活性炭预处理的研究进展
- 格式:pdf
- 大小:773.02 KB
- 文档页数:7
生物质的热化学转换生物质,这个看似普通的词,实则包含了丰富的内涵。
它代表了所有生命过程中产生的有机物质,这些物质源于植物、动物、微生物等生物体的生命活动。
而生物质的热化学转换,则是指利用热能将生物质转化为其他形式的能源或物质的化学过程。
在我们的日常生活中,生物质的热化学转换有着广泛的应用。
例如,我们熟知的生物质发电厂就是利用秸秆、木材、废弃物等生物质为原料,通过燃烧产生热能,再转化为电能。
这种方式不仅提供了可再生的能源,而且相较于燃烧化石燃料,生物质燃烧产生的二氧化碳和硫氧化物等污染物排放明显减少,对环境的影响较小。
然而,生物质的热化学转换并不仅仅局限于发电。
它也可以用于产生工业化学品,如氨、甲醛、乙酸等。
这些化学品在农业、建筑、医疗等领域有广泛的应用。
此外,生物质的热化学转换还可以用于生产生物燃料,如生物柴油和生物气体,这些燃料可以替代传统的化石燃料,对减少碳排放、推动可持续发展具有重要意义。
生物质的热化学转换过程可以实现能量的高效利用和物质的循环再生,这是符合绿色发展理念的重要技术。
然而,它也面临着一些挑战,如生物质资源的收集、储存和运输等问题,以及热化学转换技术的效率和环保性问题等。
未来,我们需要进一步研究和优化生物质的热化学转换技术,以提高其效率和环保性,降低成本,使其在更多的领域得到应用。
我们也需要加强政策引导,推动生物质资源的合理利用,促进清洁能源的发展,为构建美好的生态环境做出贡献。
总的来说,生物质的热化学转换是一种具有巨大潜力的技术。
它不仅能帮助我们更好地利用生物质资源,还能推动能源结构的优化和环境保护。
让我们期待它在未来的表现和应用,共同见证这一领域的发展和进步。
生物质热化学转化行为特性和工程化研究引言随着全球能源需求的不断增长,生物质能源作为一种可再生、低碳、环保的能源形式,逐渐受到人们的。
生物质热化学转化是生物质能源利用的重要途径之一,通过将生物质转化为燃料或化学品,可以满足人类对能源的需求,同时降低对环境的影响。
活性炭制备技术及应用研究综述摘要:从活性炭的制备技术和活性炭的应用两方面综述了国内外活性发近20年的研究进展。
总结了活性炭的化学活化法和物理活化法的发展状况,对制备技术中的最新突破—物理法-化学法活性炭一体化生产工艺进行了介绍,并且简述了活性炭工业生产中无公害化、低消耗、预处理的生产技术,以及吸附达饱和活性炭的再生生产技术,同时总结了活性炭在气相吸附、液相吸附和作为催化剂载体等方面的应用进展。
提出了目前活性炭生产应用技木存在的问题,明确了活性炭产业发展的出路与对策,指明了活性炭未来的研究方向。
关键词:活性炭:制备:应用;发展趋势活性炭是由木质、煤质和石油焦等含碳的原料经热解、活化加工制备而成,具有发达的孔隙结构、较大的比表面积和丰富的表面化学基团,特异性吸附能力较强的炭材料的统称。
活性炭在石油化工、食品、医药乃至航空航天等领域均有广泛应用,已成为国民经济发展和国防建设的重要功能材料。
近年来,随着环保、新能源等行业的快速发展,功能型活性炭的市场需求激增,我国活性炭的生产量和出口量均已达到世界第一。
同时,生物质热解固炭技术也是公认的解决气候变化问题的有效措施之一。
因此,针对活性炭科学研究与产业化开发存在的问题,本论文综述了活性炭制备与应用技术研究现状及发展1.国内外活性炭制备技术进展1.1化学活化法化学活化法就是通过将各种含碳原料与化学药品均匀地混合后,一定温度下,经历炭化、活化、回收化学药品、漂洗、烘干等过程制备活性炭。
磷酸、氯化锌氢氧化钾、氢氧化钠?、硫酸、碳酸钾、多聚磷酸和磷酸酯等都可作为活化试剂,尽管发生的化学反应不同,有些对原料有侵蚀、水解或脱水作用,有些起氧化作用,但这些化学药品都可对原料的活化有一定的促进作用,其中最常用的活化剂为磷酸、氯化锌和氢氧化钾。
化学活化法的活化原理目前还不十分清楚,一般认为化學活化剂具有侵蚀溶解纤维素的作用,并且能够使原料中的碳氢化合物所含有的氢和氧分解脱离,以H2O、CH4等小分子形式逸出,从而产生大量孔隙。
生物活性炭(PACT)工艺研究1 引言生物活性炭法(PACT)是指将粉末活性炭投加到好氧系统的回流污泥中,通过含炭污泥中粉末活性炭(PAC)与活性污泥中微生物的相互作用,提升对废水中污染物的去除效果.目前较多应用在印染废水、化工废水、垃圾渗滤液的处理中.研究表明,PACT工艺的促进机理主要在于系统内“吸附-降解-再生-再吸附”的协同作用,涉及到复杂的吸附与生物降解同步作用过程,因此在具体微观机理和动力学模型方面仍有研究空间.此外,对PACT工艺的宏观生物强化效果,也缺乏全方位的表征,使得PACT工艺在实际运行中缺乏相应的针对性.本文以印染园区实际综合废水为处理对象,主体处理工艺为水解酸化+A2/O工艺,通过平行对比A2/O与A2/O(PACT)中试运行效果,从常规处理指标(尤其是低温运行条件下)入手对比PACT工艺的强化作用,再通过毒性、重金属指标、GC-MS、紫外-可见光光谱等表征手段,重点研究PACT系统的生物强化特性,探讨PACT工艺的主要作用目标和规律.本研究对深入理解PACT工艺作用机理、提高PACT作用效率以及实现园区综合废水的有效处理,具有较大的借鉴意义.2 材料与方法2.1 实验水样及材料实验以苏南某印染废水为主(印染废水占85%,化工废水占10%,生活污水占5%左右)的园区集中污水处理厂水解酸化处理出水为试验对象(进水).由于进水水质不尽相同,因此其具体水质指标见相应实验结果.粉末活性炭为100目木质炭(溧阳东方活性炭厂),经检测(ASAP2010,Micromeritics,美国),该粉末活性炭的内部性质为:BET 比表面积532.26 m2 · g-1,微孔(<2 nm)体积0.1 cm3 · g-1,中孔(2~50 nm)体积0.449 cm3 · g-1,平均孔径3.8 nm.2.2 实验装置及运行条件本研究的实验装置如图 1所示.图 1 实验装置结构图中试实验装置含A2/O反应器以及二沉池,其中A2/O反应器有机玻璃材质,有效容积为1.0 m3. 二沉池为竖流式沉淀池,表面负荷0.63 m3 · m-2 · h-1. A2/O反应器实验装置内分5格,HRT比为2 ∶ 2 ∶ 2 ∶ 2 ∶ 1,其中前二格可以实现回流及搅拌,形成A2/O 反应器.运行条件:废水处理量1.0 m3 · d-1,即系统HRT=24 h.污泥回流和硝化液回流比均为100%.根据之前的实验结论,PACT工艺中粉末活性炭的投加量为100 mg · L-1,分两次均匀干式投加,总投加量为100 g · d-1.启动时活性污泥投加量为1500 mg · L-1(MLSS 当量),污泥MLSS超过4000 mg · L-1时适当排泥.装置运行时溶解氧控制在3.0 mg · L-1.除特殊说明外,实验条件均为常温,检测数据为1个月平均值.2.3 实验与分析方法总有机碳的检测仪器为岛津TOC-V CPH.毒性的检测使用仪器为deltaTOX,仪器可以精确检测光子数来推断发光细菌存活量,其中光损失数代表水样的毒性(详见表 1).金属离子含量的检测采用电感耦合等离子光谱(ICP-AES),型号J-A1100.表1 光损失数与毒性关联性采用GC-MS检测废水中所含有机物,仪器型号及具体检测方法参考相关文献报道.紫外-可见吸收光谱仪型号为岛津UV-2201.分子量测试采用凝胶渗透色谱(GPC)方法进行测试,仪器:Waters 515型凝胶色谱仪,Waters 2410示差折光检测器,标准品:聚乙二醇(PEG).柱子:Waters Ultrahydrogel 500和Ultrahydrogel 120两柱串联(7.8 mm×300 mm);流动相:0.1 mol · L-1硝酸钠水溶液;流速:0.8 mL · min-1;进样量:50 μL; 柱温:40℃.采用扫描电镜(S-3400N II,Hitachi,日本)对实验中相关活性污泥进行表征.其他实验分析指标中,包括MLSS、COD等均按照国标法进行测试.3 结果和讨论3.1 常规指标去除效果从反应器常规运行角度出发,比较了投加粉末活性炭前后A2/O反应器处理效果的变化,具体见表 2.表2 A2/O与A2/O(PACT)对常规指标的去除效果对比分析由表对比可知,PACT工艺对COD去除率的提升超过10%,同时在色度去除方面具有较高的强化作用,但在氨氮、总氮和总磷的强化去除方面,PACT系统的促进效果均不明显.通过计算,在实际处理浓度较低的综合印染废水水解酸化出水时,PACT的处理效果可以达到0.6~1.0 kg · kg-1活性炭.此外,活性炭的投加对生化系统污泥的形态也有促进效果,可以有效降低SVI指数,控制污泥膨胀.在此基础上,重点考察了低温条件下(10℃以下)A2/O反应器的长期稳定运行效果,尤其是在粉末活性炭投加前后对COD的去除效果对比,具体见图 2(横坐标为实验日期).图 2 不同条件下A2/O系统对COD去除情况表3 不同条件下的COD去除效果(平均值)在进入低温运行条件后,由于园区企业整体的前端预处理效果变差,导致进水COD猛增,原水的平均值达到378.34 mg · L-1,水解酸化作用也由于受气温的影响,效率大大降低,对COD的去除率只有31%,低于常温条件下的37.4%,导致后续A2/O对COD的去除率不高,仅为43%.但对比PACT工艺,在进水和水解酸化效率相差不大的情况下,由于在A2/O中添加了粉末活性炭,强化了生化作用,其对COD的去除率达到55.8%.这也表明在低温条件下,投加粉末活性炭可以有效提高A2/O系统处理效果的稳定性,相关文献也有类似报道.3.2 毒性及重金属指标检测A2/O与A2/O(PACT)出水TOC、毒性、BOD5/COD的对比检测结果如表 4所示.表4 A2/O与A2/O(PACT)毒性去除效果对比分析对比可知,废水经过水解酸化之后具有较高的毒性,说明水解酸化环境不适合发光细菌生存.A2/O处理之后,有毒物质基本被去除殆尽,因此出水基本没有毒性,而投加活性炭的A2/O(PACT),其出水毒性更低,同时TOC和B/C也更低,从另外一个角度证明了A2/O(PACT)对生化降解的强化作用.A2/O与A2/O(PACT)对废水中金属离子的去除效果对比如表 5所示.表5 A2/O与A2/O(PACT)金属离子去除效果对比分析结果表明:废水中Cd、Co、Cr、Pb等重金属均未检出,表明印染废水中重金属离子含量较低.而对比A2/O(PACT)的结果表明,PACT工艺对金属离子的去除并无明显的强化作用.3.3 GC-MS分析GC-MS检测过程的总离子流图见图 4,进水中总计检出32种有机污染物,其中烷烃及氯代烷烃类7种,烯1种,醚2种,酯4种,醇4种,苯及苯胺类9种,杂环类3种,酸类2种,经过A2/O处理后,有机污染物得到有效的处理,表 5中罗列了部分检出的具可比性的关键有机污染物.由表 6可知,经PACT生物强化之后,A2/O(PACT)出水中有机物明显减少,尤其对苯胺、萘以及杂环类(喹啉)物质的去处效果更佳,明显优于常规A2/O工艺.这与粉末活性炭的吸附功能息息相关(Imai et al., 1995;Orshansky et al., 1997).此外,水解酸化之后废水中含胺类物质很多,说明印染废水含氮染料得到有效降解,这与印染废水性质相吻合.表6 A2/O与A2/O(PACT)特征有机污染物去除效果对比分析图 3 水样GC-MS总离子流图3.4 紫外-可见光光谱扫描对A2/O和A2/O(PACT)出水进行UV-VIS光谱扫描,检测结果如图 4所示.图 4 UV-VIS全波段扫描对比图结果表明:全波段吸光强度的基本趋势进水>> A2/O> A2/O(PACT).对比投加粉末活性炭前后的光谱可知,A2/O(PACT)在谱图上显示有明显的强化去除效果,尤其是在250~300 nm 吸光段,这些均反应到显色有机物的去除上,与常规分析相吻合.此外,UV-VIS光谱在465 nm(E4)和665 nm(E6)处的吸光度单独列出,对比E4/E6,其值如表 7所示.表7 UV-VIS光谱在465 nm(E4)和665 nm(E6)处的吸光度比值E4/E6的值正比废水中分子量大小(Chin et al., 1994).检测结果体现为随着生物强化处理的深入,大分子量的有机物越来越少,说明大分子物质(染料类,显色物质等)存在强化降解的过程,相比之下,A2/O(PACT)对这些物质的去除效果更好.3.5 分子量分布检测GPC的测试结果表 8所示.表8 A2/O与A2/O(PACT)出水分子量分布对比分析废水在检测中均检出2峰.经过分析可知,废水中的物质分子量集中在500~1000 Da,比例超过60%,对比进水的分子量分布,A2/O处理后,由于形成一些难降解的高分子有机物如类腐殖质、胞外聚合物等,所以高分子量部分(>800 Da)略有升高,低分子量部分(<100 Da)略有降低,但幅度不大.而对比A2/O和A2/O(PACT)出水可知,800~1000 Da部分的大分子物质有所降低,说明高分子的显色有机物得到更有效的去除,这与E4/E6检测结果相吻合.具体参见污水宝商城资料或更多相关技术文档。
活性炭富集-火焰原子吸收光谱法摘要:使用国家标准的火试金重量法测定金精矿中的金,存在一些问题,如操作复杂、测试周期长、成本高、污染环境等,并且不适合批量测定。
通过实验,我们建立了一种新的方法,用活性炭富集火焰原子吸收光谱法来测定金精矿中的金含量。
我们研究了多种因素对金测定结果的影响,包括样品量、焙烧方式、灰化温度、干扰元素和王水用量。
这种方法可以测量 10.00~150.00 g/t的物质,检出限为0.019 ug/mL,测量结果的相对标准偏差在0.93%~2.56%之间,加入标准物质后回收率在96.5%~103.1%。
我们的方法与国家标准相符,精度高、准确度大、成本低,适用于金精矿中金的大规模测定。
关键词:活性炭;原子吸收;检测方法引言金是一种常见的矿物,它存在于各种不同的地质条件下。
通过精心挑选和筛选,我们可以将金富集起来,并最终形成金精矿。
金分离富集的方法有很多种,包括火试金法、聚氨酯泡沫塑料吸附法和活性炭吸附法。
这些方法都可以用来提高金的纯度和富集效率。
湿法分离富集金法是一种比火试金法更简单、快速、成本低廉的方法,广泛应用于矿山企业。
相比之下,活性炭富集效果更好,价格更低廉,受到科研技术人员的青睐。
本文提出了一种新的金精矿测定方法,它可以通过火试金重量法来测定金精矿中的金含量。
然而,这种方法操作复杂,测试周期长,成本高,不适合批量检测。
此外,使用的铅会污染环境,并对人体健康造成危害,因此限制了其应用与推广。
本文提出了一种新的测定金的方法,该方法利用活性炭富集和火焰原子吸收光谱技术,具有高精度、高准确度和低成本等优点,可广泛应用于金精矿测试分析领域。
一、活性炭富集-火焰原子吸收光谱法的研究进展在对金矿床进行检测时,常常需要用到多种分析方法。
其中,火焰光度法是目前最常用的方法,其主要原理为利用高温燃烧产生大量热辐射照到样品上,从而使金元素被激发出来并发射出光子;而且该方法还具有较高灵敏度和准确性等特点。
一、实验目的1. 了解活性炭的吸附特性及其在水处理中的应用。
2. 掌握活性炭吸附实验的基本原理和操作方法。
3. 研究活性炭对有机污染物的吸附效果,为实际水处理工程提供参考。
二、实验原理活性炭是一种具有高度发达的孔隙结构和巨大比表面积的吸附材料,广泛应用于水处理、空气净化等领域。
活性炭的吸附作用主要包括物理吸附和化学吸附两种形式。
物理吸附是指吸附质分子与活性炭表面分子间的范德华力作用,而化学吸附是指吸附质分子与活性炭表面分子间的化学键作用。
本实验采用间歇式静态吸附法,通过改变活性炭的投放量和吸附时间,研究活性炭对有机污染物的吸附效果。
三、实验仪器与材料1. 仪器:锥形瓶、分光光度计、磁力搅拌器、电子天平、温度计、pH计、移液管等。
2. 材料:活性炭、亚甲基蓝溶液、蒸馏水、氢氧化钠、盐酸等。
四、实验步骤1. 准备溶液:将亚甲基蓝溶液稀释至一定浓度,配制一系列不同浓度的溶液。
2. 准备活性炭:将活性炭用蒸馏水洗涤,去除杂质,然后在105℃下烘干至恒重。
3. 吸附实验:将活性炭粉末加入到锥形瓶中,加入一定量的亚甲基蓝溶液,置于磁力搅拌器上,设定不同吸附时间,观察溶液颜色变化。
4. 测定吸附效果:取吸附后的溶液,用分光光度计测定吸光度,计算吸附量。
5. 计算吸附等温线:以吸附量为纵坐标,溶液浓度为横坐标,绘制吸附等温线。
五、实验数据与分析1. 吸附量随吸附时间的变化:实验结果表明,活性炭对亚甲基蓝的吸附量随吸附时间的延长而增加,在一定时间内达到吸附平衡。
2. 吸附等温线:根据实验数据,绘制吸附等温线,发现活性炭对亚甲基蓝的吸附符合Langmuir吸附等温式。
3. 影响吸附效果的因素:实验结果表明,活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响。
六、结论1. 活性炭对亚甲基蓝具有良好的吸附效果,可作为水处理中的吸附材料。
2. 活性炭的吸附效果受温度、pH值、溶液浓度等因素的影响,实际应用中需根据具体情况调整吸附条件。