反比例函数实际应用的七种情况详解
- 格式:ppt
- 大小:2.83 MB
- 文档页数:38
反比例函数的应用一、反比例函数的定义及性质反比例函数是指一个函数y=k/x,其中k为常数,x≠0。
反比例函数的图像是一条经过原点的双曲线。
反比例函数具有以下性质:1. 定义域为x≠0,值域为y≠0。
2. 函数图像关于y轴对称。
3. 当x趋近于0时,y的值趋近于正无穷或负无穷。
4. 当x>0时,y>0;当x<0时,y<0。
5. 反比例函数是单调递减的,在定义域内任意两个正数之间,其对应的函数值满足大小关系:y1>y2。
二、反比例函数在实际生活中的应用1. 电阻与电流在电路中,电阻与电流之间存在着一种反比例关系。
根据欧姆定律可知:U=IR,其中U表示电压(单位为伏特),I表示电流(单位为安培),R表示电阻(单位为欧姆)。
将该式变形得到:I=U/R。
可以看出,在给定电压下,电流与电阻成反比例关系。
因此,在设计电路时需要考虑到这种关系。
2. 速度与时间在物理学中,速度与时间也存在着一种反比例关系。
根据物理学公式可知:v=s/t,其中v表示速度(单位为米/秒),s表示路程(单位为米),t表示时间(单位为秒)。
将该式变形得到:t=s/v。
可以看出,在给定路程下,速度与时间成反比例关系。
因此,在计算物体的运动时间时需要考虑到这种关系。
3. 人口密度与土地面积在城市规划中,人口密度与土地面积也存在着一种反比例关系。
根据城市规划原理可知:城市的人口密度应该与土地面积成反比例关系,以保证城市的空间利用率和居住质量。
因此,在进行城市规划时需要考虑到这种关系。
4. 光线强度与距离在光学中,光线强度与距离也存在着一种反比例关系。
根据光学原理可知:光线强度随着距离的增加而减弱,其强度与距离成反比例关系。
因此,在设计照明系统时需要考虑到这种关系。
三、反比例函数的解题方法1. 求解函数值对于给定的x值,可以通过代入函数公式求解对应的y值。
例如:已知y=3/x,求当x=2时,y的值为多少。
解:将x=2代入函数公式得到:y=3/2。
初中数学知识点总结反比例函数的应用初中数学知识点总结反比例函数的应用「篇一」反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量。
1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是:x≠0;y的取值范围是:y≠0。
4.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k≠0)。
2.要求出反比例函数的解析式,利用待定系数法求出k即可。
反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
初中数学知识点总结反比例函数的应用「篇二」一、背景分析1. 对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
反比例函数是一种常见的数学模型,可以用来解决很多实际问题。
以下是一个例子:
假设一辆汽车行驶的距离与其油耗量是一个反比例关系。
也就是说,当汽车行驶的距离增加时,它消耗的油耗将减少,并且当汽车行驶的距离减少时,它消耗的油耗将增加。
如果我们知道汽车在某一段路程中的油耗量(例如每公里消耗的升数),以及这段路程的总长度,我们可以使用反比例函数来求出它的平均油耗量。
具体步骤如下:
1. 定义变量:假设总距离为 D 千米,油耗量为 H 升/公里,平均油耗为 Y 升/百公里
2. 确定反比例函数:根据定义,可得:H = k / Y,其中 k 是一个常数
3. 求解常数 k:当总距离为 D 时,油耗为 H * D 升。
因此,有:H * D = k / Y,即 Y = k / (H * D)
4. 计算平均油耗:将上一步得到的等式中,代入已知的 H 和 D 值,即可求出平均油耗量 Y 的值。
总结:反比例函数可应用于很多实际问题,如物质的浓度与稀释液的体积关系、人口密度与城市面积的关系等。
在实际应用中,需要根据具体情况选择合适的变量和反比例函数形式,以获得所需的信息。
反比例函数及应用反比例函数是一种常见的函数形式,在数学中广泛应用于各种领域,包括经济、物理、工程等。
本文将介绍反比例函数的定义、图像特征、性质以及其应用。
一、反比例函数的定义及图像特征反比例函数的定义为:$$y=\frac{k}{x}$$其中,$k$ 为比例系数,且 $x\neq0$。
反比例函数的图像具有以下特征:1. 曲线始于第一象限,以原点为渐近线。
2. 当 $x>0$ 时,函数值单调递减。
3. 当 $x<0$ 时,函数值单调递增。
4. 反比例函数关于 $x$ 轴对称。
5. 当 $x\to\infty$ 时,函数值趋近于 $0$;当 $x\to0$ 时,函数值趋近于无穷大。
下图为反比例函数图像的示意图:[image]二、反比例函数的性质反比例函数的常见性质包括:1. 定义域为 $x\neq0$,值域为 $y\neq0$。
2. 对称轴为 $x$ 轴。
3. 函数连接点为原点。
4. $k$ 的正负决定了函数的增减性和图像所在的象限。
5. 当 $k>0$ 时,函数单调递减;当 $k<0$ 时,函数单调递增。
三、反比例函数的应用反比例函数在各种学科领域中都有广泛的应用。
下面我们将介绍一些具体的应用案例。
1. 经济学中的应用:供给曲线在经济学中,供给曲线描述了在一定时间内产品供给量与价格之间的关系。
在某些情况下,供给量与价格是反比例的关系。
例如,对于某种商品,生产成本不变的情况下,供给量与价格之间的关系可以表示为:$$Q=\frac{k}{p}$$其中,$Q$ 表示供给量,$p$ 表示价格,$k$ 为常数。
这个函数就是反比例函数。
经济学家可以通过这个函数来分析供给量和价格之间的关系,制定合理的政策和措施。
2. 物理学中的应用:洛伦兹力定律在物理学中,洛伦兹力定律描述了运动带电粒子在电场和磁场中所受到的力。
当电荷 $q$ 以速度 $v$ 运动时,所受力可以表示为:$$F=q(v\times B)$$其中,$B$ 为磁感应强度,$v$ 为运动速度。
反比例函数的性质与应用反比例函数是数学中一种常见的函数类型,也被称为倒数函数。
在反比例函数中,两个变量的乘积为常数,其中一个变量的增大伴随着另一个变量的减小。
本文将探讨反比例函数的性质,并介绍其在实际生活中的应用。
一、反比例函数的定义与表示方式反比例函数是一种特殊的函数形式,可以使用以下的定义和表示方式:定义:如果两个变量x和y满足x*y=k,其中k为非零常数,则称y为x的反比例函数。
表示方式:反比例函数通常以y = k/x的形式表示,其中k为常数。
二、反比例函数的性质反比例函数具有以下几个重要的性质:1. 当x趋近于零时,反比例函数的值趋于无穷大。
这意味着函数图像会与y轴趋近于平行,但永远不会触及y轴。
2. 反比例函数的图像是一个双曲线。
具体来说,当k为正数时,图像位于第一和第三象限;当k为负数时,图像位于第二和第四象限。
3. 反比例函数的图像关于y轴和x轴均对称。
这意味着,如果(x, y)是函数图像上的一点,那么(-x, -y)也是该函数图像上的一点。
三、反比例函数的应用反比例函数在实际生活中有广泛的应用。
以下是一些常见的应用领域:1. 物体运动问题:当物体的速度与时间成反比例关系时,可以使用反比例函数来描述物体的运动。
例如,当汽车以恒定的速率行驶时,行驶的距离与所用时间成反比例关系。
2. 电阻与电流问题:在电路中,电阻和电流之间的关系可以由反比例函数来描述。
根据欧姆定律,电阻与电流成反比例关系。
3. 货币兑换问题:在国际贸易中,货币兑换率通常与两个国家的经济情况有关,它们之间呈现反比例关系。
这种关系可以用反比例函数来表示。
4. 物质的浓度问题:在化学中,溶液的浓度与所使用的溶剂的体积成反比例关系。
因此,反比例函数可以用来描述溶液的浓度变化。
5. 行动与反应问题:在心理学和社会科学中,人们的行动和其他人的反应通常呈反比例关系。
例如,人们参与某项活动的数量可能与其他人的参与数量成反比例关系。
总结:反比例函数是数学中常见的函数类型,具有特殊的性质。
反比例函数实际应用一、知识点详解在中考试题中对反比例函数应用的考查主要有两种形式,一是确定实际问题中的反比例函数解析式,这类问题一般属于跨学科问题,除了要了解一些基本生活常识外还要掌握常见的物理学公式;二是判断实际问题中的函数图象,这类问题一般会综合考查一次函数和二次函数,正确解答这类问题的关键是确定函数关系式,同时注意自变量的取值范围。
二、知识点拨1、实际问题中常见的反比例关系现实世界中有许多含有反比例函数关系和性质的现象,常见的主要有以下几种:S(1)面积S一定,长方形的长a与宽b之间的反比例函数关系:a=。
bV(2)体积V一定,圆柱体的底面积S与高d之间的反比例函数关系:S=;dN(3)压力N一定,压强P 与接触面积S之间的反比例函数关系:P=;Sm p=;之间的反比例函数关系:一定,气体压强p与气体体积V(4)质量m VP(5)功率P一定,速度v与所受阻力F之间的反比例函数关系:v=;FS(6)路程S一定,匀速行驶速度v与时间t之间的反比例函数关系:v=;tU(7)电压U一定,电路中电流I与电阻R之间的反比例函数关系:I=;R2、反比例函数模型的建立1. 条件:实际问题中的两个变量在变化过程中,它们的积为定值;2. 过程:(1)用两个不同字母表示变量;(2)确定k的值;(3)建立函数关系式;(4)利用图象及其性质解决问题。
3、实际问题中反比例函数的特点1. 实际问题中反比例函数自变量的取值是有一定范围的,一般情况取正数,有时取正整数,所以在实际问题中,具体问题需要具体分析其自变量、函数的取值。
2. 实际问题中反比例函数的图象往往是在第一象限中的部分或其中的某一段,这与自变量的取值范围有关。
三、经典例题能力提升类例1 填空题(1)在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是__________米。
反比例函数实际应用的七种情况1.电阻与电流之间的关系:根据欧姆定律,电阻与电流成反比例关系,即电阻越大,通过电阻的电流越小。
这个关系在电路设计和计算中非常有用,让我们可以根据所需的电流值来选择合适的电阻。
2.速度与旅行时间之间的关系:在常规的运动中,速度与旅行时间成反比例关系。
例如,如果行驶的速度减小,那么到达目的地所需要的时间将会增加。
这个关系在交通规划中非常重要,可以帮助我们预测旅行时间和选择最佳路线。
3.固定工作量与完成时间的关系:在工作中,如果完成一项任务所需的工作量固定,那么完成任务所需的时间将与工作量成反比例关系。
这个关系可以帮助我们计划工作时间和分配资源,确保在规定时间内完成工作。
4.人均资金和受益人数之间的关系:在社会福利领域,人均资金和受益人数成反比例关系。
例如,如果一些项目的预算不变,那么资金按比例减少时,受益人的数量将会增加。
这个关系可以帮助我们合理分配资源,确保尽可能多的人从社会福利项目中受益。
5.产品价格与需求之间的关系:根据供需理论,产品价格与需求成反比例关系。
如果产品价格上升,需求将减少;反之,如果产品价格下降,需求将增加。
这个关系可以帮助企业制定合理的定价策略和预测市场需求,以最大程度地获得利润。
6.光的强度与距离之间的关系:根据光传播定律,光的强度与距离成反比例关系。
如果距离光源越远,光的强度将越弱。
这个关系在光学中非常重要,可以帮助我们计算光的传播距离和设计照明方案。
7.音量与距离之间的关系:在声学中,音量与距离也成反比例关系。
如果距离声源越远,声音的音量将越低。
这个关系在音响设计和音频工程中非常有用,可以帮助我们调整音乐会场的音效和音量控制系统。
以上是反比例函数实际应用的七种情况,这些情况涉及到不同领域的应用,从物理学到经济学,再到工程学和音响学等。
对于学习和应用反比例函数的人来说,了解这些实际案例可以帮助他们更好地理解和运用反比例函数。
反比例函数实例反比例函数是数学中的一种函数类型,指的是两个变量间的比例关系,其中当一个变量的数值增加时,另一个变量的数值会相应地减小。
在本文中,我们将提供一些反比例函数的实例,以帮助读者更好地理解这一概念。
一、基本概念在反比例函数中,两个变量之间存在着一定的比例关系。
如果我们称一个变量为“x”,另一个变量为“y”,那么反比例函数可以表示为:y=k/x,其中k为常数。
这个方程的意思是,当x的值发生变化时,y的值将相应地发生变化。
y=k/x中的常数k是反比例函数的比例常数,它决定了变量之间的比例关系。
如果k的值比较大,那么当x 的值变化幅度较小时,y的值会有较大的变化;反之,当k的值比较小时,y的变化会比较缓慢。
二、实例1. 两个游泳选手在游泳池中同时游泳,其中一个游泳选手的速度是另一个游泳选手的两倍。
假设游泳池长为40m,其中一个选手游完了整个游泳池所需时间为20秒。
此时,请问另一个选手游完整个游泳池所需的时间是多少?这是一个典型的反比例函数的实例。
此时选手的速度与所需时间之间存在反比例关系,即速度越快,所需时间越短。
我们可以用反比例函数来表示两个选手的速度与所需时间之间的关系。
设选手2的速度为x,则选手1的速度为2x(因为选手1的速度是选手2的两倍)。
根据公式y=k/x,我们可以得到选手1的速度为(2x)。
选手1游完整个游泳池所需的时间为:(40m)/(2x) = 20秒解得选手1的速度为:所以,选手2游完整个游泳池所需的时间为20秒。
2. 一台机器在4小时内可以完成一项工作。
如果我们增加工人的数量,可以使同样的任务在2小时内完成。
假设原本机器只有一名工人在操作,请问加入了多少名工人才能使这项任务可以在2小时内完成?同样,这也是一个反比例函数的实例。
在这个例子中,我们可以使用反比例函数来表示机器中的工人数量与完成任务的时间之间的关系。
设原本机器中的工人数量为x,则增加一个工人后可以将任务在t时间内完成。
根据反比例函数知识点归纳,给出10个例子:根据反比例函数知识点归纳,给出10个例子反比例函数是一种特殊的函数形式,其特点是当自变量增大时,因变量会相应地减小;反之,当自变量减小时,因变量则会增大。
下面列举了10个反比例函数的例子:1. 电阻和电流的关系:当电流增大时,电阻减小;当电流减小时,电阻增大。
这能够用反比例函数来描述。
2. 速度和时间的关系:在恒定的距离下,当时间增加时,速度减小;当时间减少时,速度增加。
这也可以用反比例函数来表示。
3. 燃料效率和车速的关系:在同一辆车中,当车速增加时,燃料效率减小;当车速减小时,燃料效率增加。
4. 打孔机打孔时间和打孔数量的关系:对于一台打孔机来说,当打孔时间增加时,每分钟打孔的数量减少;当打孔时间减少时,每分钟打孔的数量增加。
5. 饺子和蒸锅水量的关系:当蒸锅中的水量增加时,每批饺子蒸熟所需的时间减少;当水量减少时,蒸饺所需的时间增加。
6. 光照强度和物体亮度的关系:在同一条件下,当光照强度增加时,物体的亮度减小;当光照强度减小时,物体的亮度增加。
7. 音乐音量和听到的声音大小的关系:当音乐音量增大时,听到的声音大小减小;当音乐音量减小时,听到的声音大小增加。
8. 网球击球速度和击球力度的关系:在相同的击球动作下,当击球力度增大时,网球的击球速度减小;当击球力度减小时,网球的击球速度增加。
9. 泵抽水时间和抽水深度的关系:当泵抽水时间增加时,抽水深度减小;当泵抽水时间减少时,抽水深度增加。
10. 车辆行驶速度和制动距离的关系:当车辆行驶速度增加时,制动距离增加;当车辆行驶速度减小时,制动距离减小。
以上是10个常见的反比例函数的例子。
反比例函数在实际生活中有着广泛的应用,能够帮助我们理解自然界中的各种规律和现象。
初中数学:利用反比例函数关系式解决实际问题,建议收藏反比例函数是初中数学中的一个重要概念,它描述的是两个变量之间的一种特殊关系。
在实际生活中,我们经常会遇到一些问题,这些问题可以用反比例函数的关系式来解决。
例如,假设有一个水箱,它的容量是1000升。
水箱上装有一根
水位计,该水位计显示水箱内的水位高度。
我们可以用反比例函数来描述水位计的读数与水箱内的水量之间的关系。
反比例函数的一般形式为y=k/x,其中k是常数。
在这个例子中,我们可以将y表示为水位计的读数,x表示为水箱内的水量。
由于水箱内的水量是不断变化的,因此x是一个变量。
我们可以通过测量水箱内的水量和水位计的读数,确定k的值。
一旦我们知道了k的值,我们就可以利用反比例函数的关系式来计算任何时刻水箱内的水量与水位计的读数之间的关系。
除了水箱的例子之外,反比例函数还可以用于解决其他实际问题。
例如,我们可以用反比例函数来描述两个物体之间的运动关系。
如果我们知道两个物体之间的距离和速度,那么我们就可以用反比例函数来计算它们之间的时间关系。
总之,反比例函数是一个非常实用的工具,可以帮助我们解决实际问题。
如果您希望在数学学习中提高自己的水平,那么建议您务必掌握反比例函数的相关知识。
- 1 -。
反比例函数的性质与应用反比例函数是数学中的一种特殊函数形式,它的性质和应用在实际问题中非常重要。
本文将介绍反比例函数的性质,并探讨它在实际生活中的应用。
1. 反比例函数的定义反比例函数是指一个函数,其自变量x和因变量y满足以下关系式:y = k/x其中,k为常数,x ≠ 0。
2. 反比例函数的性质2.1 定义域和值域:反比例函数的定义域为除去0的实数集,值域为除去0的实数集。
这是由于在反比例函数中,除数不能为0。
2.2 反比例函数的图像特点:反比例函数的图像呈现出一种特殊的形状,即从左上方无限逼近于x轴和y轴。
随着自变量x的增大,因变量y呈现逐渐趋近于0的趋势;而随着自变量x的减小,因变量y也逐渐趋近于0。
2.3 反比例函数的对称性:反比例函数的图像关于一条直线对称,该直线过原点并且与y轴和x轴都垂直。
这种对称性使得反比例函数的图像在途中呈现出镜像对称的特点。
3. 反比例函数的应用3.1 物理学中的应用:反比例函数在物理学中具有广泛的应用,如弹簧的伸长和力的关系、电路中电阻和电流的关系等等。
通过研究反比例函数,我们可以更好地理解物理现象,为实际问题的解决提供依据。
3.2 经济学中的应用:在经济学中,反比例函数也有重要的应用。
例如,生产线的吞吐量与工人数量之间的关系,以及企业的销售量与售价之间的关系等。
通过建立反比例函数模型,我们可以更好地了解经济规律,并进行经济决策的优化。
3.3 生活中的应用:反比例函数的应用也可以在日常生活中找到。
例如,汽车行驶过程中的速度和所需要的时间之间的关系,以及购买商品的价格与所能购买的数量之间的关系等。
通过了解反比例函数的性质,我们可以更好地规划日常生活,做出合理的决策。
通过对反比例函数的性质和应用的研究,我们不仅能够深入理解数学中的一个重要概念,还能够将其应用于实际问题的解决中。
反比例函数不仅在学术领域有着丰富的内涵,也在实际生活中发挥着重要的作用。
反比例函数的特点与应用反比例函数是数学中常见的一类函数,其特点是输入变量和输出变量之间呈现相反关系,即当输入变量增大时,输出变量减小,反之亦然。
本文将探讨反比例函数的特点以及在实际应用中的具体应用。
一、反比例函数的特点反比例函数可以表示为y = k/x,其中k为常数。
在此函数中,x为自变量,y为因变量。
具体的特点如下:1. 直线与坐标轴的关系:反比例函数的图像为一条通过原点的直线,且与x轴和y轴均有关联。
当x为0时,y无定义,因此直线与y轴相交于y轴正半轴;当y为0时,x也无定义,因此直线与x轴相交于x轴正半轴。
2. 变化趋势:当输入变量x增大时,输出变量y减小;当输入变量x减小时,输出变量y增大。
即使输入变量和输出变量绝对值大小不同,它们的变化趋势始终保持相反。
3. 定义域与值域:对于函数y = k/x,定义域为除了x=0的所有实数,值域为除了y=0的所有实数。
二、反比例函数的应用反比例函数在实际应用中具有广泛的用途,以下列举几个常见的应用场景:1. 电阻和电流关系:欧姆定律描述了电阻和电流之间的关系,其中电阻R与电流I的关系可以表示为R = k/I,其中k为常数。
根据该关系,当电流增大时,电阻减小;当电流减小时,电阻增大。
这是因为电阻越大,电流通过时阻力越大,从而导致电压降低。
2. 时间和任务完成率关系:在某些情况下,完成某项任务所需的时间与完成率呈反比例关系。
例如,假设一个任务需要10小时完成,那么如果将时间缩短到5小时,完成率将提高到原来的两倍。
这种关系在时间管理和项目计划中具有重要意义。
3. 速度和时间关系:在某些情况下,速度和时间呈反比例关系。
例如,假设一个物体以一定速度前进,如果将速度提高两倍,它到达目的地所需的时间将减少一半。
这种关系在交通运输和物流领域中非常常见。
4. 人口和资源关系:在某些情况下,人口数量和可用资源量之间呈反比例关系。
当人口增加时,资源相对减少,这可能导致资源的短缺和环境问题。
反比例函数实际应用的六种题型题型一:在面积中的应用 一:面积不变性(k 的几何意义)如图,设点P (a ,b )是反比例函数y=xk上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO和三角形PBO 的面积都是k 21;面积是正数,所以k 要加绝对值) S 矩形PBOA =k ; S 三角形PAO =S 三角形PBO =k 21注意: (1)面积与P 的位置无关,即(0)ky k x=≠的面积不变性(2)当k 符号不确定的情况下须分类讨论S △ABC =︱K ︱; S ABCD =2︱K ︱二、曲直结合(一次函数与反比例函数)典型例题例1 如图,点P 是反比例函数xy 2=图象上的一点,PD ⊥x 轴于D.则△POD 的面积为 .例2 如图,已知,A,B 是双曲线)0(>=k xk y 上的两点,(1)若A(2,3),求K 的值;(2)在(1)的条件下,若点B 的横坐标为3,连接OA,OB,AB ,求△OAB 的面积。
(3)若A,B 两点的横坐标分别为a,2a ,线段AB 的延长线交X 轴于点C ,若6=∆AOC S ,求K 的值变式1 在双曲线)0(>=x xk y 上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成矩形面积为12,求函数解析式__________。
变式2 如图,在反比例函数2y x=(0x >)的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,求123S S S ++.S 3S 2S 11 2 3 4y=2xP 4P 3P 2xyO P 1变式3 如图,点P,Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1________S2.(填“>”或“<”或“=”)变式4 已知A B C D E,,,,是反比例函数16yx=()0x>图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形,则这五个橄榄形的面积总和是__________(用含π的代数式表示)变式5 如图正方形OABC的面积为4,点O为坐标原点,点B在函数kyx=(0,0)k x<<的图象上,点P(m,n)是函数kyx=(0,0)k x<<的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S l,判断S l与点P的位置是否有关(不必说理由).(2)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S2,写出S2与m的函数关系,并标明m的取值范围.(8分)总结:一个性质:反比例函数的面积不变性AB COyxy=16xEDCBAyx O两种思想:分类讨论和数形结合题型二:在工程与速度中的应用一、工程问题工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
正比例和反比例的应用
正比例和反比例是数学中常见的概念,它们在现实生活中有着广泛的应用。
正比例指的是两个变量之间的关系,当一个变量增加时,另一个变量也随之增加;而反比例则是指当一个变量增加时,另一个变量会相应地减少。
下面将分别介绍正比例和反比例在现实生活中的应用。
正比例的应用:
1. 速度和时间,在旅行中,速度和时间之间存在正比例关系。
速度越快,所需的时间就越短,反之亦然。
2. 工作量和工人数量,在生产中,工作量与工人数量之间存在正比例关系。
工人数量增加,工作量也随之增加,可以更快地完成任务。
3. 面积和边长,在几何学中,正方形的面积与边长之间存在正比例关系。
边长增加,面积也随之增加。
反比例的应用:
1. 人均产量和工人数量,在生产中,人均产量与工人数量之间存在反比例关系。
工人数量增加时,每个工人的产量会减少,反之亦然。
2. 管道的流量和管道的宽度,在流体力学中,管道的流量与管道的宽度之间存在反比例关系。
管道宽度增加时,流量会减少。
3. 距离和声音的强度,在声学中,声音的强度与距离之间存在反比例关系。
距离增加时,声音的强度会减弱。
正比例和反比例的应用不仅存在于数学和科学领域,也贯穿于我们日常生活的方方面面。
通过了解和应用这些概念,我们可以更好地理解和解决实际问题。
反比例函数在实际问题中的应用形如Y=K/X(K为常数,K≠0)的函数叫做反比例函数,自变量的取值范围是不等于零的一切实数,简而言之,反比例函数的定义域是X≠0,值域是X≠0,F(X)=K/X,F(-X)=K/(-X)=-K/X=-F(X),可知反比例函数是奇函数。
通过描点法画出反比例函数的图象,观察归纳总结知道,反比例函数的图象是双曲线。
反比例函数图象的特征以及反比例函数的性质必须要理解清楚。
当K>0时,双曲线的两支分别位于第一、三象限,在每个象限内,Y随着X的增大而减小。
即当K>0时,反比例函数的单调性是单调递减;当K<0时,双曲线的两支分别位于第二、四象限,在每个象限内,Y随着X的增大而增大。
即K<0时,反比例函数的单调性是单调递增。
利用图象的特征和函数的性质能够解决有关反比例函数的数学问题。
其实在实际问题中,反比例函数有着广泛的应用。
下面列举几个反比例函数在日常生活生产和其他学科领域中应用的问题。
1.几何图形中的反比例关系(由课本P50例1引发的思考)1.1 当圆柱、圆锥、长方体、棱台、棱锥、圆台等几何体的体积一定时,它们的底面积S是其高h的反比例函数。
1.2 当三角形、长方形、平行四边形等平面图形的面积一定时,三角形的边长与这条边上的高成反比例;长方形的长是宽的反比例函数;平行四边形的底与这条底上的高成反比例关系。
2.货物装卸中的反比例问题(有课本P51例2抽象出来的数学模型),类似的实际问题还很多2.1 当货物重量一定时,卸货速度与卸货时间成反比例。
2.2 当行驶路程一定时,平均速度与行驶时间成反比例。
2.3 当工作量一定时,工作效率与工作时间成反比例。
……3.反比例函数在物理学中的应用(由课本P51、P52例3;P53例4引发的思考)3.1 在力学中,杠杆平衡的原理中存在着反比例关系。
动力·动力臂=阻力·阻力臂3.2 在电学中,输出功率P与用电器的电阻R存在反比例函数关系。