第十三章应力状态分析
- 格式:ppt
- 大小:2.10 MB
- 文档页数:68
8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位yx xytg σστα--=2204、主应变122122x y x y xy xyx y()()tg εεεεεεγγϕεε⎡=+±-+⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1xzyy Eσσμσε+-=)]([1yxzz Eσσμσε+-=Gzxzxτγ=Gyzyzτγ=,Gxyxyτγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1试画出下图8.1(a)所示简支梁A点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A点偏上和偏下的一对与xz平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A点的坐标x、y代入正应力和切应力公式得A点单元体左右侧面的应力为:zMyIσ=bIQSzz*=τ由切应力互等定律知,单元体的上下面有切应力τ;前后边面为自由表面,应力为零。
在单元体各面上画上应力,得到A点单元体如图8.1(d)。
一、实验目的1. 了解并掌握应力状态的基本概念。
2. 学习如何通过实验方法测定应力状态。
3. 掌握应力状态分析的基本原理和方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理应力状态是指物体内部在受力作用下,各个点上的应力分布情况。
应力状态分析是研究物体内部应力分布规律的重要方法。
本实验主要研究平面应力状态和空间应力状态。
三、实验设备1. 载荷试验机2. 应变片3. 数据采集系统4. 比较材料5. 标准试验件四、实验步骤1. 实验准备(1)将试验件放置在试验机上,确保试验机水平。
(2)将应变片粘贴在试验件表面,确保应变片粘贴牢固。
(3)连接数据采集系统,检查系统是否正常工作。
2. 加载过程(1)按照实验要求对试验件进行加载。
(2)在加载过程中,实时采集应变数据。
(3)记录加载过程中的应力、应变数据。
3. 数据处理(1)将采集到的应变数据输入计算机,进行数据处理。
(2)根据应力-应变关系,计算应力状态。
(3)分析应力状态的变化规律。
4. 结果分析(1)根据实验数据,绘制应力-应变曲线。
(2)分析应力状态的变化规律,得出结论。
五、实验结果与分析1. 平面应力状态(1)在平面应力状态下,试验件表面出现正应力和剪应力。
(2)通过实验数据,可以计算出应力状态的变化规律。
(3)结果表明,随着加载力的增大,正应力和剪应力逐渐增大。
2. 空间应力状态(1)在空间应力状态下,试验件表面出现正应力和剪应力。
(2)通过实验数据,可以计算出应力状态的变化规律。
(3)结果表明,在空间应力状态下,应力状态的变化规律与平面应力状态相似。
六、实验结论1. 本实验成功地测定了应力状态,并分析了应力状态的变化规律。
2. 通过实验,掌握了应力状态分析的基本原理和方法。
3. 本实验为后续的应力分析、结构设计等提供了实验依据。
七、实验注意事项1. 实验过程中,确保试验机水平,避免试验误差。
2. 在粘贴应变片时,注意粘贴牢固,避免脱落。
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。
应力与应力状态分析拉伸模量拉伸模量是指材料在拉伸时的弹性,其计算公式如下:拉伸模量(㎏/c ㎡)=△f/△h(㎏/c ㎡)其中,△f 表示单位面积两点之间的力变化,△h 表示以上两点之间的应变化。
更具体地说,△h =(L-L0)/L0,其中L0表示拉伸长前的长度,L 表示拉伸长后的长度。
§4-1 几组基本术语与概念一、变形固体的基本假设1、均匀连续性假设:假设在变形固体的整个体积内均匀地、毫无空隙地充满着物质,并且各点处的力学性质完全相同。
根据这一假设,可从变形固体内任意一点取出微小单元体进行研究,且各点处的力学性质完全相同,因而固体内部各质点的位移、各点处的内力都将是连续分布的,可以表示为各点坐标的连续函数。
2、各向同性假设:假设变形固体在所有方向上均具有相同的力学性质。
3、小变形假设:认为构件的变形与构件的原始尺寸相比及其微小。
根据小变形假设,在研究构件上力系的简化、研究构件及其局部的平衡时,均可忽略构件的变形而按构件的原始形状、尺寸进行计算。
二、应力的概念1、正应力的概念分布内力的大小(或称分布集度),用单位面积上的内力大小来度量,称为应力。
由于内力是矢量,因而应力也是矢量,其方向就是分布内力的方向。
沿截面法线方向的应力称为正应力,用希腊字母σ表示。
应力的常用单位有牛/米2 (2/m N ,12/m N 称为1帕,代号a P )、千米/米2(2/m KN ,12/m KN 称为1千帕,代号Ka P ),此外还有更大的单位兆帕(M a P )、吉帕(G a P )。
几种单位的换算关系为:1 K a P =310a P 1 M a P =310K a P 1 G a P =310M a P =610K a P =910a P2、切应力与全应力的概念与截面相切的应力分量称为切应力,用希腊字母τ表示。
K 点处某截面上的全应力K p 等于该点处同一截面上的正应力K σ与切应力K τ的矢量和。