平面向量的实际背景及基本概念.(优质)
- 格式:ppt
- 大小:341.50 KB
- 文档页数:24
§2.1 平面向量的实际背景及基本概念学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一 向量的概念1.向量:既有大小,又有方向的量叫做向量. 2.数量:只有大小,没有方向的量称为数量. 知识点二 向量的表示方法1.向量的几何表示:向量可以用一条有向线段表示.带有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB →.2.向量的字母表示:向量可以用字母a, b, c ,…表示(印刷用黑体a ,b ,c ,书写时用 a →, b →, c →).3.向量AB →的大小,也就是向量AB →的长度(或称模),即有向线段AB →的长度,记作|AB →|.长度为0的向量叫做零向量,记作0;长度等于1个单位的向量,叫做单位向量. 思考 “向量就是有向线段,有向线段就是向量”的说法对吗?答案 错误.理由是:①向量只有长度和方向两个要素;与起点无关,只要长度和方向相同,则这两个向量就是相同的向量;②有向线段有起点、长度和方向三个要素,起点不同,尽管长度和方向相同,也是不同的有向线段.知识点三 相等向量与共线向量1.相等向量:长度相等且方向相同的向量叫做相等向量. 2.平行向量:方向相同或相反的非零向量叫做平行向量. (1)记法:向量a 平行于b ,记作a ∥b . (2)规定:零向量与任一向量平行.3.共线向量:由于任一组平行向量都可以移动到同一直线上,所以平行向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.思考 (1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?1.如果|AB →|>|CD →|,那么AB →>CD →.( )提示 向量的模可以比较大小,但向量不能比较大小. 2.若a ,b 都是单位向量,则a =b .( )提示 a 与b 都是单位向量,则|a |=|b |=1,但a 与b 方向可能不同. 3.若a =b ,且a 与b 的起点相同,则终点也相同.( )提示 若a =b ,则a 与b 的大小和方向都相同,那么起点相同时,终点必相同. 4.零向量的大小为0,没有方向.( )提示 任何向量都有方向,零向量的方向是任意的.题型一 向量的概念例1 下列说法正确的是( ) A .向量AB →与向量BA →的长度相等B .两个有共同起点,且长度相等的向量,它们的终点相同C .零向量都是相等的D .若两个单位向量平行,则这两个单位向量相等 考点 向量的概念.反思感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题. 跟踪训练1 下列说法中正确的是( ) A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小 考点 向量的概念 题点 向量的性质题型二 相等向量与共线向量例2 如图所示,△ABC 的三边均不相等,E ,F ,D 分别是AC ,AB ,BC 的中点.(1)写出与EF →共线的向量; (2)写出模与EF →的模相等的向量; (3)写出与EF →相等的向量. 考点 相等向量与共线向量题点 几何图形中的相等向量与共线向量反思感悟 相等向量与共线向量的探求方法(1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量. 跟踪训练2 如图所示,O 是正六边形ABCDEF 的中心.(1)与OA →的模相等的向量有多少个?(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个? (3)与OA →共线的向量有几个? 考点 相等向量与共线向量题点 几何图形中的相等向量与共线向量 题型三 向量的表示及应用例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.考点 向量的表示方法 题点 向量的几何表示反思感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 考点 向量的表示方法特殊向量的作用典例 给出下列命题:①若a ∥b ,则a 与b 的方向相同或相反; ②若a ∥b ,b ∥c ,则a ∥c ;③若两个模相等的向量互相平行,则这两个向量相等; ④若a =b ,b =c ,则a =c , 其中正确的是________.(填序号)考点 向量的概念 题点 向量[素养评析] (1)本题主要考查相等向量,共线向量与零向量的概念,需要准确理解概念进行推理,这正体现了数学中逻辑推理的核心素养.(2)特殊向量的性质往往与一般向量有所不同,在解题中应单独加以验证,不能混淆,否则在解决相关问题过程中容易出错.(3)零向量与任意向量平行,解题时要验证取零向量时是否成立.1.在同一平面内,把所有长度为1的向量的始点固定在同一点,这些向量的终点形成的轨迹是( ) A .单位圆 B .一段弧 C .线段D .直线考点 向量的表示方法 题点 向量2.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b . A .0 B .1 C .2 D .3 考点 向量的概念 题点 向量的性质3.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .平行四边形 B .矩形 C .菱形D .等腰梯形 考点 相等向量与共线向量 题点 相等向量与共线向量的应用4.如图所示,设O 是正方形ABCD 的中心,则下列结论正确的有________.(填序号)①AO →=OC →; ②AO →∥AC →; ③AB →与CD →共线; ④AO →=BO →.考点 相等向量与共线向量题点 几何图形中的相等向量与共线向量5.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.考点 单位向量与零向量 题点 零向量的性质 答案 01.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位向量。
教材分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学目标:1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、情景设置:如图,老鼠由a向西北逃窜,猫在b处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作| |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是()b.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点d.有相同起点的两个非零向量不平行变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?()课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.②单位向量都相等;③任一向量与它的相反向量不相等;⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.2.书本88页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题2.1平面向量的实际背景及基本概念课前预习学案一、预习目标通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.二、预习内容(一)、情景设置:如图,老鼠由a向西北逃窜,猫在b处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?(二)、新课预习:1、向量的概念:我们把既有大小又有方向的量叫向量2、请同学阅读课本后回答:(可制作成幻灯片)1)数量与向量有何区别?2)如何表示向量?3)有向线段和线段有何区别和联系?分别可以表示向量的什么?4)长度为零的向量叫什么向量?长度为1的向量叫什么向量?5)满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6)有一组向量,它们的方向相同或相反,这组向量有什么关系?7)如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?这时各向量的终点之间有什么关系?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.二、学习过程1、数量与向量的区别?-2.向量的表示方法?①②③④向量的大小――长度称为向量的模,记作。