段,所以该选项不正确;D.规定零向量的方向任意,而不是没有方向,所以该选项不
正确.
2.有下列说法:
①若向量 a 与向量 b 不平行,则 a 与 b 方向一定不相同;②若向量
|,且
与
同向,则
>
;
③若|a|=|b|,则 a,b 的长度相等且方向相同或相反;
④由于零向量方向不确定,故其不能与任何向量平行.
【解析】由正六边形性质知,△FOA 为等边三角形,所以边长 AF=|a|=1.
【类题通法】寻找共线向量或相等向量的方法
(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再找同向与
反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点
的向量.
(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是
与向量
的长度相等
C.向量就是有向线段
D.零向量是没有方向的
【解析】选 B.A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的
单位圆上,终点不一定相同,所以该选项不正确;
B.向量
与向量
是相反向量,方向相反,长度相等,所以该选项正确;
C.向量是既有大小,又有方向的量,可以用有向线段表示,但不能说向量就是有向线
1.向量的概念和表示方法
大小
方向
矢量
(1)概念:既有_____,又有_____的量.(也称为_____)
(2)向量的表示:
有向线段
大小
①几何表示:用_________来表示向量,有向线段的长度表示向量的_____,箭头所
方向
指的方向表示向量的_____,即用有向线段的起点、终点字母表示,如