随钻测控技术研究新进展
- 格式:ppt
- 大小:14.67 MB
- 文档页数:58
43随钻测量是钻井作业过程中不可缺少的重要技术,可以对钻遇的地层岩性进行实时监测,从而获取到准确的地层物理参数。
随钻测量多利用声波、放射线、电阻率等技术,可以对钻遇地层进行评价并进行地质导向,可为水平井、大斜度井等钻井作业方案的制定提供数据支持。
随钻测量数据是在地下储层没有受到钻井液污染前获取到的,可以更为准确地体现出地下储层岩性,该技术经过数十年的发展,已经在稳定性和准确性方面取得到很大的进步,本文主要对随钻测量系统的发展情况进行分析和探讨。
一、随钻测量系统技术发展情况1.国外随钻测量系统发展情况在上世纪三十年代,石油行业的科研人员就已经对随钻测量系统开展了大量的研究和实验,但只停留在电极测量、地下储层电阻率测量方向。
进入到五十年代,科研人员开始把电磁波技术应用到随钻测量中,但电磁波在地层中传递过程中,信号的强度会不断衰减,没有取到很好的应用效果。
在五十年代后期,正脉冲泥浆遥测传输系统已经被研发出来,在六十年代初得在钻井实验中取得了成功应用,是随钻测量系统首次进入到工业应用领域。
进入到七十年代以来,随钻测量技术得到了石油行业的重视,正弦波泥浆遥测传输系统研发成功,制定了随钻测量工业标准及可靠性标准,在钻铤部位设置发射器和接收装置,对随钻系统进行了完善,研发的自然伽马井下随钻仪也被推向市场。
进入到八十年代,很多石油公司加大对随钻测量仪器的研发力度,随钻测量仪质量和性能也在不断进步,利用导向螺杆钻具和无线随钻系统,在水平井钻井作业中取得了成功。
随着定向井、水平井等钻井作业的需求增多,随钻测量系统的应用也逐渐变多,随钻测井技术服务也得到了快速的发展,国外石油公司已经开发出自然伽马、电阻率、声波测井等技术。
最近一些年来,国外公司研发出使用寿命更长的随钻测量系统,该测量仪器可以适应井下恶劣的自然环境,可以满足钻井作业的多种需求。
国外随钻测量系统不断向着高性能、高可靠性方面发展,在硬件方面也取得很大进步,监测数据解释和软件性能方面也取得很大突破。
随钻测井技术进展和发展趋势随钻测井技术进展和发展趋势作为油气勘探的重要手段之一,测井技术具有分辨率高、连续性强、节约成本等优势。
随着油气勘探开发向着更深更复杂储层的推进,常规测井技术逐渐难以满足当前地层评价的需求。
对此,越来越多的石油公司和服务公司致力于改进、提升测井探测和评价能力。
下面是小编整理的随钻测井技术进展和发展趋势,欢迎阅读与收藏。
随钻测井技术进展和发展趋势篇1[摘要]石油测井技术主要用于地下油气层的勘察,并对油气层的变化情况进行实时监控。
随着我国科学水平的不断提高和石油勘探事业的快速发展,测井技术也在不断提高,目前已经成为一种比较成熟,并且具有多样化特征的技术手段。
本文就从石油测井技术的现状出发,对它的未来发展趋势进行探讨。
[关键词]测井,技术现状,发展趋势1927年,法国的斯伦贝谢公司开发出测井技术。
而我国于1939年将它正式应用到石油工业当中。
历经几十年的发展,测井技术从最初的模拟测井逐渐发展为后来的数字测井、数控测井、成像测井等。
目前,该项技术已被列为石油十大学科之一,已广泛应用于油气田的整个勘探、开发过程中。
另外,测井技术不仅能应用于油气田的开发利用,还被广泛应用到对煤炭、金属等矿产资源的勘探中。
1测井技术现状分析1.1电法测井电法测井是通过井下测井仪器向地层发射一定频率的电流测量地层电位,从而得到地层电阻率的测井方法(如地层倾角测井、侧向测井、感应测井等),还包括向地层发射电流测量地层自然电位的测井方法。
1.2放射性石油测井技术放射性石油测井技术又被称作核测井技术。
其具体形成原理是通过研究地层岩石见空隙流体的核物质性质,探测油气储备的一种石油测井技术。
根据所使用的放射源或者测量的放射性物质和所研究的岩石性质,核测井技术可分为,伽马测井技术和中子测井技术。
伽马测井技术是以伽马射线为基础的核测井技术。
中子测井技术是通过对岩石及空隙流动体与中子间的相互作用为基础的核石油测井技术。
LWD发展现状与趋势展望在对随钻测井进行分析的基础上,详细阐述了随钻测井技术的发展过程,重点介绍了HL-MWD+伽马和FEWD随钻地质评价测井技术的应用现状,简单介绍了贝克休斯AutoTrak旋转导向钻井系统,对于今后可能形成的技术发展趋势进行了预测,认为旋转地质导向钻井技术将成为中长期发展方向,加大国内旋转导向研发力度,培养技术人才,缩小与国外技术差距,才能立于竞争制高点。
标签:LWDHL-MWD+伽马;FEWD;旋转导向发展现状;技术展望1 随钻测井发展关键阶段1.1 随钻测井简介随钻测井英文简称LWD(logging while drilling),是在随钻测量基础上发展起来的一种功能更齐全、结构更复杂的随钻测量系统,主要是在常规基础上增加电阻率、孔隙度、中子、密度和声波等测量短节,用以获取测井信息。
与随钻测量系统相比,传输的信息更多,采用井下存储(起钻后回放)和部分信息实时上传方式处理所需测井信息,无导向决策功能。
1.2 随钻测井技术发展阶段1.2.1随钻测井技术发展早期第一个随钻测井的专利是在1929年由Jakosky提出的,用的就是钻井液脉冲遥测系统。
1940年David G.Hawthon和John E.owen公布第一条随钻电阻率曲线,此时的随钻测量方法主要有两种,一是利用测量电极和导电钻杆绝缘,测量井底电极附近的地层电阻率;二是信息传输,在钻杆中埋电缆。
但由于在钻杆和钻杆连接部位很难保证绝缘,以上方法均告失败。
20世纪40年代和50年代随钻测井进展缓慢,仅有的几个专利文献表明,研究单位和个人继续致力于实时、可靠的随钻测井系统研究,注意力从地面设备和井下设备的硬联结转向用电磁波或无线电波通过地层传输到地面或是用声信号通过地层或钻杆传输信息。
遗憾的是,传输技术发展缓慢,难以有实质性的突破。
1950年J.J.Arps发明正向泥浆脉冲系统,1960年利用正向泥浆脉冲的机械测斜仪出现,并应用至今;1964年第一个机械脉冲遥测系统研究成功。
随钻测井数据传输技术应用现状及展望一、本文概述随钻测井(Logging-While-Drilling, LWD)技术作为现代石油勘探领域的重要技术之一,对于提高钻井效率和油气藏评价准确性起到了关键作用。
在随钻测井过程中,数据传输技术的应用更是关乎到实时数据采集、处理与解释的准确性和时效性。
本文旨在探讨随钻测井数据传输技术的现状,包括其发展历程、主要技术特点、应用领域以及存在的问题。
本文还将对随钻测井数据传输技术的未来发展进行展望,分析可能的技术革新和行业趋势,以期为该领域的研究与实践提供有益的参考。
二、随钻测井数据传输技术现状随钻测井数据传输技术作为现代石油勘探领域的关键技术之一,其发展现状直接反映了石油工业的科技进步水平。
目前,随钻测井数据传输技术主要依赖于有线和无线两种传输方式。
有线传输技术方面,主要依赖于电缆或光纤等物理介质,将测井数据实时传输至地面。
这种传输方式具有传输速度快、稳定性高等优点,但受限于物理介质的长度和强度,对于超深井或复杂地质环境的应用存在一定的挑战。
有线传输方式还需要考虑钻杆旋转和井眼环境对数据传输的影响。
无线传输技术则以其灵活性和便捷性成为近年来的研究热点。
无线传输技术主要包括声波传输、电磁波传输以及泥浆脉冲传输等。
声波传输利用井筒中的声波作为载体,通过声波信号的调制和解调实现数据传输。
电磁波传输则利用电磁波在井筒中的传播特性进行数据传输,但其受限于井筒环境和电磁波衰减的问题。
泥浆脉冲传输则是一种通过改变泥浆流量或压力来产生脉冲信号,进而实现数据传输的方式。
这种方式虽然传输速度较慢,但适应性强,能在复杂地质环境中稳定工作。
总体来看,随钻测井数据传输技术在有线和无线传输方面均取得了一定的进展,但仍面临着传输速度、稳定性、适应性和成本等多方面的挑战。
随着石油勘探的深入和地质环境的日益复杂,对随钻测井数据传输技术的要求也越来越高。
未来随钻测井数据传输技术的发展将更加注重技术的创新和融合,以提高数据传输的效率和稳定性,适应更复杂的地质环境和勘探需求。
最新随钻声波测井仪器的技术性能近年来,声波测井技术已成功应用于随钻测量(MWD)和随钻测井(LWD)中。
随钻声波测井技术为钻井施工和储层评价提供了全面的数据支持和测井解释。
目前,国外三大公司分别推出了最新的随钻声波仪器,它们分别是贝克休斯公司的APX随钻声波测井仪,哈里波顿Sperry Drilling Service公司研制的双模式随钻声波测井仪器(BAT)和斯伦贝谢公司研制的新一代随钻声波仪器sonicVISION。
下面我们对三种仪器的性能分别进行介绍和对比。
1.APX随钻声波测井仪APX随钻声波测井仪由贝克休斯公司INTEQ公司生产,其结构简图见图1。
该仪器声源以最佳频率向井眼周围地层发射声波,声波在沿井壁传播的过程中被接收器检测并接收。
接收器采用了先进的嵌入技术,将接收到的声波模拟信号转换为数字信号,以获取地层声波时差(△t),而后将原始声波波形数据和预处理的声波波形数据存储在高速存储器内。
仪器的主要技术性能●计算机模型(FEA):该模型是为声学仪器的优化配置而设计,同时具备有助于不同窗口模式的评价和解释。
●全向发射器:与典型的LWD仪器等单向的有线测井仪不同,APX发射器使用一组圆柱形压电晶体,对井眼和周围地层提供3600的覆盖范围,其声源能够在10~18,000Hz频率范围内调频,并可以单极子和偶极子发射。
●全向接收器阵列:6×4接收器阵列,间距228.6mm。
这种全向结构类似于XMAC电缆测井系统,接收器阵列与声源排成一条线,以实现径向多极子声波激发。
●接收器。
该仪器的声源具有优化发射频率功能,其接收器有几个比仪器本身信号低很多的波段,可以显著减少接收器及钻柱连接的干扰。
在关掉发射源的情况下,该仪器测试到的信号主要来自于频率低于5KHz的PDC钻头噪音。
●较大的动力范围。
该仪器具有较大的信号采集动力范围,能够显著提高信号穿越地层的能力,有助于信号的提取。
●四极子波技术。
首次采用四极子波发射技术,同时兼容单极子和偶极子的信号发射和接收。
智能钻井技术的研究与应用智能钻井技术是指在钻井作业中,通过使用各种先进的仪器设备和数据分析技术,实现对作业全程的数据采集、分析和优化调控的一种新型钻井技术。
由于其能够实时监测并控制钻井作业过程中的各种关键参数,能够大幅度提高钻井速度和安全性,因此在当今石油开发领域中已经成为越来越重要的方向。
下面我们就来了解一下智能钻井技术的研究进展和实际应用情况。
一、智能钻井技术的研究进展智能钻井技术的研究起步比较早,具有一定的发展历史。
随着先进的仪器设备和数据分析技术的不断进步,智能钻井技术也不断得到了新的突破。
如今,智能钻井技术可分为三个层次进行研究和应用:1.智能钻井控制层次。
该层次主要依靠各类自动控制仪器和系统,实现钻井过程中的实时控制和调整。
例如,通过对钻进参数、液压系统、井下电机等各种关键环节进行监测和优化调整,可以大幅度提高钻井的效率和安全性。
2.智能钻井数据采集和处理层次。
该层次主要依靠各类高精度传感器和数据采集设备,实现对钻井过程中的各种关键数据进行实时监测和采集,并通过先进的数据处理技术,实现对数据进行分类、分析和优化处理。
例如,可以通过对井下温度、压力、流量等数据进行分析,并通过预测模型和智能控制系统实现实时调整和控制。
3.智能钻井优化与决策支持层次。
该层次主要依靠各类智能优化和决策支持技术,实现对钻井过程中的各种环节进行优化和调控。
例如,可以通过对地层结构和物性的分析,并结合钻井过程中采集的各种数据,实现对钻进方向、进度等进行优化和控制,从而达到提高钻井效率的目的。
二、智能钻井技术的应用情况智能钻井技术在石油开发领域的应用已经越来越广泛,其效果也越来越显著。
下面我们就来看一下智能钻井技术在实际应用中的情况。
1. 提高石油钻井生产效率。
智能钻井技术能够实现对每个钻井过程中的关键参数进行实时监测和控制,在保证安全性的前提下,大幅度提高钻井效率。
例如,可以对每个井的地质条件进行分析和优化,提出更合理的钻井方案,从而提高钻井成功率和生产效率。
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
国外随钻测井发展历程随着石油工业的发展,钻井技术的进步和应用成为石油勘探与开发的重要环节之一、随钻测井作为一种利用测井工具在钻杆内进行测井的技术,广泛应用于国外石油勘探与开发中。
下面将从技术发展历程的角度,介绍国外随钻测井的发展情况。
20世纪50年代初,法国教授Marcel Schlumberger首次提出了随钻测井的概念。
在此之后,美国石油公司Schlumberger公司开始了随钻测井的研究与应用。
1951年,Schlumberger公司成功地在拉丁美洲一口井中使用了自家研制的ΣΔ倾斜度测井仪器进行了随钻测井。
这标志着随钻测井技术进入了实用化阶段。
随钻测井的技术进展主要包括三个方面:测量原理的改进、测井工具的发展和数据处理技术的改进。
在测量原理方面,随钻测井技术的发展主要由电阻率测井向多参数测井的发展过渡。
在电阻率测井中,引入了侧向电阻率测井、十字偶极子测井等新的测量方法。
此外,还发展了自摆翻面射孔测井、核磁共振测井等新的测井原理。
在测井工具的发展方面,随钻测井工具的结构和性能得到了很大的改善。
随钻测井仪器从原来的大型、笨重、功率不足的情况发展成了体积小、功能强大、功率大的现代化测井工具。
此外,还有一些新型的测量工具被开发出来,如新一代的声波测井工具、半导体测井工具、高分辨率测井工具等。
在数据处理技术方面,随钻测井的数据处理和解释技术也得到了很大的改进。
由于随钻测井的数据量大、数据复杂、数据更新速度快的特点,传统的数据处理方法已经无法满足需求。
因此,一些新的数据处理方法和技术被应用到随钻测井中,如神经网络技术、模糊逻辑技术、图像处理技术等。
总结起来,国外随钻测井的发展历程主要包括测量原理的改进、测井工具的发展和数据处理技术的改进。
随钻测井技术的发展使得石油勘探与开发更加高效、准确,并且为油田开发提供了重要的技术支持。
技术应用与研究随着定向井、水平井施工任务的不断增加,随钻测量技术也在不断的发展,其已成为钻井施工过程中不可缺少的部分。
随钻测量技术最初起源于国外,在上世纪70年代斯伦贝谢研发出第一套随钻测量工具,在当时的技术水平下,该工具仅能够测量井斜角、方位角、工具面角。
但是随着定向井技术的不断发展和油田勘探开发难度的不断增加,也促使随钻测量工具的不断发展,其在数据传输速率、稳定性、抗高温高压等方面都有了很大进步。
随着水平井部署的增多,随钻测量工具也逐渐向随钻测井方向发展,现已能够实现常规电缆测井的项目,也即随钻测井技术(Logging While Drilling)。
随钻测量技术主要包括地面系统和井下系统两部分,其中地面系统主要包括数据的采集、数据的解码、数据的显示等部分。
井下系统主要包括数据的测量、数据的编码、数据的发送等部分。
其中井下所有功能的实现都离不开供电系统,目前的供电主要有电池供电和涡轮发电两种方式。
电池供电可以不间断为仪器提供电源,但是也限制了其使用时间的长度。
而涡轮供电需要在开泵的情况下,依靠泥浆的冲击实现涡轮的旋转实现供电,在涡轮不受到损坏的情况下能够长时间提供电源。
井下数据的测量主要依靠测量探管来提供控制井眼轨迹所需的参数,如井斜角、方位角等,但是目前随钻随钻测量技术的不断发展,MWD工具也与具有其他功能的测量短节组合,对地层参数进行检测,如伽马、电阻率、钻压、扭矩、环空密度等。
目前的数据传输方式主要分为无线传输和有线传输,其中有线传输主要是指光纤、智能钻杆等,而无线传输主要有钻井液、电磁波、声波等方式。
一、国内随钻测量技术现状国内的随钻测量技术起步很晚,所以技术水平相对于其他发达国家还很落后。
但是随着国家对石油资源的不断重视,各石油企业高校也在不断的增大科研力量,随钻测量技术也有了很大发展,并取得了不错的成绩,在部分领域缩短了与国际间的差距。
北京海蓝科技公司自主研发了一系列泥浆脉冲随钻测量系统(YST),该系统以电池供电,具有结构简单,较强的抗冲击能力,成本低,并且具有可打捞等特点。
随钻测井技术最新进展及应用【摘要】随钻测井是一种能够既钻开地层又能同时对地层信息进行实时测量的钻井技术。
近年来水平井钻井、大斜度井活动使得随钻测井技术得到了发展,尤其是在海上钻井中随钻测井这种技术的利用率几乎是100%。
随钻遥测,随钻电法、核、声波、随钻地震以及核磁共振等技术在最近几年有着较大的发展空间和较好的发展前景。
随钻测井主要应用于地层评价以及地质导向。
我国在随钻测井这种技术的研究领域上,只有突破创新才能够跟上世界石油工业技术的前进步伐。
本文将系统的对随钻测井这种技术近些年的发展以及将来的趋势进行介绍。
【关键词】随钻测井需求随钻地震声波测井电阻率测井核磁共振应用1 市场需求带动随钻测井技术的发展由于在开采钻井的过程中时常会发生钻头偏离钻井轨迹的现象,通常是在对井眼轨迹设计的过程中产生了误差,导致钻头偏离现象的发生。
而这些现象的发生会造成开采过程中的资源物力的浪费,所以在钻井的过程中对其进行实时监控、钻井设计方案以及及时修改设计轨迹是十分必要的,而电缆测井这种技术无法解决上述问题,而随钻测井技术由于其可以将这些困扰解决使得其逐步发展起来,并成为当今钻井开采过程中获得实时信息的必要技术。
随钻测井参数可以反映地层的信息。
随钻测井在刚钻开地层、泥浆侵入地层刚开始发生的条件下进行,所得到的数据就是地层参数真值。
水平井、大斜度井以及复杂地层的经验不稳定时,可用随钻测井代替电缆测井以此来确保能够探测到地层信息得到测井资料。
这就避免了电缆测井遇卡、遇阻等事故。
随钻测井在钻井的同时可提供各个地层中的实时信息,用来预测地层压力及地层应力特殊的层段,为钻井及时提供信息。
减少钻井过程的资源物力的浪费,也大大的避免了钻井事故的发生。
2 随钻测井的近期发展及现状在二十世纪八十年代末九十年代初的时候,随钻测井技术只有中子孔隙度、伽马、光电因子、岩性密度、衰减电阻率和相移电阻率。
而在过去的这十几年里,随钻测井技术的发展突飞猛进,不仅是原有技术得到改进,而且还创新出许多新的方法。
随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。
◄测井录井►doi:10.11911/syztjs.2024017引用格式:王延文,叶海超. 随钻测控技术现状及发展趋势[J]. 石油钻探技术,2024, 52(1):122-129.WANG Yanwen, YE Haichao. Current status and development trend of measurement & control while drilling technology [J]. Petroleum Drilling Techniques ,2024, 52(1):122-129.随钻测控技术现状及发展趋势王延文1, 叶海超2(1. 中石化石油工程技术服务股份有限公司, 北京 100020;2. 中石化石油工程技术研究院有限公司, 北京 102206)摘 要: 随钻测控技术是随钻测量、随钻测井和随钻控制的统称,是当今石油工程高端技术的代表,也是自动化智能化钻井的核心。
随钻测控技术的发展为油气勘探开发提供了重要利器,大幅提高了作业效率,降低了作业成本和油气综合开发成本。
全面梳理了斯伦贝谢、贝克休斯和哈里伯顿等国际大型油服公司随钻测控技术的发展现状,分析了油气勘探开发对随钻测控技术的需求,厘清了随钻测控技术的发展方向,提出了中国随钻测控技术的发展建议,凝炼了随钻测控技术的发展重点,以期推进我国随钻测控技术的快速发展,提升随钻测控技术水平。
关键词: 油气;随钻测量;随钻测井;随钻测控;旋转导向;发展趋势中图分类号: TE927 文献标志码: A 文章编号: 1001–0890(2024)01–0122–08Current Status and Development Trend of Measurement & Controlwhile Drilling TechnologyWANG Yanwen 1, YE Haichao2(1. Sinopec Oilfield Service Corporation, Beijing, 100020, China ; 2. Sinopec Research Institute of Petroleum Engineering Co ., Ltd .,Beijing , 102206, China )Abstract: Measurement & control while drilling technology is a broad term for measurement while drilling,logging while drilling, and control while drilling. It represents high-end technologies in petroleum engineering and forms the core of automated and intelligent drilling. The evolution of measurement & control while drilling technology has provided an important tool for oil & gas exploration and development, significantly enhancing operational efficiency and reducing operational cost and comprehensive oil & gas costs. This paper offers a comprehensive review of the research progress in measurement & control while drilling technology within major international oil service companies such as Schlumberger, Baker Hughes, and Halliburton. It analyzes the demand for measurement & control while drilling technology in oil & gas exploration and development. Furthermore, the development direction of measurement & control while drilling technology was clarified, and suggestions on the development of measurement &control while drilling technology in China were put forward. Finally, the development focus of measurement & control while drilling technology was summarized, so as to promote the rapid development of measurement & control while drilling technology in China and elevate the overall standard of measurement & control while drilling technology.Key words: oil & gas; measurement while drilling; logging while drilling; measurement & control while drilling; rotary steering; development trend随钻测控技术是利用测量、传输、控制等手段引导钻头沿着目标轨道钻进的综合技术,是石油工程高端技术的代表,被称为“钻井(石油工程)技术皇冠上的明珠”,其发展推动了定向钻井从几何导向到地质导向、智能导向的跨越,大幅度提高了钻井效率,降低了钻井和油气开发综合成本,为油气高效勘探和经济开发提供了重要利器。
煤矿井下定向钻孔随钻测量数据综合采集系统研究
尤建平;陈果;马统师;陈翔;陈建东
【期刊名称】《煤矿机械》
【年(卷),期】2024(45)1
【摘要】当前煤矿井下定向钻孔随钻测量装备与系统之间相互独立,导致孔底随钻测量数据形式各异,形成数据孤岛的问题。
基于B/S系统架构模式,通过对比随钻测量方式、测量数据格式,分析数据综合采集系统需求模块;搭建综合采集系统后台数据库,开发了煤矿井下定向钻孔随钻测量数据综合采集系统。
验证表明,数据综合采集系统满足多种随钻测量数据统一汇总处理和整体分析评价功能,并完成数据实时上传,为煤矿井下定向钻孔数据监管平台提供数据网络传输保障,提高煤矿井下钻探智能化水平。
【总页数】3页(P182-184)
【作者】尤建平;陈果;马统师;陈翔;陈建东
【作者单位】内蒙古阿拉善盟天荣煤炭有限责任公司;中煤科工西安研究院(集团)有限公司
【正文语种】中文
【中图分类】TD67
【相关文献】
1.煤矿井下近水平随钻测量定向钻孔轨迹设计与计算方法
2.井下定向钻进技术与装备创煤矿井下顺煤层定向钻孔深度新纪录
3.煤矿井下随钻测量及钻孔数据处理软
件开发与应用4.煤矿坑道定向钻进随钻测量系统数据采集故障原因分析及处理措施5.煤矿井下随钻测量技术及钻孔轨迹数据处理方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。