故 可 取n a b i jk
n a b 3 4 6 14i 9 j k
2 3 1
14( x 2) 9( y 1) (z 4) 0,
即
14x 9 y z 15 0.
例3 求过下列三点M1(1,1,1)、M2(2,1,2)、 M 3 (3,3,1) 的 平 面 方 程. 解 先求法向量n. 因为n M1M2, n M1M3,
面.方 程 Ax By Cz D 0 称 为 平 面 的一 般 方 程,
其 中x、y、z 的 系 数 就 是 该 平 面 一 个法 线 向 量n
的 坐 标,即
n ( A, B,C).
3. 特殊的三元一次方程所表示的平面
Ax By Cz D 0. D 0, Ax By Cz 0,平面过原点. A 0, By Cz D 0, n (0, B,C )垂 直
因为过空间任一点可以作而且只能作一平 面垂直于一已知直线,所以当平面Π 上一点 M0( x0 , y0 , z0 ) 和它的一个法线向量 n ( A, B,C )
为已知时,平面Π 的知条件来建立平面Π的方程.
已知平面 上一点 z
M0( x0 , y0 , z0 ) 和它的一个 M0
M1M2 (3,0,1), M1M3 (4,2,0), i jk
n M1M2 M1M3 3 0 1 2i 4 j 6k, 4 2 0
所求平面方程为 2( x 1) 4( y 1) 6(z 1) 0,
化简得 x 2 y 3z 6 0.
一般地, 如果平面过不共线已知三点 A(a1, a2 , a3 ), B(b1, b2 , b3 ),C(c1, c2 , c3 ),设M ( x, y, z)是平面上任 意 一 点.
解 根据平面的点法式方程, 所求平面为 1 ( x 1) 2 ( y 1) 1 (z 2) 0,