氨吸收塔的设计
- 格式:doc
- 大小:560.50 KB
- 文档页数:40
吸收氨过程填料塔的设计、吸收塔设计课程设计引言:吸收过程填料塔是一种具有高效性能和广泛应用的设备,它经常用于清除气体中的污染物和有害物质。
通过填充物的撞击、摩擦和扩散等化学反应,将氨气转化为无害的物质。
这篇文章将讨论吸收氨的过程和填料塔的设计,以及涉及到的吸收塔设计问题,包括塔的净高度、塔的塔口大小、填料材料、气液流速度以及冷却水的输入流量等。
>I. 吸收氨的过程氨是一种有害的气体,通过吸收过程将其从空气中去除是一种有效的措施。
一般而言,吸收氨的过程分为两个步骤:物理吸收和化学吸收。
物理吸收指的是氨与吸收液之间的分子扩散和溶解作用,它们在吸收液中产生平衡的状态。
化学吸收指的是氨沉淀于吸收液中,通过触媒剂的作用,产生化学反应。
>II. 填料塔的设计1. 填料塔的净高度填料塔的净高度是影响气液流动和传热的重要因素。
为了保持良好的物质平衡和传热效果,塔的净高度应该从填料层顶部到液面顶部的高度。
根据经验公式,可得出净高度公式:H=(N+1)x Ht其中,H为塔的净高度,N为填料塔内填料层数,Ht为填料层高度。
需要注意的是填料的选择和层数的确定,必须根据气体的流速和具体的反应物质做出判断。
2. 填料塔的塔口大小塔口越小,气体流速越大,在某些情况下可能会对流量规律产生影响。
当流速高于临界速度时,会产生非均匀流的现象。
因此应该根据气体流量和分配的相应塔口大小来设计。
3. 填料材料为了达到尽可能高的吸收效率,在填料的选择上需要注意到表面积、孔隙度和材料的耐腐蚀性等特性。
通常来说,填料的表面积越大,吸收效率越高。
使用为环状和水滴状的填料,性能比起普通的球形填料更好。
4. 气液流速度根据比例关系,当气液流速度越大,交通流量也就越大。
但高液体流速也可能导致有机溢流。
因此在选择气液流速时应该根据填料材料的吸收效率以及塔的材质和结构,选择最合适的流速范围。
5. 冷却水输入流量为了保持填料塔的稳定性和高效性,需要提供充足的冷却水。
化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。
水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。
二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。
三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。
2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。
3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。
4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。
5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。
四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。
2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。
3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。
4.确认成本,包括:原材料、安装和实际操作。
五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。
化工原理课程设计(氨气填料吸收塔设计)1000字氨气填料吸收塔是一种常见的化工工艺设备,用于从氨气等气体中去除二氧化碳等有害成分。
在这篇课程设计中,我们将重点讨论氨气填料吸收塔的设计原理和实现方法。
一、设计原理氨气填料吸收塔的设计原理基于物理吸收法,它通过填充物(如泡沫塑料、陶瓷、金属等)将气相物质传递到液相解吸剂中,以达到去除气体中有害成分的目的。
其中,填充物的种类、形状和大小会影响到吸收效率和压力损失。
塔顶设置进口气流分布器,塔底设置液体分布器,使操作稳定,保证吸收效果。
二、实现方法1. 确定设计参数氨气填料吸收塔的设计需要涉及到多项因素,包括:(1)吸收剂的化学性质:吸收剂的化学性质会影响到塔内化学反应的速率和吸收效率。
因此,需要选择合适的吸收剂,并对其进行物性参数测定。
(2)气体流量:气体流量会影响到塔内的混合程度和扩散速率。
因此,需要确定气体流量范围和变化规律。
(3)操作温度和压力:操作温度和压力会直接影响到化学反应的速率和吸收效率。
因此,需要选择合适的操作温度和压力,并对其进行测定。
(4)塔体高度和直径:塔体高度和直径会影响到填充物的分布、气液流动情况和压降。
因此,需要按照实际需要确定塔的高度和直径。
(5)填充物种类和数量:填充物的种类和数量对吸收效率和压力损失有较大影响。
因此,需要选择合适的填充物,并确定填充层数和填充物粒径。
2. 填充物选型填充物的种类是影响氨气填料吸收塔吸收效率和压力损失的一个关键因素。
选用填充物时需要考虑以下方面:(1)物理性能:填充物的物理性能直接影响其在吸收塔内的分布、气液流动情况和压降。
因此,需要选择合适的物理性能(如比表面积、孔隙率、容重等)的填充物。
(2)化学特性:填充物的化学特性对气液反应速率和吸收效率有较大影响。
因此,需要选择符合需要的化学特性的填充物。
(3)成本和耐久性:填充物的成本和耐久性也是选型时需要考虑的因素,以确保经济可行和长期稳定运行。
水吸收氨气填料吸收塔课程设计
氨气吸收塔课程设计是一个专门用于净化氨气的工程,其主要原理是利用水溶液与气体的有效反应以及吸收剂的特性,来去除氨气中的有害气体,以达到净化气体的目的。
氨气吸收塔课程设计的具体内容如下:
一、课程介绍
(1)氨气吸收塔的基本原理
(2)氨气吸收塔的设计原则
(3)氨气吸收塔的结构和运行条件
二、工程实施
(1)氨气吸收塔的净化原理
(2)氨气吸收塔的设计要求
(3)氨气吸收塔填料的选择和使用
(4)氨气吸收塔的安装要求
(5)氨气吸收塔的运行要求
三、技术支持
(1)氨气吸收塔的控制要点及工艺操作
(2)氨气吸收塔的安全限制
(3)氨气吸收塔的监测要点
(4)氨气吸收塔的维护和维修
四、结论
根据上述内容,我们可以总结出,要成功利用水吸收氨气填料吸收塔进行净化氨气,必须要正确地理解其原理、严格按照设计要求选择填料及安装要求,对控制要点及有害气体的安全限制进行管理,并对操作过程进行实时的监测和维护,从而确保净化气体的质量。
化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。
其次,填料的表面
积大,对氨气的吸附强度较高。
二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。
结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。
三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。
v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。
四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。
我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。
《化工原理》课程设计说明书设计题目:水吸收氨气填料塔设计者:陈玉姣专业:化学工程与工艺指导老师:王要令课程设计任务书●化工原理课程设计要求本课程的设计任务要求学生做设计说明书一份、图纸两张。
各部分的具体要求如下:1 说明书必须书写工整、图文清晰。
说明书中所有公式必须写明编号,所有符号必须注明意义和单位。
2设计图纸要求:(1) 流程图(A3)本设计要求画“生产装置工艺流程图”一张,图纸大小为210×297(或148×210)mm2。
本图应表示出装置或单元设备中所有的设备和机器,以线条和箭头表示物料流向,并以引线表示物料的流量、温度和组成等。
设备以细实线画出外形并简略表示内部结构特征,大致表明各设备的相对位置。
设备的位号、名称注在相应设备图形的上方或下方,或以引线引出设备编号,在专栏中注明个设备的位号、名称等。
管道以粗实线表示,物料流向以箭头表示(流向习惯为从左向右)。
辅助物料(如冷却水、加热蒸汽等)的管线以较细的线条表示。
(2)设备图(A2)本设计要求画主要设备详图一张,表示其结构形式、尺寸(表示设备特性的尺寸,如圆筒形设备的直径等)、技术特性等。
设备图基本内容有:①视图:一般用主(正)视图、剖面图或俯视图表示主要设备结构形状;②尺寸:图上应注明设备直径、高度以及表示设备总体大小和规格的尺寸;③技术特性表:列出设备操作压力、温度、物料名称、设备特性等;④标题栏:说明设备名称、图号、比例、设计单位、设计人、审校人等。
图纸要求:投影正确、布置合理、线型规范、字迹工整。
●课程设计任务书(7~8人一题,改变操作条件,一人一任务)(1) 设计题目试设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为2192m3对纯溶剂吸收过程,进塔液相组成为X2=0,则(LV)min=(0.0638-0.0002)[0.063830.755-0]=0.75,(1)所以最小吸收剂用量:Lmin=0.75×V=61.31Kmol--Hougen关联式计算泛点气速μf,把数据代入下式得:-0.5844,则: μf=2.63ms对于散装材料,其泛点率ϕ=μμf范围是(0.5-0.85)可取ϕ=0.6,则μ=μf×0.6=1.578ms由式求得,D=0.7m,(常用的标准塔径为400、500、600、700、800、1000、1200、1400、1600、2000、2200)所以泛点率ϕ=μμf=1.5832.63×100%=60.2%(在允许范围内0.5~0.85)(3)填料规格校核: Dd=70025=28>8(在允许范围内)(4)液体喷淋密度校核:因填料为25mm×12.5mm×1.4mm,塔径与填料尺寸之比大于8,对于直径不超过75mm的散装填料,可取最小润湿速率为0.08m3mh;对于直径大于75mm的散装填料,可取最小润湿速率为0.12m3mh固取最小润湿速度为(Lw)min=0.08 m3m.=(LW)min×at0.08=18.24m3㎡——最小液体喷淋密度 m³(m²·——最小的L——液相的V——气相的。
可编辑修改精选全文完整版设计题目3000Nm3/h含氨5%填料吸收塔的设计试设计一座填料吸收塔,用于脱出混于空气中的氨气。
混合气体的处理量为3000Nm3/h,其中含氨为5%(体积分数),采用清水进行吸收。
要求塔顶排放气体中含氨低于0.02%(体积分数)。
操作条件(1)操作压力101.33 kPa(常压);(2)操作温度20℃;(3)吸收剂用量为最小用量的1.9倍填料类型:选用聚丙烯阶梯环填料。
工作日:每年300天,每天24小时连续运行厂址:合肥设计内容(1)设计方案的说明及流程说明;(2)吸收塔的物料衡算;吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制生产工艺流程图;(7)绘制吸收塔设计条件图;(8)绘制液体分布器施工图;(9)对设计过程的评述和有关问题的讨论。
目录第1章设计方案的简介 (1)1.1选定塔型 (1)1.2确定填料吸收塔的具体方案 (2)1.2.1装置流程的确定 (2)1.2选择吸收剂 (3)1.3操作温度与压力的确定 (3)1.3.1操作温度的确定 (3)1.3.2操作压力的确定 (3)第2章填料的类型与选择 (4)2.1填料的类型 (4)2.1.1散装填料 (4)2.1.2规整填料 (4)2.2填料的选择 (5)2.2.1填料种类的选择 (5)2.2.2填料规格的选择 (6)2.2.3填料材质的选择 (7)第3章填料塔工艺尺寸 (9)3.1设计基础数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.2.3气液相平衡数据 (9)3.2.4物料衡算 (10)第4章填料塔的工艺尺寸的计算 (11)4.1塔径的计算 (11)4.2填料层高度计算 (12)4.3填料塔压降的计算 (14)第5章液体分布器简要设计 (16)5.1液体分布器 (16)5.2液体再分布器 (17)5.3 塔底液体保持管高度 (18)第6章吸收塔接管尺寸计算 (19)6.1气体进料管 (19)6.2液体进料管 (19)6.3 离心泵的选型 (19)6.4风机的选型 (20)第7章塔体附件设计 (22)7.1塔的支座 (22)7.2其他附件 (22)附图1 填料塔工艺图 (23)附图2 工艺流程图 (24)附录1 吸收塔设计条件图 (25)附录2 符号说明 (26)附录3 设计一览表 (27)附录4 Eckert通用关联图 (28)参考文献 (29)第1章设计方案的简介1.1选定塔型塔器是关键设备,例如在气体吸收、液体精馏(蒸馏)、萃取、吸附、增湿中、离子交换等过程中都有体现。
吸收塔吸收氨气的课程设计吸收塔吸收氨气是一种常见的气体吸收工艺,广泛应用于石油化工、化学工程、环保等领域。
在课程设计中,我们将以吸收塔吸收氨气的设计为主题,探讨其工艺原理、设计步骤和影响因素等内容。
一、工艺原理吸收塔是一种将气体或蒸汽中的溶质吸收到液体中的设备。
氨气吸收塔是将氨气溶于液体中,通过气体与液体间的质量传递,实现氨气的分离和回收的过程。
吸收塔主要由塔体、填料、进料塔板、分布器、垂直区、塔顶、塔底等组成。
气体从塔底进入吸收塔,与自上而下流动的液体接触,在填料层间进行传质。
二、设计步骤1.确定氨气的物理化学性质:包括气体流量、气体浓度、压力、温度等参数。
2.确定吸收液的物理化学性质:包括液体种类、浓度、密度、粘度、表面张力等。
3.确定填料种类和填料层数:填料的选择应综合考虑气液传质效率、气阻、液阻、强度等因素,并根据泡状区压降和液滴区液体浓度要求确定填料层数。
4.确定吸收塔的基本参数:包括直径、高度、有效填料高度、压降等。
5.计算传质效率:气液传质的计算是吸收塔设计的重要环节之一,常用的传质模型有亚当斯-卡门模型、NTU模型等。
6.设计分布器和收液器:分布器的设计应保证气液均匀分布,而收液器则用于分离母液和气体。
三、影响因素吸收塔吸收氨气的效果受到多种因素影响,主要包括以下几个方面:1.气体和液体的物理化学性质:气体和液体的性质直接影响到气液传质效果,如溶液浓度、气体流量、温度等。
2.填料的种类和性能:填料的选择应综合考虑传质、气液分布等方面的性能,一般常用的填料有环形塔填料、骨架型填料等。
3.操作条件:包括进料气体流量、液体流量、进料温度等,这些条件的调整可以对吸收效果产生显著影响。
4.设备结构和设计参数:塔的结构和设计参数对吸收效果也有一定的影响,如填料层数、塔底收液器的设计等。
四、应用领域吸收塔吸收氨气的工艺在石油化工、化学工程和环保等领域广泛应用,主要有以下几个方面:1.净化废气:吸收塔可用于废气处理中,将废气中的氨气吸收到液体中,达到净化废气和回收氨气的目的。
化工原理课程设计水吸收氨填料吸收塔设计-V1化工原理课程设计——水吸收氨填料吸收塔设计化工生产中,氨气是一种常见的化学气体,亦是一种毒性气体。
为了保证生产安全,常常需要使用填料吸收塔对氨气进行处理。
本次化工原理课程设计的主题是水吸收氨填料吸收塔设计,下面将从设计的流程、填料选择、设备选型及操作控制方面进行详细阐述。
一、设计流程1.确定设计要求:包括氨气的进入浓度、出口浓度、进入流量、处理效率要求等。
2.确定填料种类:选择适合水吸收氨的填料种类。
3.塔体设计:根据进入流量和处理效率要求计算出塔体高度,以及塔体的内径和壁厚。
4.设备选型:根据填料种类和塔体设计的要求选型。
5.操作控制:确定运行参数和控制策略等。
二、填料选择1.氨气水解和物理吸收的填料:骨炭、石英、聚丙烯、陶瓷、活性炭等。
2.氨气化学吸收的填料:硫酸铵、硝酸铵、硫酸钙、硝酸钙、硫酸钠等。
综合考虑吸附容积、吸附速度、吸附效率、化学稳定性等因素,本设计选择硝酸铵作为填料。
三、设备选型1.填料吸收塔:根据设计要求和填料种类选择适合的填料吸收塔。
2.进气风机:根据进气流量和风阻要求选型。
3.冷却器:为了防止氨气过热,常常需要在进入填料吸收塔前,在氨气进风口处安装冷却器。
四、操作控制1.进气速度:进气速度过快会导致氨气不能充分吸收,进气速度过慢则会影响处理效率。
一般控制在0.5-1.5m/s。
2.水位控制:为了保证填料的湿润度,需要控制水的流量和水位。
3.塔体温度控制:为了保证填料吸收效率,需要控制塔体温度,一般保持在20-35℃。
4.出口浓度控制:通过调节水的流量和塔体内填料的密度,控制出口浓度。
结语:本次化工原理课程设计通过设计流程、填料选择、设备选型及操作控制方面的详细阐述,较为全面地介绍了水吸收氨填料吸收塔的设计过程。
对于化工领域的实践和专业知识积累具有一定的参考价值。
水吸收氨气过程填料吸收塔的设计首先,填料的选择是填料吸收塔设计中的重要环节。
常见的填料材料有陶瓷球、塑料球和金属填料等。
对于水吸收氨气来说,一般采用塑料球填料更为常见,其表面积大、孔隙率高,能够有效增加气液接触面积,提高氨气的吸收效率。
在填料选择时,还需要考虑填料的耐腐蚀性能、压降、堵塞等指标,以确保填料的稳定性和使用寿命。
其次,填料层高度的确定是填料吸收塔设计过程中的另一个重要参数。
填料层高度对气液接触效果有较大影响,一般情况下,填料层高度越大,气液接触面积越大,吸收效果越好,但也会增加设备的高度和投资成本。
因此,在实际设计中需要综合考虑填料层高度与吸收效果之间的平衡,确定合适的填料层高度。
液汽比是填料吸收塔设计中的另一个重要参数。
液汽比是指单位时间内液相流量与气相流量的比值。
液汽比过低会导致塔底压力升高,氨气吸收效果差;而液汽比过高则会造成能力浪费,并增加后续处理设备的负担。
根据经验,通常液汽比在1.5-2.5之间较为合适,具体的值可根据实际情况进行调整。
气液流速是填料吸收塔设计的另一关键参数。
气液流速需要根据填料类型、填料层高度等因素进行合理的选择。
一般情况下,流速过大会导致气液分布不均匀,造成液滴的飞散和带走气相成分,从而降低吸收效果;而流速过小则会增加填料吸附液膜的厚度,增加冲击损失,影响气液接触效果。
通常,气相的流速在1-2.5m/s之间,液相的流速在0.2-0.5m/s之间较为合适。
此外,填料吸收塔的设计还需要考虑塔的结构设备、排污系统、压力控制、温度控制等方面的设计。
塔的结构设备需要保证填料的安装、拆卸和清洗的便利性;排污系统需要保证吸收剂的及时排出,防止堵塞和腐蚀;压力和温度控制需要根据实际情况进行合理的设定,以确保塔内各部分工作状态的稳定性和安全性。
综上所述,水吸收氨气的填料吸收塔设计需要考虑填料选择、填料层高度、液汽比、气液流速等多个因素,并根据实际情况进行合理的选择和设计。
氨气填料吸收塔课程设计氨气填料吸收塔课程设计设计任务书1.设计题目本次设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。
混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。
要求排放气体中含氨低于0.05%(体积分数)。
2.操作条件1)操作压力:常压2)操作温度:20℃3)吸收剂用量为最小用量的1.8倍。
3.填料类型选择聚丙烯阶梯环填料。
4.设计内容1)确定设计方案并进行说明。
2)进行物料衡算。
3)计算吸收塔的工艺尺寸。
4)计算填料层压降。
5)简要设计液体分布器。
6)绘制液体分布器施工图。
7)计算吸收塔接管尺寸。
8)列出设计参数一览表。
9)绘制生产工艺流程图(A3号图纸)。
10)绘制吸收塔设计条件图(A3号图纸)。
11)对设计过程进行评述和有关问题的讨论。
目录前言1.水吸收氨气填料塔工艺设计方案简介1.1 任务及操作条件本设计任务为设计一座填料吸收塔,采用清水吸收混于空气中的氨气。
混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。
要求排放气体中含氨低于0.05%(体积分数)。
2.工艺计算2.1 基础物性数据2.1.1 液相物性的数据2.1.2 气相物性的数据2.1.3 气液相平衡数据2.1.4 物料衡算2.2 填料塔的工艺尺寸的计算2.2.1 塔径的计算2.2.2 填料层高度计算2.2.3 填料层压降计算前言塔设备是炼油、石油化工、精细化工、食品、医药及环保等部门中使用量大应用面广的重要单元设备。
它广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中,一直是国内外学者普遍关注的重要课题。
吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。
在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。
课程设计-水吸收氨过程填料吸收塔的设计《水吸收氨过程填料吸收塔的设计》
水吸收氨过程填料吸收塔是在聚乙烯(PVC)凝胶沉淀的基础上改进后的填料式吸收塔。
它在吸收过程中利用水来吸收产气量较大的烟气中的氨离子。
该填料有一定的弹性及
磁性,可以吸附氨离子,使它们上升到分离区,并且具有抗结块和抗碳块的能力。
本工程
的设计对提高烟气吸收效率,减少废气排放至大气中,及其他环境污染方面具有重要意义。
水吸收氨过程填料吸收塔的设计关键包括塔身尺寸的计算和内部填料的选择、放置位
置的确定等。
首先,根据工艺需要计算出塔身的尺寸,一般情况下,吸收塔的最小内径及最大高度
应符合国家行业标准。
其次,根据吸收塔的安装位置、管道系统结构和新鲜气流速度等条件,选择最佳的填料材料以满足水吸收氨过程的要求。
具体来说,吸收塔内部装设填料应
符合下列要求:研磨流变性能好、不易突然结块、匹配反应表面润湿性;吸附氨效率高;
在热激发下抗崩解及煅烧的能力强;检漏及回收方便,粒径均匀;具有较低的比表面积及
混合均匀性好。
最后,根据实际情况适当确定吸收塔内填料的层次布置、层高及孔径和高度,以使填料具有更好的吸附效果。
总之,水吸收氨过程填料吸收塔的设计考虑许多复杂因素,重点需要考虑填料内部及
外式两方面因素,以保证最佳的烟气吸收效果。
在设计过程中,把数学模型应用到实际中,设计出工艺技术指标最佳的水吸收氨过程填料吸收塔,对于环保方面具有重要意义。
一、設計任務書(一)設計題目試設計一座填料吸收塔,用於脫除混於空氣中的氨氣。
混合氣體的處理量為1000 m3/h,其中含氨氣為8%(體積分數),要求塔頂排放氣體中含氨低於0.02%(體積分數),採用清水進行吸收,吸收劑的用量為最小用量的1.5倍。
(20℃氨在水中的溶解度係數為H=0.725kmol/(m3.kPa)(二)操作條件1.操作壓力為常壓,操作溫度20℃.2.填料類型選用聚丙烯階梯環填料,填料規格自選。
3.工作日取每年300天,每天24小時連續進行。
(三)設計內容1.吸收塔的物料衡算;2.吸收塔的工藝尺寸計算;3.填料層壓降的計算;4.吸收塔接管尺寸計算;5.吸收塔設計條件圖;6.對設計過程的評述和有關問題的討論。
二、設計方案(一)流程圖及流程說明該填料塔中,氨氣和空氣混合後,經由填料塔的下側進入填料塔中,與從填料塔頂流下的清水逆流接觸,在填料的作用下進行吸收。
經吸收後的混合氣體由塔頂排除,吸收了氨氣的水由填料塔的下端流出。
(二)填料及吸收劑的選擇該過程處理量不大,所用的塔直徑不會太大,可選用25×12.5×1.4聚丙烯階梯環塔填料,其主要性能參數如下:比表面積at :22332/mm空隙率ε:0.90濕填料因數Φ:1172m-填料常數 A:0.204 K:1.75見下圖:根據所要處理的混合氣體,可採用水為吸收劑,其廉價易得,物理化學性能穩定,選擇性好,符合吸收過程對吸收劑的基本要求。
三、工藝計算(一)基礎物性數據 1.液相物性數據3998.2(/)L kg m ρ=6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅=272.6(d y n /c )940896(/)L m k g h σ==931.7610(/)L D m s -=⨯2. 氣相物性數據混合氣體平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空氣黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅= 273K ,101.3Kpa.氨氣在空氣中擴散係數:200.17(/)D m s =(二)物料衡算,確定塔頂、塔底的氣液流量和組成20℃,101.3Kpa 下氨氣在水中的溶解度係數 30.725/H kmol m kpa =998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯進塔氣相摩爾比: 10.080.087010.08Y ==-出塔氣相摩爾比:20.00020.00020010.0002Y ==- 對於純溶劑吸收過程,進塔液相組成:20X =混合氣體流量 :1100027341.59629322.4V ⨯==⨯ kmol/h進塔惰性氣體流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收過程屬於低濃度吸收,平衡關係為直線,最小液氣比可按下式計算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液氣比為最小液氣比的1.5倍,可得吸收劑用量為:0.75238.268 1.543.166/L Kmol h =⨯⨯= 根據全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L-=---=+==⨯液氣比 :43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔徑的計算 1.塔徑的計算考慮到填料塔內塔的壓力降,塔的操作壓力為101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为採用貝恩----霍夫泛點關聯式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛點率為0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600s V D m u ⨯===π⨯⨯ 圓整後取 ()()0.4400D m mm ==2.泛點率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85範圍之間) 3.填料規格校核:40016825D d ==> 4.液體噴淋密度校核:取最小潤濕速率為:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯min U U >故滿足最小噴淋密度的要求.(四)填料層高度計算 1.傳質單元高度計算273K ,101.3kpa 下,氨氣在空氣中的擴散係數20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,則293K ,101.3kpa 下,氨氣在空氣中的擴散係數20.189(/)v D cm s =293K ,101.3kpa 下,氨氣在水中的擴散係數()921.7610/L D m s -=⨯ (查化工原理附錄)*110.7540.07700.0581Y mX ==⨯= *220Y mX ==脫吸因數為:0.7540.6680.752 1.5mV S L ===⨯ 氣相總傳質單元數為:()*12*221ln 11OGY Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦=14.992氣相總傳質單元高度採用修正的恩田關聯式計算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液體品質通量為:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 氣體品質通量為:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=氣膜吸收係數:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收係數:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpaf =fuu =0.733>0.5 以下公式為修正計算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K au ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=。
水吸收氨气过程填料吸收塔的设计一、水吸收氨气过程水吸收氨气是一种常见的空气污染治理方法,其主要原理是利用水溶液与氨气发生化学反应,将其转化为无害的物质。
具体过程如下:1. 水溶液与氨气接触:将水溶液喷淋到填料层中,使其与上升的废气充分接触。
2. 化学反应:在接触过程中,水溶液中的OH-离子与NH3分子发生反应,生成NH4+离子。
反应式如下:NH3 + H2O → NH4+ + OH-3. 吸收效果:通过不断喷淋和填料层的作用,废气中的NH3被逐渐吸收,并转化为无害物质。
二、填料吸收塔的设计填料吸收塔是实现水吸收氨气过程的主要设备之一。
其设计需要考虑以下几个方面:1. 填料选择:填料是实现废气和水溶液接触的关键因素之一。
常见的填料有环形塔环、球形塞、波纹板等。
选择合适的填料可以提高吸收效率和降低能耗。
2. 填料层数:填料层数的多少直接影响吸收效果,一般情况下填料层数越多,吸收效果越好。
但是填料层数过多会增加设备高度和造价,需要根据实际情况进行设计。
3. 喷淋方式:喷淋方式也是影响吸收效率的重要因素。
常见的喷淋方式有顶部喷淋、侧面喷淋、中心喷淋等。
不同的喷淋方式适用于不同的填料和气体流量。
4. 水溶液浓度:水溶液浓度对吸收效率也有很大影响。
一般情况下,水溶液浓度在5%~10%之间较为合适,超过10%会增加能耗和造价。
5. 设备尺寸:填料吸收塔的尺寸需要根据废气流量、水溶液流量和吸收效率等因素进行计算。
一般情况下,设备高度在5~15m之间,直径在1~3m之间。
三、总结水吸收氨气过程是一种有效的空气污染治理方法,在填料吸收塔设计中需要考虑填料选择、填料层数、喷淋方式、水溶液浓度和设备尺寸等因素。
通过合理的设计和操作,可以实现高效的氨气吸收和空气治理效果。