贝塞尔函数
- 格式:doc
- 大小:1.31 MB
- 文档页数:33
贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
贝塞尔函数和初等函数是在物理和工程中最常用的函数。
贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。
这样做能带来好处,比如消除了函数在=0点的不光滑性。
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。
因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。
最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。
贝塞尔函数
贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。
通常单说的贝塞尔函数指第一类贝塞尔函数(Bessel function of the first kind)。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:
这类方程的解是无法用初等函数系统地表示。
由于贝塞尔微分方程是二阶常微分方程,因此需要两个独立的函数来表示其标准解函数。
通常,第一种贝塞尔函数和第二种贝塞尔函数用于表示标准解函数:
注意,由于在x=0 时候是发散的(无穷),当取x=0 时,相关系数必须为0时,才能获得有物理意义的结果。
贝塞尔函数的特定形式随上述方程式中的任何实数或复数α发生变化(相应地,α称为相应贝塞尔函数的阶数)。
实际应用中最常见的情况是α为整数n,相应的解称为n阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。
贝塞尔函数也被称为柱谐函数、圆柱函数或圆柱谐波,因为他们是于拉普拉斯方程在圆柱坐标上的求解过程中被发现的。
贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。
丹尼尔的叔叔雅各布·伯努利,欧拉、拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家贝塞尔在研究开普勒提出的三体引力系统的运动问题时,第一次系统地提出了贝塞尔函数的总体理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V V VT a T x y ∂∂'=+∂∂ 或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+= (5.4)22220V V V x yλ∂∂++=∂∂ (5.5) 从(5.4)得2()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。
为了求出这个方程满足条件2220x y R V +== (5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得22222110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=⎧∂∂∂+++=<≤≤⎪∂∂∂⎨⎪=≤≤⎩再令 (,)()()V P ρθρθ=Θ,代入(5.7)并分离变量可得()()0θμθ''Θ+Θ= (5.9)22()()()()0P P P ρρρρλρμρ'''++-= (5.10)由于(,,)u x y t 是单值函数,所以(,)V x y 也必是单值得,因此()θΘ应该是以2π为周期的周期函数,这就决定了μ只能等于如下的数:2220,1,2,,,n对应于2n n μ=,有00()2a θΘ=(为常数) ()cos sin ,(1,2,)n n n a nb n n θθθΘ=+=以2n n μ=代入(5.10)得222()()()()0P P n P ρρρρλρρ'''++-= (5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,所以,它是n 阶贝塞尔方程。
贝塞尔函数零点一、什么是贝塞尔函数贝塞尔函数是数学中一类重要的特殊函数,它们在多个领域有广泛的应用。
贝塞尔函数最早由德国数学家弗里德里希·贝塞尔在19世纪初提出,并以他的名字命名。
贝塞尔函数的定义非常复杂,涉及到虚数单位和积分运算,但是它们的性质和特征非常有趣和有用。
二、贝塞尔函数的表达形式贝塞尔函数有多种不同的表达形式,其中最常见的是第一类贝塞尔函数和第二类贝塞尔函数。
第一类贝塞尔函数用记号J_n(x)表示,它的表达形式可以用级数或积分表示。
第二类贝塞尔函数用记号Y_n(x)表示,它的表达形式也可以用级数或积分表示。
三、贝塞尔函数的性质1. 零点的存在性贝塞尔函数作为特殊函数,它们的零点具有特殊的性质。
对于第一类贝塞尔函数J_n(x),当n为非负整数时,它们在正半轴上有无穷多个零点。
这些零点通常用J_n(x)的根号值来表示,比如J_0(x)的第一个零点就是x=2.4048。
而对于第二类贝塞尔函数Y_n(x),它们在正半轴上也有无穷多个零点,但是这些零点并不是随着n的增大而增大。
2. 零点的性质贝塞尔函数的零点具有特殊的性质。
首先,贝塞尔函数的零点都是实数,可以通过数值方法求得。
其次,贝塞尔函数的零点是孤立的,不存在重复的零点。
最后,贝塞尔函数的零点可以分布在整个实数轴上,不仅限于正半轴。
3. 零点的计算方法求解贝塞尔函数的零点是一个重要的数值计算问题。
一般来说,可以采用近似计算方法或数值优化算法来求解贝塞尔函数的零点。
常用的方法包括二分法、牛顿法、割线法等。
这些方法可以快速且准确地计算出贝塞尔函数的零点。
四、贝塞尔函数零点的应用贝塞尔函数的零点在科学和工程中有广泛的应用。
下面列举几个常见的应用领域:1. 物理学贝塞尔函数的零点在物理学中有重要的应用。
比如在电磁学中,贝塞尔函数的零点可以用来描述电磁波的传播和分布。
在量子力学中,贝塞尔函数的零点可以用来描述粒子在势场中的行为和性质。
2. 工程学贝塞尔函数的零点在工程学中也有广泛的应用。
bessely函数贝塞尔函数(Bessel function)是数学中的一类特殊函数,由德国数学家弗里德里希·贝塞尔(Friedrich Bessel)在19世纪初引入和研究的。
贝塞尔函数在物理学、工程学和数学中有广泛的应用。
贝塞尔函数可以分为第一类贝塞尔函数和第二类贝塞尔函数两类。
第一类贝塞尔函数一般记作Jn(z),其中n为阶数,z为自变量。
第二类贝塞尔函数一般记作Yn(z)。
贝塞尔函数满足贝塞尔方程,即二阶常微分方程:z^2 * d^2y/dz^2 + z * dy/dz + (z^2 - n^2) * y = 0贝塞尔函数的性质和特点使其在科学和工程领域中拥有广泛的应用,特别是在波动理论、电磁学、热力学和量子力学中。
以下是贝塞尔函数的一些重要应用:1.振动问题:贝塞尔函数可以描述弦、鼓膜、声音等的振动情况。
通过解贝塞尔方程,可以得到这些系统的振动模式和频率。
2.圆柱波:贝塞尔函数是描述无限长圆柱体中的波动现象的基本工具。
例如,电磁波在圆柱体中的传播可以用贝塞尔函数来描述。
3.散射和辐射问题:贝塞尔函数的特殊性质使其在散射和辐射问题中有重要应用。
例如,电磁波在球体上的散射和辐射问题可以通过贝塞尔函数来求解。
4.热传导问题:贝塞尔函数可以描述热传导问题中的温度分布。
例如,考虑一个半径为R的无限长圆柱体,在柱体表面施加边界条件后,可以通过贝塞尔函数来求解圆柱体内部的温度分布。
5.量子力学:贝塞尔函数在量子力学中有重要的应用,特别是在氢原子问题中。
贝塞尔函数可以用来描述氢原子中电子的径向波函数。
除了上述的应用,贝塞尔函数还在其他领域中发挥着重要的作用,如电磁场分析、激光传输、声学等。
贝塞尔函数的定义和性质可以通过级数展开、递归关系或微分方程等多种方法来推导和求解。
总结起来,贝塞尔函数是一类特殊函数,具有广泛的应用领域。
它可以用来描述振动问题、圆柱波、散射和辐射问题、热传导问题以及量子力学中的一些问题。
贝塞尔函数(Bessel Function),是数学上的一类特殊函数的总称,是贝塞尔方程的解(无法用初等函数系统表示),它们和其他函数组合成柱调和函数。
除初等函数外,在物理和工程中贝塞尔函数是最常用的函数,它们以19世纪德国天文学家F.W.贝塞尔的姓氏命名,他在1824年第一次描述过它们。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数 y\left( x \right):
{x^2}\frac{{{d^2}y}}{{d{x^2}}} + x\frac{{dy}}{{dx}} + \left( {{x^2} - {\alpha ^2}} \right)y = 0
或者 {x^2}y'' + xy' + \left( {{x^2} - {\alpha ^2}} \right)y = 0
作为一个二阶常微分方程,上述函数必然存在两个线性无关的解。
并且,贝塞尔函数是在柱坐标/球坐标下使用分离变量法求解拉普拉斯方程或者亥姆霍兹方程式得到,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有重要问题。
贝塞尔函数的具体形式随着方程中实数参数 \alpha 变化,且 \alpha 被称为贝塞尔函数的阶数。
实际应用中常见 \alpha 为整数 n ,对应 n 阶贝塞尔函数。
虽然公式中 \alpha 的正负性不改变函数形式,实际应用中习惯针对 \alpha 和 -\alpha 定义两种不同的贝塞尔函数,有一些好处(比如消除函数在 \alpha=0 处的不光滑性),多 \alpha\ge 0。
贝塞尔函数1.贝塞尔方程及解:令()()()(),,=R ,u ϕτϕτΦZ 为分离变量的解,则()R ,满足本征值问题的方程,2222210R dy dR m R dx d ω⎛⎫∂++-= ⎪∂⎝⎭(17.1.1)其中2ω是分量的本征值问题的本征值。
若作变换()R()R()y(x);m xx x ωλνω=====或; 则上面方程可以变换:2//2/2(x )y 0x y x y ν++-= (17.1.1a )当ν≠整数时,贝塞尔方程的通解为:(x)AJ (x)BJ (x)y νν-=+当ν=整数时,由于J m -=(1)(x)m m J -,因此通解为 (x)AJ (x)BY (x)m m y =+式中A 与B 为任意常数,J (x)m 与Y (x)m 分别定义为 m 阶第一类与m 阶第二类贝塞尔函数。
2.贝塞尔方程的的级数解二阶线性齐次常微分方程2'''22(x )y 0,0x y xy x b υ++-=≤≤ 为贝塞尔方程现在x=0的领域求解贝塞尔方程的解 2.1级数解的形式由p(x)=1x,q(x)=1-22x ν可见,x=0是p=(x )的一阶极点,是q(x)的二阶极点。
因此,x=0是方程的正则奇点,方程的第一解具有形式;nkk p k k k k y x C x C x ∞∞+===∑=∑ 2.1.12.2指标方程将2.1.1代入贝塞尔方程可得:22300(k )0k p k k k k k C x C x ρρν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 2.1.2 由x 的最低次幂x ρ的系数为0,即得:220()C 0x ρρν-=因0C 0≠,即得指标方程220ρν-=。
由此得指标1,ρν= 2ρν=-2.3.系数递推公式为确定起见,令ν>0,并将ρ=1ρ=ν代入2.1.2中得到22200(k )0k k k k k k C x C x νννν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 改变第二项的求和指标,可得202k(k 2)0k k k k k k C xC xννν∞∞++-==∑++∑=由x的同次幂数之和为0,1(12)0C ν+=2k(k 2)0k k k C C ν-++=由此得10C =2(1)k(k 2)k k C C ν--=+2.4.推公式求系数得特解 ………将系数代入1.1中的贝塞尔方程的一个特解为20120(1)(1)C (x)2!(n 1)n n n n y x n ννν∞+=-Γ-+=∑Γ++2.5.另一个特解同理,令2ρρν==-可得另一个特解为20220(1)(1)C (x)2!(n 1)n n n n y xn ννν∞-=-Γ-+=∑Γ-++3.第一类贝塞尔函数第一类贝塞尔函数(x)J ν的级数形式为21(x)(1)()!(1)2kkk dy x J k νννκ+∞==-Γ++∑经过证明可得:,(x)(1)(x)mm m J J -=-同理可得:,(x)(x)m m J J -=因此:,(x)(1)(x)mmm J J -=-4.第二类贝塞尔函数:第二类贝塞尔函数是Weber 和Schlafli ,通常把它定义为 cos (x)(x)Y (x)sin J J νννπνπ--Y (x)m 的级数形式为Y (x)m ={}1220021(m k 1)!1(1)ln (x)()(k)(m )()2!2!(m k)2k m m k m m k k k x x x J k k κγϕϕκπππ-∞-++==---⎡⎤+--++⎢⎥+⎣⎦∑∑式中γ=0.577216,而 (k)ϕ=11n nκ=∑当x 很小时,可得 0Y ≈2lnx π(0ν=)当x 很大时,(x)(x )42xY νπν≈-- (17.1.12)5.第三类贝塞尔函数 通常定义为(1)H (x)iY (x)J ννν=+ (2)H (x)iY (x)J ννν=-则方程(17.1.1 a)的通解可以写成为(1)(2)y(x)AH H (x)B νν=+ 当x →∞时其渐进展开式为3(x )(1)22H (x )x i o νν--=+ (17.1.14a )3(x )(2)242H (x )x i o νπν----=+ (17.1.14b ) 当x 0→时其渐进展开式为 (1)!2(x)()H ix ννπ-≈- (ν>0) (2)2H (x)iln x νπ≈-总结上述,ν阶贝塞尔方程2/22(x )y 0x y xy ν++-= 的通解有三种形式: (1)y(x)AJ(x)(x)BJ =+ (ν0≠)(2)y(x)AJ(x)(x)BY ν=+ (ν可取任意整数) (3)(1)(2)y(x)AH (x)(x)BH νν=+ (ν可取任意整数) 其中A,B 为常数。
贝塞尔函数求导一、什么是贝塞尔函数贝塞尔函数(Bessel function)是应用广泛的一类特殊函数,它们最早由德国数学家费迪南德·弗朗茨·恩斯特·贝塞尔(Friedrich Ernst Bessel)在19世纪初引入并研究。
贝塞尔函数可以描述电磁波的传播、量子力学的行为、热传导等各种自然现象。
在数学上,贝塞尔函数涉及到一类方程,称为贝塞尔方程。
该方程形式简单,但是解析解并不容易求得,因此科学家们对贝塞尔函数的性质进行了详细研究,并发展出了一系列的逼近方法和数值计算方法。
二、贝塞尔函数的定义贝塞尔函数分为第一类贝塞尔函数(Bessel function of the first kind)和第二类贝塞尔函数(Bessel function of the second kind)两类。
两类贝塞尔函数的定义如下:1. 第一类贝塞尔函数第一类贝塞尔函数通常用符号J_n(x)表示,其中n为贝塞尔函数的阶数,x为自变量。
第一类贝塞尔函数可以通过以下定义得到:J_n(x) = (1/π) ∫[0, π] cos(nθ - x sinθ) dθ其中θ为积分变量。
2. 第二类贝塞尔函数第二类贝塞尔函数通常用符号Y_n(x)表示,其定义如下:Y_n(x) = (1/π) ∫[0, π] sin(nθ - x sinθ) dθ三、贝塞尔函数的性质贝塞尔函数具有许多有趣的性质,下面我们来逐一介绍一些重要的性质。
1. 递归关系贝塞尔函数有一种重要的递归关系,可以用来计算不同阶数的贝塞尔函数:J_{n+1}(x) = (2n/x) J_n(x) - J_{n-1}(x)Y_{n+1}(x) = (2n/x) Y_n(x) - Y_{n-1}(x)2. 趋于无穷大和零点当自变量x趋于无穷大时,贝塞尔函数的行为有一定的规律,可以用渐近展开式来描述。
同样地,贝塞尔函数的零点也是研究的重要问题之一。
贝塞尔函数贝塞尔函数是贝塞尔方程的解。
它们与其他功能结合形成圆柱谐波功能。
除基本功能外,贝塞尔功能是物理学和工程学中最常用的功能。
它们以19世纪德国天文学家贝塞尔(F.W. Bessel)的名字命名,后者于1824年首次对其进行了描述。
贝塞尔函数是数学中一类特殊函数的总称。
常规贝塞尔函数是以下常微分方程(通常称为“贝塞尔方程”)的标准解函数。
这种方程的解不能用基本函数来系统地表示。
但是,可以将自动控制理论中的相平面法用于定性分析。
在这里,它被称为其对应的贝塞尔函数的顺序。
在实际应用中,最常见的情况是整数,相应的解称为阶贝塞尔函数。
尽管在上面的微分方程中,符号本身不会改变方程的形式,但在实际应用中仍然习惯定义两个不同的Bessel函数(这可以带来好处,例如消除点处的函数不平滑性)。
定义贝塞尔方程是二阶常微分方程,必须有两个线性独立的解。
针对各种特定情况,提出了这些解决方案的不同形式。
下面描述了不同类型的贝塞尔函数。
历史瑞士数学家丹尼尔·伯努利(Daniel Bernoulli)在18世纪中叶提出了几个正整数阶的Bessel函数,这在当时引起了数学界的轰动。
Jacobs Bernoulli,Leonhard Euler和Joseph Louis Lagrange为Bessel函数的研究做出了重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel)在研究约翰内斯·开普勒(Johannes Kepler)提出的三体重力系统的运动问题时,首次提出了贝塞尔函数的理论框架。
后人以他的名字命名这个功能。
现实背景和适用范围贝塞尔方程是通过使用变量分离方法在圆柱坐标或球坐标中求解拉普拉斯方程和亥姆霍兹方程而获得的。
因此,贝塞尔函数在波动问题和涉及势场的各种问题中起着重要作用。
*电磁波在圆柱波导中的传播;*圆柱体中的热传导定律|导热问题;*圆形(或环形)膜的振动模式分析;贝塞尔函数的一个示例:鼓鼓表面在中心被击中后,沿拉紧鼓表面的二阶振动模式的半径方向的振幅分布是贝塞尔函数(考虑正负号)。
n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:用分离变量法解这个问题,先令或(5.4)(5.5) 从(5.4)得方程(5.5)称为亥姆霍兹(Helmholtz )方程。
为了求出这个方程满足条件(5.6)的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得再令代入(5.7)并分离变量可得(5.9)(5.10)5.10)得(5.11)这个方程与(2.93)相比,仅仅是两者的自变量和函数记号有差别,若再作代换并记则得由条件(5.8(5.12)因此,原定解问题的最后解决就归结为求贝塞尔方程(5.11)在条件(5.12)下的特征值与特征函数((5.12。
在下一节先讨论方程(5.11)的解法,然后在§5.5中再回过头来讨论这个特征值问题。
§5.2 贝塞尔方程的求解在上一节中,从解决圆盘的瞬时温度分布问题引出了贝塞尔方程,本节来讨论这个方程的解法。
按惯例,(5.13)设方程(5.13)有一个级数解,其形式为(5.14)可以通过把y 和它的导数(5.13)来确定。
将(5.14)及其导数代入(5.13)后得化简后写成123由123°得4由4示,即024(22)(2n + 246(22)(2n + 02462(22)(24)(22)1)(2)()m n n n m n n m +++++由此知(5.14)的一般项为2)()n m+就得(5.13)得一个特解。
2下列恒等式:使分母简化,从而使(5.14)中一般项的系数变成(5.15)这样就比较整齐、简单了。
以(5.15)代入(5.14)得到(5.13)的一个特解用级数的比率判别法(或称达朗贝尔判别法)可以判定这个级数在整个数轴上收敛。
这个无穷级数所确定的函数,称为n阶第一类贝塞尔函数。
记作(5.16)(5.17)5.13)的另一特解(5.18)比较(5.16)式与(5.18)式可见,只要在(5.16即可得到(5.18 5.16)统一地表达第一类贝塞尔函数。
次线性常微分方程的通解的结构定理知道,(5.13)的通解为(5.19)5.13)的通解除了可以写成(5.19)式以外还可以写成其它的形式,只要能够找到该方程另一个5.13)的通解,这样的特解是容易找到的。
例如,在(5.19则得到(5.13)的一个特解5.20)(5.13)的通解可以写成(5.21)由(5.20第二类贝塞尔函数,或称Neumann函数。
§5.3 当n为整数时贝塞尔方程的通解上一节说明,贝塞尔方程(5.13)的通解由(5.19)或(5.21)式确定,(5.13)的通解应该是什么样子呢?到同样的结果),这在(5.185.18)可以写成无关的特解。
数时(5.20)的右端没有意义,要想把整数阶贝塞尔方程的通解也写成(5.21数的情况,我们定义第二类贝塞尔函数为(5.22)限为形式的不定型的极限,应用洛必达法则并经过冗长的推导,最后得(5.23)n+-欧拉常数。
根据这个函数的定义,它确是贝塞尔方程的一个特解,而且与大)。
5.13)的通解都可表示为§5.4贝塞尔函数的递推公式不同阶的贝塞尔函数之间不是彼此鼓孤立的,而是有一定的联系,本节来建立反映这种联系的递推公式。
先考虑零阶与一阶贝塞尔函数之间的关系。
在(5.17222(!)kk k +357212!22!3!23!4!2!(1)!kk x k k ++-+++数为零,故得关系式(5.24)32122222!2!(1)!2(!)2(!)kk k k xk k k k ++++++即(5.25)即(5.26) 同理可得(5.27)将(5.26)和(5.27)两式左端的导数求出来,并经过化简,这分别得及将这两式相减及相加,分别得到(5.28) (5.29) 以上几式就是贝塞尔函数的递推公式,它们在有关贝塞尔函数的的分析运算中非常有用。
特别值得一提的是,应用(5.28)式可以用较低阶的贝塞尔函数把较高阶的贝塞尔函数表示出来,因此如果我们已有零阶与一阶贝塞尔函数表,这利用此表和(5.28),即可计算任意正整数阶的贝塞尔函数的数值。
第二类贝塞尔函数也具有与第一类贝塞尔函数相同的递推公式(5.30)作为递推公式的一个应用,考虑半奇数阶的贝塞尔函数,现计算5.16)可得而1135(21)()22mm++Γ=从而(5.31)同理,可求得(5.32)利用递推公式(5.28)得到(()(x dx x x dx x同理可得一般而言,有(5.33)从(5.33)可以看出,半奇数阶的贝塞尔函数都是初等函数。
§5.5函数展成贝塞尔函数的级数利用贝塞尔求解数学物理方程的定解问题,最终要把已知函数按贝塞尔方程的特征函数系进行展开。
这一节我们先要所明贝塞尔方程的特征函数系是什么样的函数系,然后证明这个特征函数系是一个正交系。
5.5.1 贝塞尔函数的零点在§5.1中,已经将求解圆盘的温度分布问题通过分离变量法转化成贝塞尔方程的特征值问题:方程(5.34)的通解为由条件(5.36利用条件(5.35)得(5.37)这就说明,关于这些问题,有以下结论:123,的图形见图5.1。
为了便于工程技术上的应用,贝塞尔函数的正零点的数值已被详细计算出来,并列成表格。
9个正利用上述关于贝塞尔函数零点的结论,方程(5.37)的解为即(5.38)与这些特征值相对应的特征函数为(5.39)5.5.2 贝塞尔函数的正交性我们将要证明(5.40)5.34~5.36)的特征函数系,所以它的正交性由§2.6中的施图姆-刘维尔理论可以直接推出。
不过因为在那里我们并没有就一般情况证明这个结论,因此,我们在这里把贝塞尔函数系的正交性详细证明一下,而且这个证明方法是富有启发性的,完全可以类似的步骤来证明§2.6中的结论3。
下一章将要讲到的勒让德多项式的正交性,也是施图姆-刘维尔理论的另一个具体例子。
下面就来证明(5.40)。
为了书写方便,令分得即由此可得(5.41)从而(5.41)的右端为零,即(5.40)中第一个式子已得证。
为了证明(5.40)中第二个式子,在(5.41此时(5.41法则计算这个极限得[2=由递推公式5.40)中第二个式子。
通常把定积分模。
利用§2.6中关于特征函数系的完备性可知,界,则它必能展开成如下形式的绝对且一致收敛的级数(5.42)5.42并对r从0到R积分,由正交关系式(5.40)得即(5.43)下一节将通过例子说明贝塞尔函数在求解定解问题时的用法。
§5.6贝塞尔函数应用举例下面举两个例子,说明用贝塞尔函数求解定解问题的全过程。
例1设有半径为1的薄均匀圆盘,边界上温度为零摄氏度,初圆盘内温度分布规律。
解由于是在圆盘内求解问题,故采用极坐标系较为方便,并考于是根据问题的要求,即可归结为求解下列定解问题:代入方程(5.44)得或由此得(5.47)(5.48)方程(5.48)得解为此时方程(5.47)的通解为再由(5.45)综合以上结果可得从而由条件(5.46)得从而故得另外从而所以,所求定解问题的解为(5.49)例2 求下列定解问题:解用分离变量法来解,采用例1类似的运算,可以得到(5.53)(5.54)(5.55)再根据边界条件(5.51)中第一式,得利用贝塞尔函数的递推公式(5.24)可得5.56)5.47),(5.48)及(5.51)中第二个条件可知,方程(5.50)有一个特解5.55)及(5.54)得即(5.50)由特解利用叠加原理可得原定解问题的解为代入条件(5.52)得(5.57)(5.58)由(5.575.58上积分得由(5.58)并利用下面的结果(见习题五第14题):正零点,则得到所以最后得到定解问题的解为§5.7贝塞尔函数的其他类型由于解决某些工程问题的需要,本节引入另外三种形式的贝塞尔函数。
5.7.1 第三类贝塞尔函数第三类贝塞尔函数有名汉克尔(Hankel)函数,它是由下列公式来定义的:样也具有第一类贝塞尔函数相同的递推形式:5.7.2 虚宗量的贝塞尔函数当我们在圆柱形域内求解定解问题,如果圆柱上下两底的边界条件都是齐次的,侧面的边界条件是非齐次时,就会遇到形如(5.60)这个方程化成贝塞尔方程,因为代入(5.60)得到因此方程(5.60)的通解为这里第一类虚宗量的贝塞尔函数或称第一类变形的贝塞尔函数,并记作(5.61)特别,(5.62) 所以方程(5.60)的通解又可写为所以它们的图形不是振荡型曲线,5.7.3 开尔文函数(或称汤姆孙函数)Kelvin )函数有两种形式,它们分别被定义要是用零阶和一阶的。
由于(5.63)(5.64) 用类似的方法可以得到一阶开尔文函数:(5.65)(5.67)§5.8 贝塞尔函数的渐近公式在应用贝塞尔函数解决工程技术问题时,常常需要求出这些函数定值,就要求计算级数很多项的和,这样作非常麻烦,因此想到要用另外的函数来代替收敛很慢的贝塞尔函数的级数表达式,这个函数既要能逼近贝塞尔函数,又要能节约计算的时间。
我们为寻找一些便于计算的公式,引入所谓贝塞尔函数的渐近公式,在这里我们不打算讨论这些公式是如何引出的,因为这些公式的引出是比较复杂的。
下面只举处在应用最常见的渐近公式。
(5.67)(5.68)(5.69)(5.70)其中的近似值,就能达到比较满意的精确度,例如,我们常取(5.71)来作近似计算。