复数与向量旋转的关系
- 格式:docx
- 大小:12.61 KB
- 文档页数:1
高中数学复数平面的几何意义说明在高中数学中,复数平面是一个重要的概念,它不仅在代数中有着广泛的应用,还具有独特的几何意义。
本文将通过具体的题目和例子来说明复数平面的几何意义,并介绍一些解题技巧,以帮助高中学生更好地理解和应用这一概念。
一、复数平面的基本概念复数平面是由实数轴和虚数轴组成的平面。
其中,实数轴表示实部,虚数轴表示虚部。
复数可以表示为a+bi的形式,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
在复数平面中,每个复数对应平面上的一个点,该点的横坐标为实部,纵坐标为虚部。
二、复数平面的几何意义1. 向量的表示:复数可以看作是平面上的一个向量,向量的起点位于原点,终点位于复数对应的点。
向量的模表示复数的模,即复数到原点的距离;向量的幅角表示复数的辐角,即与实轴的夹角。
2. 几何运算:在复数平面中,复数的加法和减法对应向量的平移,复数的乘法对应向量的伸缩和旋转。
例如,两个复数相加时,可以将它们对应的向量首尾相连,得到一个新的向量,该向量的起点为第一个复数对应的点,终点为第二个复数对应的点。
三、复数平面的应用举例1. 求复数的模和辐角:对于复数z=a+bi,可以通过勾股定理计算其模 |z| =√(a²+b²),通过反三角函数计算其辐角 arg(z) = arctan(b/a)。
2. 复数的乘法和除法:复数的乘法对应向量的伸缩和旋转,模相乘,辐角相加;复数的除法对应向量的缩放和旋转,模相除,辐角相减。
例如,计算复数z₁=a₁+b₁i和复数z₂=a₂+b₂i的乘积z = z₁z₂时,可以将z₁和z₂对应的向量进行伸缩和旋转,得到z对应的向量,再转化为复数形式。
3. 复数的共轭和倒数:复数的共轭对应向量关于实轴的对称,实部不变,虚部取相反数;复数的倒数对应向量关于单位圆的对称。
例如,对于复数z=a+bi,其共轭为z* = a-bi,倒数为1/z = (a-bi)/(a²+b²)。
旋转矩阵、旋转向量、欧拉⾓、四元数的关系向量的矩阵形式有两个向量:→a =(a 1,a 2,a 3)→b =(b 1,b 2,b 3)叉乘的结果表⽰⼀个向量,这个向量向量垂直于a,b 向量构成的平⾯。
→a ×→b =‖e 1e 2e 3a 1a 2a 3b 1b 2b 3‖=a 2b 3−a 3b 2a 3b 1−a 1b 3a 1b 2−a 2b 1=0−a 3a 2a 30−a 1−a 2a 10b 1b 2b 3=a ∧b将向量a 对应的矩阵表⽰出来,为⼀个反对称矩阵,每⼀个向量都对应着⼀个反对称矩阵。
这就引出向量的矩阵形式。
a ∧=0−a 3a 2a 30−a 1−a 2a 1坐标变换的易混点在齐次变换中p 1=T 12·p 2p 2=T 23·p 3T 12表⽰,把坐标系{2}的向量变换到坐标系{1}中,T 23同理,如果把坐标系{3}下的向量变换到坐标系{1}中为:p 1=T 12·T 23·p 3旋转向量和欧拉⾓: SO(3)的旋转矩阵有9个量,但是只有3个⾃由度,同理SE(3)有16个量,但是也只有6个⾃由度。
在实际的旋转中,任意的旋转都可⽤⼀个旋转轴和⼀个旋转⾓来表⽰,我们使⽤⼀个向量,⽅向与旋转轴⼀致,长度等于旋转⾓,这样只需要⼀个三维向量即可描述旋转。
对于SE(3),⽤⼀个旋转向量和⼀个平移向量即可表达,恰好⾃由度为6.如果⽤旋转向量来描述R :旋转轴为⼀个单位长度的向量n,⾓度为θ,那么θn 可以表⽰这个旋转。
旋转矩阵R 和旋转向量θn 的转换过程为罗德⾥格斯变换:R =cos θI +(1−cos θ)nn T +sin θn ∧此处末尾的n ∧ 如上⾯所⽰,代表矩阵表⽰的向量。
那么反过来通过旋转矩阵获取转⾓ θ;θ=arccostr (R )−12tr(R)为矩阵R 的迹。
对于转轴n,Rn=n;表⽰为转轴绕⾃⾝转动不⽣改变,从数学来说n 是矩阵R 特征值为1时对应的特征向量。
复数的考点知识点归纳总结复数的考点知识点归纳总结复数是基础数学中的重要概念,广泛应用于数学、物理、工程等领域。
掌握复数的概念、性质和运算规则对于建立数学思维、解决实际问题具有重要意义。
本文将从复数的基本概念、运算法则和实际应用等方面进行归纳总结。
一、复数的基本概念1. 复数的定义:复数是由实部和虚部组成的数,形式为a+bi,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。
2. 复数的实部和虚部:复数a+bi中,a为实部,bi为虚部。
3. 复数的共轭复数:设复数z=a+bi,其共轭复数记为z*,则z*的实部与z相同,虚部的符号相反。
4. 复数的模:复数z=a+bi的模定义为|z|=√(a²+b²)。
5. 复数的辐角:复数z=a+bi的辐角定义为复数与正实轴正半轴的夹角,记作arg(z)。
6. 三角形式:复数z=a+bi可以写成三角形式r(cosθ+isinθ),其中r为模,θ为辐角。
二、复数的运算法则1. 复数的加法和减法:复数的加法和减法运算与实数类似,实部与实部相加减,虚部与虚部相加减。
2. 复数的乘法:复数的乘法运算使用分配律和虚数单位的性质,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。
3. 复数的除法:复数的除法运算需要将分子分母同时乘以共轭复数,即(a+bi)/(c+di)=[(a+bi)(c-di)]/[(c+di)(c-di)]。
4. 复数的乘方和开方:复数的乘方和开方运算需要使用三角函数的性质和欧拉公式,即z^n=r^n[cos(nθ)+isin(nθ)],√z=±√r[cos(θ/2)+isin(θ/2)]。
三、复数的性质和应用1. 复数的性质:复数具有加法和乘法的封闭性、交换律、结合律、分配律等性质。
2. 复数平面:复数可以用平面上的点来表示,实部为横坐标,虚部为纵坐标,构成复数平面。
3. 复数与向量:复数可以看作是向量的延伸,复数的运算有时可以用向量的加法和旋转来理解。
用复数求平面几何中旋转的一些轨迹问题作者:陈金华来源:《知识窗·教师版》2014年第07期摘要:初等数学知识包含数与形两个方面,复数是数与形互相渗透的典型代表。
复数就如一座桥梁把图形和数紧密地联系在一起,也就是说一个代数的问题,可以通过复数的几何意义,转化成图形的问题。
当然,一个图形问题也可以通过复数,用代数方法进行研究。
因此,平面中两直线的夹角和位置关系等几何关系都可以通过复数的关系式来刻画,平面解析几何问题也可以用复数去求解。
本文通过复数的几何意义,求出了圆锥曲线中一些特殊点的轨迹方程。
关键词:复数平面几何旋转轨迹1797年,挪威数学家维塞尔提出了对复数的几何解说。
他在平面上自点O作两条实轴,从而建立了一个坐标平面,每一个复数Z=a+bi与坐标平面上的点(a,b)一一对应,称点Z (a,b)为复数Z=a+bi的对应点。
之后,著名的德国数学家高斯把上面建立的坐标平面称为复平面,任意一个复数都与复平面上的一个点构成一一对应的关系。
我们知道,复数可以用几何方法表示,也可以用代数方法表示,复数可以看作是平面上的向量,复数加减法的几何表示和向量的加减法一样,都可使用平行四边形法则。
但是,复数乘法的几何表示不同于向量的一般乘法,它表示为向量的拉伸与旋转的合成。
利用这一特点,在解决与旋转有关的解析几何命题时,复数比向量更为巧妙。
一、复数及其运算1.复数的定义复数的代数形式是Z=a+bi,与该复数Z相对应的点的坐标是(a,b),复数Z的模|Z|=r= a2+b2,复数Z的辐角θ=argZ=∠XOZ。
在复平面上,绕一直线其上一定点旋转,有两种旋转方向,一种是逆时针旋转,另一种是顺时针旋转。
按照惯例,我们规定逆时针方向旋转的角度为正,顺时针方向旋转为负。
在本文中,旋转角度都为正,即都是按逆时针方向旋转。
2.复数运算的几何意义复数乘法的几何意义是:设复数Z1=r1(cosθ1+isinθ1),Z2=r2(cosθ2+isinθ2),Z1·Z2对应的向量是把Z1的模变为原来的r2=| Z2 |倍,然后再按逆时针旋转角度θ2得到的。
第12篇平面向量与复数知识梳理1.平面向量与距离公式(1)||||AB = a ,||a 就是两点A B ,间的距离.(2)若OA OB == ,a b ,则||-a b 就是两点A B ,间的距离.2.向量中涉及向量模的关系式:(1)22||=a a ;(2)1212||||||||n n ++++++ ≤a a a a a a ,三角不等式;(3)||||||⋅⋅≤a b a b ,数量积的重要不等式,本质是柯西不等式.3.复数的概念与运算(1)表达形式:代数式——()z a b a b =+∈R ,i ;三角式——(cos sin )(0)z r r θθθ=+∈R ≥,i ;指数式——(0)z r r θθ=∈R ≥,i e .(2)共轭与模:1212z z z z ±=±,1212z z z z ⋅=⋅,1122()z z z z =;121212||||||||||||z z z z z z -±+≤≤,1212||||||z z z z =⋅,1122||||||z z z z =,22||||z z z z ⋅==,z z z =⇔∈R ,|||Re()|z z z =⇔∈R ;(3)运算法则:111222121212(cos sin )(cos sin )(cos()sin())r r r r θθθθθθθθ++=+++i i i ,111112122222(cos sin )(cos()sin())(cos sin )r r r r θθθθθθθθ+=-+-+i i i ,[(cos sin )](cos sin )n n r r n n θθθθ+=+i i ,(棣莫弗定理)22(cos sin )sin )n k k z r z n nπθπθθθ++=+⇔=+i i ,0121k n =- ,,,,.4.辐角与单位根(1)辐角的性质:若(cos sin )(0)z r r θθθ=+∈R ≥,i ,则称θ为复数z 的辐角,记为z Arg ;特别地,当[02)θπ∈,时,则称θ为复数z 的辐角主值,记为arg z ;1212()z z z z +=Arg Arg Arg ,112122()()z z z z z z -==Arg Arg Arg Arg ,n n z z =Arg Arg ;(2)单位根:方程1n x =的n 个根叫做n 次单位根,分别记为22(cos sin )0121k k k k n n nππω=+=- ,,,,,i .一般地,01ω=,1k k ωω=,k j k j ωωω+=;单位根的积仍是单位根;n 次单位根的全部为:211111n ωωω- ,,,,;2111110n ωωω-++++= ;21111(1)()()()1n n x x x x x ωωω-----=- .(3)基本结论:实系数n 次方程的虚根α与其共轭复数α成对出现;若12||||||n z z z === ,且10ni i z ==∑,则12n z z z ,,,对应的点是正n 边形的顶点,且正n 边形的中心在坐标原点;若复数12z z ,对应的点分别为12Z Z ,,且102z z z =,则120arg Z OZ z ∠=或0arg z π-.5.复数与几何(1)基本原理:点的对应——复数()z x y x y =+∈R ,i 与点()Z x y ,成一一对应关系;向量的对应——复数()z x y x y =+∈R ,i 与向量()OZ x y = ,成一一对应关系;距离公式:复数12z z 对应的点分别为12Z Z ,,则1212||||Z Z z z =-;旋转公式:复数12z z 对应的点分别为12Z Z ,,向量12Z Z 绕点1Z 逆时针旋转θ角,在伸长到(0)r r >倍,则所得向量1Z Z 中的Z 对应的复数为121()(cos sin )z z r z z θθ=+-+i .(2)线性结论:定比分点——若复数12z z z ,,对应的点分别为12Z Z Z ,,,点Z 分有向线段12Z Z 的比为(1)λλ≠-,则121z z z λλ+=+;三点共线——若复数12z z z ,,对应的点分别为12Z Z Z ,,,则12Z Z Z ,,三点共线的充要条件是:12(1)z z z λλ=+-或者1122z z z z z z z z --=--;平行条件——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ∥的充要条件是1234()z z z z λ-=-;垂直条件——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ⊥的充要条件是1234()z z z z λ-=-i .(3)几何结论:三角形面积公式——若复数123z z z ,,对应的点分别为123Z Z Z ,,,则123Z Z Z △的面积1321321Im()2z z z z z z ⋅++;三角形的形状——若复数123z z z ,,对应的点分别为123Z Z Z ,,,则123Z Z Z △为正三角形的充要条件是333123121323z z z z z z z z z ++=++或21230z z z ωω++=,其中23e πω=i ;三角形相似——若复数123z z z ,,对应的点分别为123Z Z Z ,,,复数123w w w ,,对应的点分别为123W W W ,,,则123123Z Z Z WW W △∽△(同向)的充要条件是21213131z z w w z z w w --=--;四点共圆——若复数1234z z z z ,,,对应的点分别为1234Z Z Z Z ,,,,则1234Z Z Z Z ,,,四点共圆的充要条件是31324142:{0}z z z z z z z z --∈---R .解题示范(一)平面向量的应用例1设12n A A A ,,,为平面上任意给定的n 个点,求平面上点G ,使22212()nf G GA GA GA =+++ 最小.例2(2017第30届爱尔兰数学奥林匹克试题)线段0n B B 被点121n B B B - ,,,平分为n 等分,点A 满足0n B AB ∠为直角.求证:22000||||n nk k k k AB B B ===∑∑.例3(第30届IMO 预选题)设正n 边形12(3)n A A A n ≥的外接圆半径为R ,S 是外接圆上任意一点,求22212nT SA SA SA =+++ 的值.例4如图,ABC△中,O为外心,三条高AD BE CF,交于,,交于点H,直线DE AB点M,FD和AC交于点N,求证:OH MN⊥.例5(2010第10届捷克-斯洛伐克-波兰俄罗斯数学奥林匹克)已知凸四边形ABCD满足+=,BC DA+=.AB CD求证:四边形ABCD为平行四边形.(二)复数应用1.复数的概念及基本运算例6若12z z ∈C ,,求证:1212|||1|z z z z -=-⋅成立的充分必要条件是1||z 、2||z 中至少有一个等于1.例7设12n z z z ,,,为复数,满足12||||||1n z z z +++= .求证:上述n 个复数中,必存在在若干个复数,它们的和的模不小于1.42.复数与三角,复数的单位根,复数与多项式例8(2013年北约9)对任意θ,求632cos cos66cos 415cos 2θθθθ---的值.例9求值:cos 202cos 403cos6018cos1820S =︒+︒+︒+⋅⋅⋅+⨯︒.例10已知n 个复数12n z z z ,,,成等比数列,其中1||1z ≠,公比q 的模为1,但1q ≠.复数12n ωωω ,,,满足1k k k z z ω=+(12)k n = ,,,.求证:复数12n ωωω ,,,在复平面上对应的点12n P P P ,,,均在焦距为4的椭圆上.例11设n 为正整数,0r >为实数,证明:方程110n n n x rx r +++-=没有模为r 的复数根.例12已知210002000012000(1)x x a a x a x ++=++⋅⋅⋅+,求0361998a a a a +++⋅⋅⋅+的值.例13证明:1π2π(1)πsin sin sin (2*)2n n n n n n n n --⋅⋅⋅=∈N ≥,.例14设()f x 是复系数多项式,n 是正整数,若(1)|()n x f x -,求证:(1)|()n n x f x -.证明:1x =是()0f x =的根,则1n x =的每个单位根均是()0n f x =的根,证毕.例15在一个单位圆上给定了若干个点,已知该单位圆上任意一点到这些给定点的距离的乘积不大于2,求证:这些给定点恰好是某个正多形的顶点.例16(1986IMO27-2)在平面上给定点0P 和123A A A △,且约定当4S ≥时,3S S A A -=.构造点列012P P P ,,,使得1k P +为点k P 绕中心1k A +顺时针旋转120︒所达到的位置,012k = ,,,.求证:如果19860P P =,则123A A A △为等边三角形.3.复数与平面几何例17(第61届俄罗斯圣彼得堡数学奥林匹克试题)ABC △中,边AC BC ,上的点K L ,满足KBC LAC α∠=∠=,从点B 分别作AL BK ,的垂线CD CE ,,设F 是AB 中点,求DEF △的各角.例18在ABC △中,30C ∠=︒,O 是ABC △外心,I 是内心,边AC 上的点D 与BC 边上的点E 满足AD BE AB ==,求证:OI DE ⊥,且OI DE =.例19在ABC △中,点M Q ,分别在边AB AC ,上,点N P ,都在边BC 上,使得五边形AMNPQ 的五条边的长度相等,记点S 为直线MN 和PQ 的交点,l 为MSQ ∠的角平分线,求证:直线//OI l ,其中O 和I 分别是ABC △外接圆和内切圆的圆心.4.利用复数解平面几何问题中直线与圆相切的一个常用技巧:O为复平面上单位圆,A为O外一点,AB AC,为两条切线,B C,为切点,以各点字母代表其对应的复数,则2bcab c =+.例20已知I为ABC△内切圆,与BC CA AB,,分别切于点D E F,,,作DT EF⊥于点T,点J为IBC△的垂心,N为EF中点,M为DT中点,求证:J N M,,三点共线.例21凸四边形ABCD有内切圆I,AB与CD交于点E,AD与BC交于点F,M为BEC△外接圆与CDF△外接圆的除C以外的另一个交点.求证:MI平分BMD∠.能力测试1.已知复数123a a a ,,满足2223334441231231230a a a a a a a a a ++=++=++=.求123a a a ++的所有可能值.2.设(1)2()1mn m n n n f x x x x x -=+++++ ,()1m g x x x =+++ ,已知()|()g x f x ,求正整数对(,)m n .3.在凸四边形ABCD 的外部分别作正ABQ △、正BCR △、正CDS △、正DAP △,记四边形ABCD 的对角线之和为x ,四边形PQRS 的对边中点连线之和为y ,求x y 的最大值.4.求证:圆的圆心位于圆外切四边形两对角线中点的连线上.5.设D 为锐角ABC △内一点,90ADB ACB ∠=∠+︒,且AC BD AD BC ⋅=⋅.求AB CD AC BD⋅⋅的值.。
重视复平面上复数与向量得联系作用平面向量与复数就是高中数学得重要内容,联系紧密,联系就是在复平面进行得。
随着知识得发展,相互对应相互促进就是联系得主要体现。
复数中得概念、运算等在向量中可以作出几何解释;向量得运算,可以对应有关得复数运算、复数与向量得这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们得联系作用,将就是一件高效快乐得事情、一复数商与内积得联系复数运算,向量运算之间得许多联系,在现有课本里就是可以学习到得,下面我们来瞧复数商与内积得联系、例 1 复数z=a+bi,z=a+bi,它们得三角式分别为z=|z|(cosθ+isinθ), z=|z|(cosθ+isinθ),对应得向量分别就是=(a,b)、=(a,b)、然后复数作商:代数式作商:=;-------------(1)三角式作商:=[cos(θ-θ)+isin(θ-θ)],------(2)比较(1)(2)式,可得 [cos(θ-θ)]=, (3)[sin(θ-θ)]= (4)则从中可得下列变式:(1)复数对应向量间得夹角余弦公式:cos(θ-θ)= ,(我們总可以适当选择θ、θ得主值范围,使得|θ-θ|∈,所以与得夹角就就是|θ-θ|)、(2) 向量内积:·=aa+bb=||·||cos(θ-θ)、若对(4)取绝对值得到:|×|=|ab-ab|=||·|sin(θ-θ)|,这就是空间平面上向量叉积得绝对值,就是以线段oz、oz为邻边得平行四边形得面积公式、复数商运算式中,隐含着向量间得夹角公式,向量得内积,平行四边形面积得公式、若复数代数式得三角式分别就是,然后,将它们得代数式,三角式分别相乘,比较结果,同样可以得到上面得三个式子、数学中得这种相互包容联系,真就是体现了数学中得统一与谐之美、二复数向向量表示上得转化联系利用复数与向量得联系,复数可以向向量表示上得转化,使有些复数得问题转化为向量问题或构造向量图像去处理,借向量之力去解决复数问题、例2 已知复数z、z得模为1,z+z,求复数、解:根据题意,设复数对应得向量为,以这两个向量为邻边,边长为1,构作一个平行四边形,并建如图1得直角坐标系、记,对应向量、∵对应得复数就是x∴,∠zoz=60,ﻩ本题在解题得思路上借助了复数向向量转化得作用、复数向向量转化就是较常用得思想方法、此题纯粹用代数方法去做,计算量就是较大得、例3复平面内,已知动点A,B所对应得复数得辐角为定值,分别θ、-θ,,O为原点,ΔAOB得面积就是定值S,求ΔAOB得重心M所对应得复数模得最小值、图2、解:根据题设,设向量对应复数且|,则有,∵ 图2∴==≥=∴ |z|=|,即重心M 所对应得复数模得最小值(=时,取最小值)、该题用向量方法可较简捷获解、复数向向量表示上得转化得特点就是:能将复数条件化为特殊得向量图形, 或构造一个向量运算,然后,顺利进行推理运算,求得结果、三 向量向复数表示上得转化联系利用复数与平面向量得联系,由向量向复数表示上得转化,使向量问题转化为复数问题或构造复数得结论去处理,借复数之力去解决向量问题,并使人觉得返朴归真之感、例4已知三个不共线得向量且证明:可构成一个三角形、证明:不妨设对应复数得三角式分别为:,且、o i r i r i r =+++++∴)sin (cos )sin (cos )sin (cos 333222111θθθθθθ=0 (2)由(1),(2)解得不共线,可构成一个三角形、从证明过程知道,其逆也成立得,故此命题可写成充要条件得形式、该题纯粹用向量概念去证明就是比较简单得,但学生听了后,并觉得没有复数解明白、 向量向复数表示上得转化得特点就是:转化为复数问题后能构造出复数得某些结论或某些代数公式,从而通过它们去实现目标完成、四 复数与向量并用联系用多种形式表示一个命题得方法,在数学中就是常用得手段,而且就是常用常新,也就是知识、思想、方法融会贯通得重要途径、如有些命题既可以用复数表示、也可以用向量表示,对于这类命题得处理自然要选择合适得形式来表示,或者就是两者并用,实现相互左证,这样可以使问题明了简单、例5已知线段AB得中点C,以AC 与C B为对角线作平行四边形A ECD与BFCG ,又作平行四边形CF HD与CGK E,求证H 、C 、K三点在一条直线上,且CK =C H,如图3、证明:以C 为原点,A B为X 轴建立直角直角坐标系、设向量对应复数那么,向量对应复数分别为;又、分别对应复数、∵ ,图3 ∴ ,∴平行,但又有公共点C,故H、C 、K 三点共线,且CK=CH 、例6已知(k=1,2,……,n)就是单位圆上得n 个等分点,就是该圆上任意一点,求证 为一定值、如图4、证明:以单位圆得圆心O为直角坐标得原点,OP 为X轴,建立坐标系,则∠ (当k=n 时,假定此角为2),∵ 点,对应向量就是,则其长为1,向量与,即、∴ = =()()(.....)()()()2211op op op op op op op op op op op op n n -⋅-++-⋅-+-⋅- =)......(2||||......||||21222221n n op op n op op op ++⋅-++++=2n-2=2n,为定值、在这两个问题解决得过程中,我们既用了复数,又用到了向量及它们之间得等价结论、复数与向量并用得特点就是:并用表示后,相互之间有左证作用或有等价结论,而且在各自得范围内有顺利进行计算推理得可能、在平面图中,证明点共线,直线平行,直线垂直,判断三角形得形状等时,经常用复数与向量之间来转换、或并用来表示命题得,从而实现共同之目得、复数与平面向量之间得联系就是很多得,既有数形联系,又有等价结论联系、用好这些联系得意义就是很大得、在教学中能揭示这些联系,可以活跃思维,培养兴趣,提高学习得积极性,提高学习得效率、 要牢固掌握这些联系,关键在平时要理清复数与向量得对应联系,并把它们装在心中,拿在手中,落实在应用中,千万别将它们分离、例4已知就是单位圆上得n个等分点(按逆时针排列),o 就是原点,求证:证明:以单位圆得圆心O为直角坐标得原点,OP 为X 轴,建立直角坐标系,则∠ (当k=n 时,假定此角为2)、∵ 点,对应向量就是,则其长为1,向量与,∴ 、这种等分圆周得有关向量求与问题,通过复数之后,可以转化为复数数列求与来完成、。