霉素(fosfomycin )、环丝氨酸(cycloserine )、万古霉素(vancomycin )、杆菌肽(bacitracin )等通过抑制细胞壁的合成而发挥作用。Penicillins 与cephalosporins 的化学结构相似,它们都属于β-内酰胺类抗生素,其作用机制之一是与青霉素结合蛋白(penicillin binding proteins ,PBPs )结合,抑制转肽作用,阻碍了肽聚糖的交叉联结,导致细菌细胞壁缺损,丧失屏障作用,使细菌细胞肿胀、变形、破裂而死亡。 二、改变胞浆膜的通透性 多肽类抗生素如多粘菌素E (polymyxins),含有多个阳离子极性基团和一个脂肪酸直链肽,其阳离子能与胞浆膜中的磷脂结合,使膜功能受损;抗真菌药物制霉菌素(nystatin )和两性霉素B (amphotericin )能选择性地与真菌胞浆膜中的麦角固醇结合,形成孔道,使膜通透性改变,细菌内的蛋白质、氨基酸、核苷酸等外漏,造成细菌死亡。 三、抑制蛋白质的合成 细菌核糖体的沉降系数为70S ,可解离为50S 和30S 两个亚基,而人体细胞的核糖体的沉降系数为80S ,可解离为60S 和40S 两个亚基。人体细胞的核糖体与细菌核糖体的生理、生化功能不同,因此,抗菌药物能选择性影响细菌蛋白质的合成而不影响人体细胞的功能。 细菌蛋白质的合成包括起始、肽链延伸及合成终止三阶段,在胞浆内通过核糖体循环完成。抑制蛋白质合成的药物分别作用于细菌蛋白质合成的不同阶段: ①起始阶段:氨基苷类(aminoglycosides )抗生素阻止30S 亚基和70S 亚基合成始动复合物的形成;②肽链延伸阶段:四环素类(tetracyclines )抗生素能与核糖体30S 亚基结合,阻止氨基酰tRNA 在30S 亚基A 位的结合,阻碍了肽链的形成,产生抑菌作用;③终止阶段:氨基苷类(aminoglycosides )抗生素阻止终止因子与A 位结合,使合成的肽链不能从核糖体释放出来,致使核糖体循环受阻,合成不正常无功能的肽链,因而具有杀菌作用。 四、影响核酸代谢 喹诺酮类(quinolones )抑制DNA 回旋酶(gyrase),从而抑制细菌的DNA 复制和mRNA 的转录;利福平(rifampicin )特异性地抑制细菌DNA 依赖的RNA 多聚酶,阻碍mRNA 的合成;核酸类似物如抗病毒药物阿糖腺苷(vidarabine)、更昔洛韦(ganciclovir )等抑制病毒DNA 合成的酶,使病毒复制受阻,发挥抗病毒作用。 五、影响叶酸代谢 细菌不能利用环境中的叶酸(folic acid ),而必须利用对氨苯甲酸和二氢蝶啶在二氢叶酸合成酶的作用下合成二氢叶酸,再经二氢叶酸还原酶的作用形成四氢叶酸,磺胺类(sulfonamides )和甲氧苄啶(trimethoprim )可分别抑制folacin 合成过程中的二氢叶酸合成酶和二氢叶酸还原酶,影响细菌体内的叶酸代谢,由于folacin 缺乏,细菌体内氨基酸、核苷酸的合成受阻,导致细菌生长繁殖不能进行。抗结核药对氨基水杨酸(para-aminosalicylic )竞争二氢叶酸合成酶,抑制结核杆菌的生长繁殖。 Ж-2 β-内酰胺类抗生素 β-内酰胺类(β-lactams)抗生素是临床上最常用的抗菌药物。它们的化学结构中均含有β-内酰胺环,最为常用的是青霉素类(penicillins )和头孢菌素类(cephalosporins ),近年来还开发了一类非典型的β-内酰胺类抗生素,如碳青霉烯类(carbapenems )、头霉素类(cephamycin )、氧头孢烯类(oxacephems )及单环β-内酰胺类(monobactamic acid )。它们的共同作用机制是抑制细菌细胞壁的肽聚糖合成,共同特点是除了对革兰阳性菌、阴性菌有作用外,还对部分厌氧菌有抗菌作用,具有抗菌活性强、毒性低、适应证广及临床疗效好

抗生素生产工艺青霉素为例

抗生素生产工艺(以青霉素生产为例) 参考文件 抗生素在目前的制药工业中仍占有举足轻重的地位,尤其是下游半合成抗生素的发展,进一步刺激了上游的工业发酵。一些抗生素的工业生产规模非常大,如β-内酰胺类的青霉素、头孢菌素C,大环内酯类的红霉素、利福霉素,氨基环醇类的链霉素、庆大霉素。其它的一些抗生素,如林可霉素、四环素、金霉素、万古霉素等,单个发酵罐容积越来越大,100 m3的发酵罐被普遍采用,200 m3甚至更大容积的发酵罐经常可见报道。 抗生素的工业生产包括发酵和提取两部分。工艺流程大致如下:菌种的保藏、孢子制备、种子制备、发酵、提取和精制。种子和发酵培养基的常用碳源有:葡萄糖、淀粉、蔗糖、油脂、有机酸等,主要为菌体生长代谢提供能源,为合成菌体细胞和目的产物提供碳元素。有机氮源多用玉米浆、黄豆饼粉、麸质粉、蛋白胨、酵母粉、鱼粉等,硫酸铵、尿素、氨水、硝酸钠、硝酸铵则是常用的无机氮源。另外,培养基中还得添加无机盐、微量元素以及消沫剂,部分抗生素还得加入特殊前体,如青霉素的前体是苯乙酸,大环内酯类抗生素的前体是丙酸盐。发酵过程普遍补加一种碳源、氮源物质,如葡萄糖和硫酸铵。pH值通过流加氨水进行调节,很多抗生素在发酵中后期流加前体,对提高产量非常有益。抗生素发酵绝大多数为好氧培养,必须连续通入大量无菌空气,全过程大功率搅拌。发酵液的预处理,一般加絮凝剂沉淀蛋白,过滤去除菌丝体,发酵滤液的提取常用溶媒萃取法、离子交换树脂法、沉淀法、吸附法等提纯浓缩,然后结晶干燥得纯品。 10.1 青霉素概述 10.1.1 青霉素的研究 最初青霉素的生产菌是音符型青霉菌,生产能力只有几十个单位,不能满足工业需要。随后找到了适合于深层培养的橄榄型青霉菌,即产黄青霉(P. chrosogenum),生产能力为100U/ml。经过X、紫外线诱变,生产能力达到1000-1500U/ml。随后经过诱变,得到不产生色素的变种,目前生产能力可达66000-70000U/ml。青霉素是抗生素工业的首要产品。 中国为青霉素(penicillin)生产大国,国内生产的青霉素,已占世界产量的近70%,国内较大规模的生产企业有华药、哈医药、石药、鲁抗,单个发酵罐规模均在100 m3以上,发酵单位在70000 U/ml左右,

临床抗菌药物案例分析

1、患者,男,46岁,患急性粒细胞白血病。化疗后肺感染、反复发热,给予抗感染治疗。用药医嘱:0.9%NS 100ml +哌拉西林/他唑巴坦4.5g ivgtt q8h用药7天后,改用头孢呋辛酯片 0.25g bid 口服,患者用头孢呋辛酯口服用药后第3日出现腹泻,每日6-8次,伴高热,体温39.5℃。大便涂片示:革兰阳性菌占优势。 请分析患者使用抗菌药物后出现腹泻的原因及如何处理? 患者大量长期应用抗菌药后,敏感的正常厌氧菌群被抑制,而致病性难辨梭菌大量繁殖,产生肠毒素及细胞毒素,出现较严重腹泻,即抗生素相关性腹泻。诊断为难辨梭菌感染性肠炎。立即停用上述抗菌药物,改用口服万古霉素或甲硝唑,同时加服双歧杆菌。 2、患者,女性,20岁,既往有重症肌无力病史,入院诊断为:肺部感染。痰培养示:大肠埃希菌。 医嘱:阿米卡星注射液 300mg ivgtt 1次/日*5日 林可霉素注射液 600mg ivgtt 3次/日*5日 新斯的明片 15mg 3次/日*3日 维生素B1 20mg 3次/日*3日 【患者用药后状况】年轻女患者在注射两种注射剂后,立即感觉全身极度无力,而后出现全身瘫软及呼吸衰竭。 请分析患者使用以上药物后出现全身瘫软及呼吸衰竭原因? 阿米卡星和林可霉素都有神经肌肉阻断及呼吸抑制作用,当阿米卡星和林可霉素联合使用于重症肌无力、帕金森神经机能障碍及以肌无力

为特征的其他病症的患者,会导致患者出现全身瘫软及呼吸衰竭。与两种药物协同的神经肌肉阻断毒性作用相关。 3、患者女性,年龄50岁,2013.2.18入院,入院诊断:子宫肌瘤、子宫内膜增生过长,左卵巢浆液性囊肿、宫内环;体温正常,2.18.血常规:未见异常;于2013.2.19行全子宫切除,双侧卵巢囊肿剥除术。手术为Ⅱ/甲类切口。 术后用药医嘱:头孢西丁 2.0g iv gtt bid 2.19-22 奥硝唑 0.5g iv gtt bid 2.19-22 分析该患者的围手术期的抗菌药物使用是否合理? 预防用药抗生素品种选择不合理、预防用药时机和疗程不合理,联合用药不合理。该手术为Ⅱ/甲类切口,术后3天使用头孢西丁+奥硝唑。按照《抗菌药物临床应用指导原则》规定:该类手术选择使用第一、二代头孢菌素或头孢曲松或头孢噻肟;涉及阴道时可加用甲硝唑预防,预防用药时间为术前0.5-2小时内,或麻醉开始时首次给药,总预防时间一般不超过24小时,个别病例情况可延长至48小时。头孢西丁属于头霉素类,具有较强的抗厌氧菌作用,与奥硝唑联合使用属于重复用药。 4、患者,女性,年龄13月,患者体温36.7℃,有咳嗽、咳痰、无气喘,入院诊断:支气管炎;12.3血常规: W 10.6*109/L N 35.8% L 56.1% 12.3肝肾功能:未见异常; 医嘱:头孢米诺 2.0 ivgtt bid 12.3-12.8 评价该患者抗生素选择是否合理?

抗生素生产工艺样本

宁夏工商职业技术学院 毕业论文 题目: 抗生素的生产工艺 作者: 学号: 系别: 化工工程系 专业: 应用化工技术专业 指导教师: 专业技术职务: 3月 宁夏银川 目录 一、抗生素 1、抗生素的定义 (3) 2、抗生素的发展 (4)

3、抗生素的应用 (4) 4、抗生素的生产工艺 (5) 二、青霉素 1、青霉素的定义 (5) 2、青霉素菌种 (6) 3、青霉素培养基 (6) 4、青霉素发酵件控制 (7) 5、青霉素的分离和纯化 (7) 6、青霉素工艺控制要点 (8) 讨论 (8) 结论 (9) 致谢 (11) 参考文献 (12) 抗生素的生产工艺 摘要: 发酵工程药物中最主要的就是抗生素, 抗生素是临床上日常应用量最大的抗感染药物、它是生物, 包括微生物、植物和动物在内, 在其生命活动过程中所产生的, 能在低微浓度下有选择地抑制或影响她种生物功能的有机物质。 【关键词】抗生素, 青霉素, 生产工艺 引入 : 抗生素是生物体在生命活动中产生的一种次级代谢产物。当前人们在生物体内发现的6000 多种抗生素中, 约60%来自放线菌, 抗生素主要用微生物发酵法生产, 少数抗生素也可用化学方法合成, 人们还对天然得到的

抗生素进行生化或化学方法改造, 使其具有更优越的性能。抗生素不但广泛用于临床医疗, 而且已经用于农业、畜牧及环保等领域中。青霉素是最早发现并用于临床的一种抗生素, 1928 年为英国人弗莱明发现, 40 年代投入工业生 产, 在 二战期间马上大显身手, 它能有效控制伤口的细菌感染, 挽救了数百万战争中受伤者的性命。 一、抗生素 ( 一) 抗生素的定义 抗生素又称抗菌素, 指某些微生物在代谢过程中所产生的, 对于其它微生物具有抑制生长或杀灭作用的化学物质, 是制药工业中一类重要原料药。某些抗生素对一部分较大的滤过性病毒也有抑制作用; 或有刺激动植物生长的作用; 或具有抗恶性肿瘤、抗辐射等作用。有些天然抗生素, 经用化学方法进行分子结构改造后, 可得到疗效更高的半合成抗生素。少数天然抗生素可用化学方法进行大量生产, 成为合成抗生素。 ( 二) 抗生素的发展 最早具有临床实用价值的抗生素是 1928 年英国细菌学家 A.弗莱明发现的青霉素, 是由点青霉菌或产黄青霉菌产生。1944 年, 俄国出生的S.A.瓦克斯曼发现了由灰色链霉菌产生的链霉素。1946~1956 年先后从土壤中寻找到由放线菌产生的氯霉素、金霉素、土霉素、制霉菌素、红霉素及丝裂霉素 C 等。60~70 年代,半合成抗生素迅速发展,获得了具有显著疗效的新型抗生素,如半合成青霉素和头孢菌素类, 具有耐青霉素酶、耐酸和抗菌谱广等特点, 为抗生素的临床应用开辟了新的领域。

相关主题
文本预览
相关文档 最新文档