方程的根与函数的零点教案示例
- 格式:doc
- 大小:97.50 KB
- 文档页数:4
方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
方程的根与函数的零点教学教案一、教学目标:1. 让学生理解方程的根与函数的零点的概念,掌握它们之间的关系。
2. 培养学生运用函数的零点定理解决问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 方程的根与函数的零点的定义。
2. 函数的零点定理及应用。
3. 方程的根与函数的零点之间的关系。
三、教学重点与难点:1. 重点:方程的根与函数的零点的概念,函数的零点定理。
2. 难点:方程的根与函数的零点之间的关系,函数的零点定理在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点之间的关系。
2. 利用实例分析,让学生直观地理解函数的零点定理。
3. 运用小组讨论法,培养学生的团队合作精神,提高解决问题的能力。
五、教学过程:1. 导入:引导学生回顾方程的解与函数的零点的概念,为新课的学习做好铺垫。
2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。
3. 实例分析:分析具体例子,让学生理解函数的零点定理及应用。
4. 练习:布置练习题,让学生巩固所学知识。
6. 作业布置:布置作业,让学生进一步巩固所学知识。
7. 课后反思:教师对本节课的教学进行反思,为学生下一步的学习做好准备。
六、教学评价:1. 课后作业:检查学生对课堂所学知识的掌握情况。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。
3. 小组讨论:评估学生在团队合作中的参与程度,以及他们的问题解决能力。
4. 期中期末考试:全面评估学生在整个学期的学习成果。
七、教学资源:1. 教学PPT:提供直观的教学演示,帮助学生更好地理解概念。
2. 练习题库:为学生提供丰富的练习资源,帮助他们巩固知识。
3. 教学视频:为学生提供额外的学习资源,帮助他们从不同角度理解知识点。
4. 网络资源:利用互联网为学生提供更多相关知识的学习资料。
八、教学进度安排:1. 第1周:介绍方程的根与函数的零点的概念。
一、《方程的根与函数的零点》二、教学目标:1. 了解方程的根与函数的零点的概念及关系;2. 掌握求解一元二次方程的方法;3. 学会利用函数的零点判断方程的解的情况;4. 能够运用方程的根与函数的零点解决实际问题。
三、教学重点与难点:1. 重点:方程的根与函数的零点的概念及关系,求解一元二次方程的方法;2. 难点:利用函数的零点判断方程的解的情况,运用方程的根与函数的零点解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生思考方程与函数之间的关系;2. 利用数形结合法,让学生直观地理解函数的零点与方程的根;3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学内容:1. 方程的根与函数的零点的概念介绍;2. 求解一元二次方程的公式法与因式分解法;3. 利用函数的零点判断方程的解的情况;4. 方程的根与函数的零点在实际问题中的应用实例。
教案内容依次按照教学步骤、教学活动、教学评价进行设计。
六、教学步骤:1. 引入新课:通过回顾前面的知识,引导学生思考方程与函数之间的关系,引出本节课的主题——方程的根与函数的零点。
2. 讲解概念:讲解方程的根与函数的零点的概念,让学生理解两者之间的关系。
3. 求解一元二次方程:引导学生学习求解一元二次方程的公式法与因式分解法,并通过例题让学生掌握这两种方法。
4. 利用函数的零点判断方程解的情况:讲解如何利用函数的零点判断方程的解的情况,并通过图形让学生直观地理解。
5. 实际问题应用:通过实例分析,让学生学会运用方程的根与函数的零点解决实际问题。
七、教学活动:1. 小组讨论:让学生分组讨论方程的根与函数的零点之间的关系,并分享各自的观点。
2. 例题讲解:让学生上台演示求解一元二次方程的过程,并讲解解题思路。
3. 函数零点判断:让学生通过图形判断给定方程的解的情况。
4. 实际问题解决:让学生分组讨论实际问题,并运用方程的根与函数的零点找出解决方案。
八、教学评价:1. 课堂提问:通过提问了解学生对equation 的根与function 的零点的概念的理解程度。
方程的根与函数的零点教案第一章:方程的根与函数的零点概念引入1.1 教学目标让学生理解方程的根与函数的零点的概念。
让学生掌握方程的根与函数的零点之间的关系。
培养学生运用数形结合的思想方法解决问题的能力。
1.2 教学内容引入方程的根的概念,引导学生理解方程的根是使方程左右两边相等的未知数的值。
引入函数的零点的概念,引导学生理解函数的零点是使函数值为零的未知数的值。
引导学生理解方程的根与函数的零点之间的关系。
1.3 教学活动通过实际例子,让学生初步理解方程的根与函数的零点的概念。
引导学生进行思考和讨论,深化对方程的根与函数的零点之间关系的理解。
布置练习题,巩固学生对方程的根与函数的零点的理解和运用。
第二章:一元二次方程的根与二次函数的零点2.1 教学目标让学生掌握一元二次方程的根与二次函数的零点之间的关系。
让学生学会运用一元二次方程的根的判别式解决实际问题。
培养学生运用数形结合的思想方法解决问题的能力。
2.2 教学内容引导学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生掌握一元二次方程的根的判别式及其应用。
引导学生运用一元二次方程的根的判别式解决实际问题。
2.3 教学活动通过实际例子,让学生理解一元二次方程的根与二次函数的零点之间的关系。
引导学生进行思考和讨论,深化对一元二次方程的根的判别式的理解和运用。
布置练习题,巩固学生对一元二次方程的根与二次函数的零点的理解和运用。
第三章:方程的根与函数的零点的判定定理3.1 教学目标让学生掌握方程的根与函数的零点的判定定理。
培养学生运用判定定理判断方程的根与函数的零点的情况。
3.2 教学内容引导学生掌握方程的根与函数的零点的判定定理。
引导学生运用判定定理判断方程的根与函数的零点的情况。
3.3 教学活动通过实际例子,让学生理解方程的根与函数的零点的判定定理。
引导学生进行思考和讨论,深化对判定定理的理解和运用。
布置练习题,巩固学生对判定定理的掌握。
第四章:方程的根与函数的零点的求解方法4.1 教学目标让学生掌握方程的根与函数的零点的求解方法。
方程的根与函数的零点教学教案设计一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。
2. 让学生掌握求解一元二次方程的方法,并能够运用到实际问题中。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的概念及其联系。
2. 一元二次方程的求解方法。
3. 实际问题中的应用。
三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其联系,一元二次方程的求解方法。
2. 教学难点:一元二次方程的求解方法在实际问题中的应用。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。
2. 使用多媒体课件,帮助学生直观地理解一元二次方程的求解过程。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。
2. 讲解概念:介绍方程的根与函数的零点的概念,并解释它们之间的联系。
3. 演示求解过程:利用多媒体课件,演示一元二次方程的求解过程,让学生了解求解方法。
4. 练习与讲解:让学生独立完成练习题,对其中出现的问题进行讲解。
5. 实际问题应用:引导学生运用所学知识解决实际问题,巩固所学内容。
7. 布置作业:布置一些有关方程的根与函数的零点的练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问的方式,了解学生对方程的根与函数的零点的理解和掌握程度。
2. 练习题:布置课后练习题,评估学生对一元二次方程求解方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们对于实际问题应用的掌握情况。
七、教学拓展1. 介绍一元二次方程的其他求解方法,如配方法、因式分解法等。
2. 探讨方程的根与函数的零点在实际问题中的应用,如物理学、工程学等领域的应用。
八、教学反馈1. 学生反馈:收集学生对课堂内容的反馈意见,了解他们的学习需求和困惑。
2. 教学反思:根据学生的反馈和课堂表现,反思教学过程中的不足之处,并进行改进。
方程的根与函数的零点教学教案一、教学目标1. 理解方程的根与函数的零点的概念。
2. 学会使用因式分解、配方法、求根公式等方法求解一元二次方程。
3. 能够运用函数的零点判断方程的解。
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 方程的根与函数的零点的概念。
2. 一元二次方程的解法:因式分解、配方法、求根公式。
3. 函数的零点与方程的解的关系。
三、教学重点与难点1. 教学重点:一元二次方程的解法,函数的零点与方程的解的关系。
2. 教学难点:一元二次方程的配方法和求根公式的运用。
四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。
2. 使用多媒体课件,展示一元二次方程的解法过程。
3. 进行小组讨论,培养学生的合作能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。
2. 新课讲解:讲解方程的根与函数的零点的概念,引导学生理解一元二次方程的解法。
3. 案例分析:分析具体的一元二次方程,运用因式分解、配方法、求根公式等方法求解。
4. 小组讨论:让学生进行小组讨论,分享解题心得,培养学生的合作能力。
5. 课堂练习:布置相关的练习题,巩固所学知识。
6. 总结与反思:总结方程的根与函数的零点的关系,引导学生思考如何运用函数的零点判断方程的解。
教学反思:通过本节课的教学,学生是否能够理解方程的根与函数的零点的概念?是否能够掌握一元二次方程的解法?是否能够运用函数的零点判断方程的解?这些问题需要在课后进行反思和评估,以便更好地调整教学方法和策略。
对于学生在解题过程中遇到的问题,需要进行个别辅导和指导,提高学生的解题能力。
六、教学评价1. 评价目标:检查学生对方程的根与函数的零点的理解,以及对一元二次方程解法的掌握。
2. 评价方法:课堂练习、课后作业、小组讨论、个人展示。
3. 评价内容:学生的解题能力、合作能力、思考问题的能力。
七、教学准备1. 教学资源:教材、多媒体课件、练习题。
方程的根与函数的零点公开课教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其关系。
2. 培养学生运用数形结合的方法分析问题、解决问题的能力。
3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的概念。
2. 方程的根与函数的零点的关系。
3. 求解方程根的方法。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其关系,求解方程根的方法。
2. 教学难点:运用数形结合的方法分析问题、解决问题的能力。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。
2. 利用数形结合的方法,帮助学生直观地理解问题。
3. 通过实际问题,培养学生的应用能力。
五、教学过程1. 导入:讲解方程的根与函数的零点的概念,引导学生理解两者之间的关系。
2. 新课:讲解方程的根与函数的零点的关系,引导学生掌握求解方程根的方法。
3. 案例分析:分析实际问题,让学生运用方程的根与函数的零点的关系解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调方程的根与函数的零点的重要性。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学活动1. 课堂讨论:让学生举例说明方程的根与函数的零点在实际问题中的应用,分享解题心得。
2. 小组合作:分组让学生探讨如何利用方程的根与函数的零点的关系解决实际问题,并进行汇报。
七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的理解程度。
2. 课后作业:评估学生运用所学知识解决问题的能力。
3. 小组汇报:评价学生在团队合作中的表现及对问题的分析、解决能力。
八、教学反馈1. 课后收集学生作业,分析存在的问题,为下一步教学提供参考。
2. 听取学生对教学内容的反馈,了解学生的学习需求,调整教学方法。
九、教学拓展1. 深入研究方程的根与函数的零点的相关理论,如代数基本定理等。
教案设计方程的根与函数的零点一、教学目标知识与技能:1. 理解方程的根与函数的零点的概念及其联系。
2. 学会使用数形结合的方法分析方程的根与函数的零点。
3. 掌握求解一元二次方程的方法,并能应用于实际问题中。
过程与方法:1. 通过观察、实验、探究等活动,培养学生的观察能力、思考能力和解决问题的能力。
2. 学会使用函数图像来分析方程的根的情况。
情感态度价值观:1. 培养学生的耐心和细心,对数学问题的探究兴趣。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的概念。
2. 方程的根与函数的零点的联系。
3. 一元二次方程的解法。
4. 利用函数图像分析方程的根的情况。
5. 实际问题中的应用。
三、教学重点与难点重点:1. 方程的根与函数的零点的概念及其联系。
2. 一元二次方程的解法。
难点:1. 对方程的根的情况的分析。
2. 利用函数图像分析方程的根的情况。
四、教学准备1. 教学课件或黑板。
2. 练习题。
五、教学过程1. 导入:a. 引导学生回顾方程的解的概念。
b. 引入“方程的根”的概念,引导学生理解方程的根与方程的解的关系。
2. 探究方程的根与函数的零点的联系:a. 引导学生观察一元二次方程的解与对应函数的零点的关系。
b. 通过实验或探究活动,让学生体会方程的根与函数的零点的联系。
3. 学习一元二次方程的解法:a. 引导学生学习一元二次方程的解法,如因式分解法、配方法、求根公式等。
b. 通过练习题,巩固学生对一元二次方程解法的掌握。
4. 利用函数图像分析方程的根的情况:a. 引导学生学会绘制函数图像。
b. 引导学生通过观察函数图像,分析方程的根的情况。
5. 实际问题中的应用:a. 引导学生运用方程的根与函数的零点的知识解决实际问题。
b. 提供一些实际问题,让学生练习运用所学知识解决问题。
b. 引导学生反思自己在学习过程中的收获和不足,提出改进措施。
7. 布置作业:a. 根据学生的学习情况,布置一些巩固所学知识的练习题。
《方程的根与函数的零点》教案一、教学目标1、知识与技能:理解函数零点的概念;领会函数零点与相应方程根之间的关系;掌握零点存在的判断条件。
2、过程与方法:由二次函数的图象与x轴的交点的横坐标和对一元二次方程的根为突破口,探究方程的根与函数的零点的关系,以探究的方法发现函数零点存在的条件;在课堂探究中体会数形结合的数学思想,从特殊到一般的归纳思想。
3、情感、态度与价值观:在函数与方程的联系中体验数形结合思想,培养学生的辨证思维能力,以及分析问题解决问题的能力。
五、教学重难点:1、教学重点:体会函数的零点与方程的根之间的联系。
2、教学难点:零点存在性的判定条件。
六、教法学法在教法上,本节课采用以学生为主体的探究式教学方法,采用“设问—探索—归纳—定论”层层递进的方式来突破本节课的重难点。
在学法上,精心设置了一个个问题链,并以此为主线,由浅入深,循序渐进,以培养学生探究精神为出发点,着眼于知识的形成和发展。
七、教学过程(一)回顾旧知,发现问题问题1(引例)求下列方程的根.(1)0x;+63=(2)0652=+-x x ;(3)062ln =-+x x .问题 2 观察下表,求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x 轴交点的坐标提出疑问:方程的根与函数图象与x 轴交点的横坐标之间有什么关系?结论:方程的根就是函数图象与X 轴交点的横坐标。
问题 3 若将上面特殊的一元二次方程推广到一般的一元二次方程20ax bx c ++=(0)a >及相应的二次函数c bx ax y ++=2(0)a >的图象与x 轴交点的关系,上述结论是否仍然成立?求下列函数的零点【设计意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.为引出函数零点的概念做准备。
】(二)总结归纳,形成概念1、函数的零点:对于函数y=f(x)我们把使方程f(x)=0的实数x叫做函数y=f(x)的零点。
课题:§3.1.1方程的根与函数的零点【教学目标】知识目标:理解函数零点的定义以及方程的根与函数的零点之间的联系,了解“函数零点存在”的判断方法,对新知识加以应用.能力目标:渗透由特殊到一般的认识规律,提升学生的抽象和概括能力,领会数形结合、化归等数学思想.情感、态度与价值观:认识函数零点的价值所在,使学生认识到学习数学是有用的;培养学生认真、耐心、严谨的数学品质;让学生在自我解决问题的过程中,体验成功的喜悦.【教学重点】理解函数的零点与方程根的关系,初步形成用函数观点处理问题的意识.【教学难点】函数零点存在性定理的理解及初步应用【教学方法】发现、合作、讲解、演练相结合.【教学过程】(一)抛转引玉浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃.在这段时间内,假设温度是均匀变化的,问:1)是否存在某时刻的温度为0℃?2)你能从数学的角度来解释这一现象吗?3)能计算出具体的时刻吗?(设计意图:当温度均匀变化时,温度随时间的变化图是一条直线,学生能够根据已知条件发现直线一定与x轴相交,求出相应函数的解析式,最终得出一次函数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.)(二)溯本逐源(设计意图:回顾二次函数图象与x 轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.)在《几何画板》下展示如下函数的图象: ()()()21226y x x x =-+-、28x y =-、()2y ln x =-,比较函数图象与x 轴的交点和相应方程的根的关系. 函数()y f x =的图象与x 轴交点,即当()0f x =,该方程有几个根,()y f x =的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.(设计意图:通过各种函数,将结论推广到一般函数.)1.函数零点概念对于函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点.说明:函数零点不是一个点,而是具体的自变量的取值.2.方程的根与函数零点的关系方程()0f x =有实数根函数()y f x =的图象与x 轴有交点函数()y f x =有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为相应函数问题来求解,同样,函数问题有时也可转化为相应方程问题.这正是函数与方程思想的基础. (三)顺藤摸瓜浙江杭州某天早晨六点的温度是-2℃,十二点的温度是12℃ .在这段时间内,温度是不均匀变化的,问:是否仍存在某时刻的温度为0℃?(学生在事先准备好的图纸上画出温度随时间的变化图,教师选取几个具有代表性的图用实物投影仪加以展示,并让学生解释为什么这一时刻仍存在,使学生在自我解决问题的过程中,体验成功的喜悦.)(设计意图:通过类比得出零点存在性定理,此刻体现变式教学.)给出零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b <,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.(四)牛刀小试1. 10x x -=3试判断方程+3是否有根?2.求函数26f (x )x x =+-ln 的零点的个数.(设计意图:通过例题分析,领会方程函数的转化思想,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法.)(五)抽丝剥茧问题1. 如果函数图象不是连续不断的,结论还成立吗?问题2.若()()0a,b上一定没有零点吗?一定f a f b>,函数()=在区间在[]y f x有零点吗?问题3.若()()0a,b上只有一个零点吗?可能=在区间在[]y f xf a f b<,函数()有几个?问题4.在满足定理的条件下,能否增加条件,可使函数()a,b=在区间在[]y f x上只有一个零点?(设计意图:函数零点存在的判定结论,是函数在某区间上存在零点的充分不必要条件,但零点的个数需结合函数的单调性等性质进行判断.结论的逆命题不成立,通过四个问题使学生准确理解零点存在性定理.)(六)再接再厉1.已知函数f (x)的图象是连续不断的,且有如下对应值表,则函数在哪几个2.函数()376=--在区间[-4,4]上是否存在零点?若存在零点,能确f x x x定零点的个数及大小吗?(设计意图:本题比较灵活,既可以用零点存在定理,又可以转化为方程、因式分解后求根。
方程的根与函数的零点教学教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。
2. 培养学生运用函数的性质解决方程问题的能力。
3. 渗透数学思想方法,提高学生的逻辑思维能力。
二、教学内容1. 方程的根与函数的零点的定义。
2. 方程的根与函数的零点的联系。
3. 利用函数的性质求解方程的根。
三、教学重点与难点1. 重点:方程的根与函数的零点的概念及其联系。
2. 难点:利用函数的性质求解方程的根。
四、教学方法1. 采用问题驱动的教学方法,引导学生探索方程的根与函数的零点的关系。
2. 利用数形结合的思想,让学生直观地理解函数的零点与方程的根的联系。
3. 采用小组讨论与合作交流的方式,培养学生的团队协作能力。
五、教学过程1. 导入:引导学生回顾方程的根的概念,引导学生思考方程的根与函数的关系。
2. 新课导入:介绍函数的零点的概念,引导学生理解函数的零点与方程的根的联系。
3. 案例分析:给出具体例子,让学生分析函数的零点与方程的根的关系。
4. 方法讲解:讲解如何利用函数的性质求解方程的根。
5. 练习与讨论:布置相关练习题,让学生巩固所学知识,并进行小组讨论。
6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用函数的性质解决实际问题。
7. 作业布置:布置适量的作业,巩固所学知识。
六、教学评价1. 学生能理解方程的根与函数的零点的概念及其联系。
2. 学生能运用函数的性质解决方程的根的问题。
3. 学生能积极参与课堂讨论,提高团队协作能力。
七、教学反思教师在课后应对本节课的教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
八、教学拓展1. 引导学生思考方程的根与函数的零点在实际应用中的意义。
2. 引导学生探索其他求解方程根的方法。
九、教学资源1. PPT课件。
2. 相关练习题。
3. 数形结合的图形资料。
十、教学时间1课时(40分钟)六、教学内容1. 方程的根的判别式。
2. 利用判别式求解方程的根。
《方程的根与函数的零点》教案一、教学内容函数与方程是高中数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。
在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有十分重要的地位。
二、教学目标以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系,发现并掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。
让学生在探究过程中体验发现的乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及分析问题解决问题的能力。
三、教学分析本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,再由特殊到一般,将其推广到一般方程与相应的函数的情形。
它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。
四、教学思想教学理念:培养学生学习数学的兴趣,学会严密思考教学原则:因材施教,注重各个层面的学生教学方法:采用以学生为主体的探究式教学方法,采用“设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。
五、教学重点与难点重点:了解函数零点的概念,函数零点与方程根之间的关系;掌握函数零点存在性的判断。
难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点。
六、教学过程第一阶段:方程的根与函数的零点提出问题:问题1:求解下列方程(1)6x-1=0; (2) 3x2+6x-1=0; (3) 3x3+6x-1=0(产生疑问,引起兴趣,引出课题)第三题学生无法解答,产生疑惑,给学生介绍一次方程、二次方程甚至三次方程、四次方程的解都可以通过系数的四则运算,乘方与开方等运算来表示,但高于四次的方程一般不能用公式求解,引出近似解方法二分法引入课题。
方程的根与函数的零点教案方程的根与函数的零点教案(精选6篇)作为一名为他人授业解惑的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
教案应该怎么写呢?下面是小编整理的方程的根与函数的零点教案,仅供参考,欢迎大家阅读。
方程的根与函数的零点教案篇1学习目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.学习过程一、课前准备(预习教材P86~ P88,找出疑惑之处)复习1:一元二次方程 +bx+c=0 (a 0)的解法.判别式 = .当 0,方程有两根,为 ;当 0,方程有一根,为 ;当 0,方程无实根.复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学学习探究探究任务一:函数零点与方程的根的关系问题:① 方程的解为,函数的图象与x轴有个交点,坐标为 .② 方程的解为,函数的图象与x轴有个交点,坐标为 .③ 方程的解为,函数的图象与x轴有个交点,坐标为 .根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的 .你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zero point).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为 ;(2)函数的零点为 .小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:① 作出的图象,求的值,观察和的符号② 观察下面函数的图象,在区间上零点; 0;在区间上零点; 0;在区间上零点; 0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.典型例题例1求函数的零点的个数.变式:求函数的零点所在区间.小结:函数零点的求法.① 代数法:求方程的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.动手试试练1. 求下列函数的零点:练2. 求函数的零点所在的大致区间.三、总结提升学习小结①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理知识拓展图象连续的函数的零点的性质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.学习评价自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟满分:10分)计分:1. 函数的零点个数为().A. 1B. 2C. 3D. 42.若函数在上连续,且有 .则函数在上().A. 一定没有零点B. 至少有一个零点C. 只有一个零点D. 零点情况不确定3. 函数的零点所在区间为().A. B. C. D.4. 函数的零点为 .5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .课后作业1. 求函数的零点所在的大致区间,并画出它的大致图象.2. 已知函数 .(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.方程的根与函数的零点教案篇2教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。
第一章:方程的根1.1 定义与性质引入方程的根的概念,解释方程的根是什么。
探讨方程根的性质,如正负性、整数性等。
1.2 求解一元一次方程引导学生理解一元一次方程的解法,如加减法、乘除法等。
通过例题演示求解一元一次方程的步骤。
1.3 求解一元二次方程介绍一元二次方程的一般形式,解释判别式的概念。
引导学生掌握求解一元二次方程的配方法、因式分解法、公式法等。
第二章:函数的零点2.1 定义与性质引入函数的零点的概念,解释函数的零点是什么。
探讨函数零点的性质,如唯一性、存在性等。
2.2 函数零点的判定定理引导学生理解函数零点的判定定理,如介值定理、单调性定理等。
通过例题演示如何应用判定定理判断函数零点存在性。
2.3 函数零点的求解方法介绍求解函数零点的方法,如图像法、代数法、迭代法等。
引导学生掌握不同求解方法的适用场景和步骤。
第三章:方程与函数的关系引导学生理解方程的根与函数零点的关系,解释它们之间的联系。
通过例题展示方程的根与函数零点的关系。
3.2 函数图像与方程根的关系引导学生观察函数图像,解释图像与方程根的关系。
通过例题演示如何从函数图像中找到方程的根。
3.3 函数零点的应用引导学生了解函数零点的应用,如解方程、求函数值域等。
通过例题展示函数零点的应用。
第四章:实际问题与函数零点4.1 实际问题引入通过实际问题引入函数零点的概念,如物体的运动、经济问题等。
引导学生理解实际问题中函数零点的重要性。
4.2 实际问题的建模与求解引导学生学会将实际问题转化为函数零点问题,建立数学模型。
通过例题演示如何解决实际问题中的函数零点问题。
4.3 实际问题的拓展与思考引导学生思考实际问题中函数零点的其他应用,如优化问题等。
通过讨论引导学生深入理解函数零点在实际问题中的应用。
第五章:总结与提高5.1 知识总结引导学生总结本节课所学的内容,包括方程的根、函数的零点、它们之间的关系以及实际问题中的应用。
通过提问或小测验检查学生的理解程度。
“方程的根与函数的零点”教学教案设计第一章:引言1.1 教学目标让学生了解方程的根与函数的零点的概念。
让学生理解方程的根与函数的零点之间的关系。
1.2 教学内容介绍方程的根与函数的零点的定义。
解释方程的根与函数的零点之间的关系。
1.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明方程的根与函数的零点之间的关系。
1.4 教学评估提问学生关于方程的根与函数的零点的概念。
让学生完成一些相关的练习题。
第二章:方程的根2.1 教学目标让学生了解方程的根的定义和性质。
让学生掌握求解方程根的方法。
2.2 教学内容介绍方程的根的定义和性质。
讲解求解方程根的方法,如因式分解法、配方法、求根公式等。
2.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明方程的根的求解方法。
2.4 教学评估提问学生关于方程的根的定义和性质。
让学生完成一些求解方程根的练习题。
第三章:函数的零点3.1 教学目标让学生了解函数的零点的定义和性质。
让学生掌握求解函数零点的方法。
3.2 教学内容介绍函数的零点的定义和性质。
讲解求解函数零点的方法,如图像法、代数法等。
3.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明函数的零点的求解方法。
3.4 教学评估提问学生关于函数的零点的定义和性质。
让学生完成一些求解函数零点的练习题。
第四章:方程的根与函数的零点的关系4.1 教学目标让学生了解方程的根与函数的零点之间的关系。
让学生掌握利用函数的零点来求解方程根的方法。
解释方程的根与函数的零点之间的关系。
讲解如何利用函数的零点来求解方程根。
4.3 教学方法使用多媒体演示文稿进行讲解。
通过举例来说明如何利用函数的零点来求解方程根。
4.4 教学评估提问学生关于方程的根与函数的零点之间的关系。
让学生完成一些利用函数的零点来求解方程根的练习题。
第五章:综合练习5.1 教学目标让学生巩固方程的根与函数的零点的概念和求解方法。
提高学生的解题能力。
5.2 教学内容提供一些综合性的练习题,涵盖方程的根与函数的零点的相关知识。
XX 导学案 学科: 编号: 编写人: 审核人: 使用时间:班级 姓名: 小组序号: 组长评价: 教师评价课题:方程的根与函数的零点(第1课时)【学习目标】1、能说出函数的零点的意义,知道方程的根与函数的零点的关系。
2、会运用求简单函数的零点,能结合图像处理“三个二次”的转换;3、培养用函数观点处理问题的意识,体会函数与方程的思想;【学习重点与难点】学习重点:函数零点与方程的根的关系,“三个二次”的转换。
学习难点:结合图像处理“三个二次”的转换。
【使用说明与学法指导】1、带着预习案中问题导学中的问题自主设计预习提纲,通读教材P 8688页内容,阅读XXX资料XXX 页内容,对概念、关键词、XXX 等进行梳理,作好必要的标注和笔记。
2、认真完成基础知识梳理,在“我的疑惑”处填上自己不懂的知识点,在“我的收获”处填写自己对本课自主学习的知识及方法收获。
3、熟记、XXX 基础知识梳理中的重点知识。
预习案一、问题导学1、函数的零点就是使函数值为零的点吗?2、函数的零点与函数图像有何关系?3、二次函数都有零点吗?二、知识梳理1、函数零点的概念:对于函数()y f x =,我们把使 的实数x 叫做()y f x =的零点.这样,函数()y f x =的零点就是 的实数根,也就是 .2、方程、函数、图像之间的关系方程()0f x = ⇔函数()y f x =的图像 ⇔函数()y f x = .3、已知二次函数2(0)y ax bx c a =++≠当240b ac ∆=->时,二次函数有 个零点;当240b ac ∆=-=时,二次函数有 个零点;当240b ac ∆=-<时,二次函数有 个零点.4、已知二次函数)0()(2>++=a c bx ax x f 的两个零点为)(,2121x x x x ≠则0)(>x f 的解集为 ,0)(<x f 的解集为三、预习自测1、函数223y x x =--的零点是 ,0322>--x x 的解集为 .2、在二次函数2y ax bx c =++中,0ac <,则其零点的个数为 .3、下列函数中有2个零点的是( ) .lg A y x = .2x B y = 2.C y x = .||1D y x =-我的疑惑: 我的收获:探究案一、合作探究探究1、求下列函数的零点:2(1)()20f x x x =--+;2(2)()(1)(514)f x x x x =---;223(1);(3)()lg 1(1).x x x f x x x ⎧--<=⎨-≥⎩;探究2、(1)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为)3,1(, 且方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(2)已知函数122+++=m x x y ①若有两个零点,且都比12-小,求实数m 的取值范围; ②若有两个零点,且一根比2小,一根比2大,求实数m 的取值范围.二、总结整理1、核心知识:2、典型方法:3、重点问题解决:训练案一、课中检测与训练1、求下列函数的零点:(1)202++-=x x y ; (2))13)(1(2+--=x x x y ;2、 二次函数02<++c bx x 的解集为是)3,2(,则,b c 的值为( )A .5,6 B.5,6 C.6,5 D.6,53、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______二、课后巩固促提升1、反思提升:熟记重点知识,反思学习思路和方法,整理典型题本2、完成作业:课本P88页:2题;《课时作业》Pxx页:x题、x题3、温故知新:阅读课本Pxx页,并完成新发的预习案;探讨《随堂优化训练》Pxx页。
方程的根与函数的零点教学设计【引言】在高中数学教学中,方程的根和函数的零点是重要的概念。
它们的概念深入浅出地阐述了数学中的解的概念,对于学生理解数学的抽象概念和问题求解具有重要作用。
本文将介绍一种针对方程的根和函数的零点的教学设计,以帮助学生更好地理解这两个概念及其应用。
【一、教学目标】1. 理解方程的根和函数的零点的概念。
2. 掌握求解一元一次方程和一元一次函数的零点的方法。
3. 运用方程的根和函数的零点解决实际问题。
【二、教学内容】1. 方程的根和函数的零点的定义。
2. 求解一元一次方程的根。
3. 求解一元一次函数的零点。
4. 应用方程的根和函数的零点解决实际问题。
【三、教学过程】1. 引导学生认识方程的根和函数的零点的概念。
通过实例和图像的展示,让学生对根和零点的含义有初步的了解。
2. 讲解一元一次方程的根的概念与求解方法。
首先,介绍方程根的定义,即方程中使得方程等号成立的未知数的值。
然后,示范如何通过逆运算的方法求解一元一次方程的根。
提供一些实例,并与学生一起进行求解。
3. 讲解一元一次函数的零点的概念与求解方法。
首先,引入函数的概念,并解释函数与方程的关系。
然后,介绍函数的零点的定义,即函数图像与x轴相交的点。
通过示意图和实例,让学生理解函数的零点的概念。
接着,示范如何通过方程求解一元一次函数的零点。
提供一些实例进行求解,并鼓励学生尝试自己解决问题。
4. 进一步讲解方程的根和函数的零点的应用。
给学生提供一些实际问题,让他们应用所学知识解决这些问题。
例如,通过方程的根和函数的零点来解决线性方程组的问题、图像问题等。
引导学生分析问题,把问题转化为方程或函数的形式,并应用解决方法求解。
【四、教学评价】在教学过程中,可以采用以下方式对学生进行评价:1. 课堂练习:设计一些练习题,检查学生对方程的根和函数的零点的掌握程度。
2. 小组合作:让学生以小组形式解决实际问题,并互相评价其解决方法的合理性和正确性。
方程的根与函数的零点教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。
2. 培养学生运用数形结合的方法分析问题、解决问题的能力。
3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。
二、教学内容1. 方程的根与函数的零点的定义。
2. 方程根的判别式及其应用。
3. 函数的零点与方程根的关系。
4. 求解方程根的方法。
5. 实际问题中的应用。
三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念、联系,求解方程根的方法。
2. 教学难点:方程根的判别式的应用,函数的零点与方程根的关系。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。
2. 利用数形结合的方法,直观地展示函数的零点与方程根的求解过程。
3. 运用实例分析,让学生体会方程根在实际问题中的应用。
五、教学过程1. 导入:通过引入实际问题,激发学生对方程根的求解的兴趣。
2. 讲解方程的根与函数的零点的定义,引导学生理解两者之间的关系。
3. 讲解方程根的判别式,并通过实例分析让学生掌握判别式的应用。
4. 讲解求解方程根的方法,如直接开平方法、因式分解法、公式法等。
5. 利用数形结合的方法,展示函数的零点与方程根的求解过程。
6. 通过课后练习,巩固所学知识,提高学生解决实际问题的能力。
7. 总结本节课的主要内容,强调方程的根与函数的零点在实际问题中的应用。
8. 布置作业,让学生进一步巩固方程的根与函数的零点的相关知识。
六、教学活动1. 小组讨论:让学生分组讨论如何运用判别式判断方程根的情况。
2. 实例分析:选取几个实例,让学生运用所学知识求解方程的根。
3. 练习:布置一些有关方程根与函数零点的练习题,巩固所学知识。
七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的概念、判别式的应用的理解。
2. 作业批改:检查学生运用所学知识解决实际问题的能力。
3. 课后访谈:了解学生对课堂教学的反馈,以便改进教学方法。
“方程的根与函数的零点”教学教案设计一、教学目标:1. 理解方程的根与函数的零点的概念及其关系。
2. 学会运用因式分解、配方法、求根公式等方法求解一元二次方程。
3. 能够运用函数的零点判断方程的根的情况。
4. 提高学生解决问题的能力,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及其关系。
运用因式分解、配方法、求根公式等方法求解一元二次方程。
运用函数的零点判断方程的根的情况。
2. 教学难点:理解方程的根与函数的零点的本质联系。
灵活运用各种方法求解一元二次方程。
判断方程根的情况。
三、教学方法与手段:1. 教学方法:讲授法:讲解方程的根与函数的零点的概念及其关系,传授求解一元二次方程的方法。
案例分析法:分析实际案例,引导学生理解方程的根与函数的零点的应用。
讨论法:组织学生分组讨论,培养学生的合作与交流能力。
2. 教学手段:投影仪:展示相关概念、例题和讲解过程。
纸质教案:提供详细的解题步骤和练习题。
网络资源:提供相关的学习资料和在线练习平台。
四、教学过程:1. 引入新课:通过展示实际问题,引导学生思考方程的根与函数的零点的关系。
2. 讲解概念:讲解方程的根与函数的零点的概念,阐述它们之间的联系。
3. 方法讲解:讲解因式分解、配方法、求根公式等方法求解一元二次方程的步骤。
4. 案例分析:分析实际案例,引导学生运用方程的根与函数的零点判断方程的根的情况。
5. 练习与讨论:布置练习题,组织学生分组讨论,互相交流解题思路和方法。
五、课后作业:1. 巩固所学知识,运用方程的根与函数的零点判断方程的根的情况。
2. 练习求解一元二次方程,提高解题速度和准确性。
3. 总结方程的根与函数的零点的应用,思考如何将所学知识运用到实际问题中。
六、教学评价:1. 评价目标:学生能理解方程的根与函数的零点的概念及其关系。
学生能运用因式分解、配方法、求根公式等方法求解一元二次方程。
学生能运用函数的零点判断方程的根的情况。
《方程的根与函数的零点》教案示例
刘宗良
一.内容和内容解析
本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理.
函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标.
由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方
程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题.这是函数与方程关系认识的第一步.
零点存在性定理,是函数在某区间上存在零点的充分不必要条件.如果函数在区间[a,b]上的图象是一条连续不断的曲线,并且满足f(a)·f(b)<0,则函数在区
间(a,b)内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断.定理的逆命题不成立.
方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”.
方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位.本节的教学重点是,方程的根与函数零点的关系、函数零点存在性定理.
二.目标和目标解析
通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间.
1.能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系;
2.正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点只能不止一个;
3.能利用函数图象和性质判断某些函数的零点个数;
4.能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器).
三.教学问题诊断分析
学生已有的认知基础是,初中学习过二次函数图象和二次方程,并且解过“当函数值为0时,求相应自变量的值”的问题,初步认识到二次方程与二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会.在高中阶段,已经学习了函数概念与性质,掌握了部分基本初等函数的图象与性质.
教学的重点是方程的根与函数零点的关系及零点存在性定理的深入理解与应用.
以二次方程及相应的二次函数为例,引入函数零点的概念,说明方程的根与函数零点的关系,学生并不会觉得困难.学生学习的难点是准确理解零点存在性定理,并针对具体函数(或方程),能求出存在零点(或根)的区间.
教学过程中,通过引导学生通过探究,发现方程的根与函数零点的关系;而零点存在性定理的教学,则应引导学生观察函数图象与轴的交点的情况,来研究函数零点的情况,通
过研究:①函数图象不连续;②;③,函数在区间上不单调;④,函数在区间上单调,等各种情况,加深学生对零点存在性定理的理解.四.教学支持条件分析
本节教学目标的实现,需要借助计算机或者计算器,一方面是绘制函数图象,通过观察图象加深方程的根、函数零点以及同时函数图象与轴的交点的关系;另一方面,判断零点所在区间过程中,一些函数值的计算也必须借助计算机或计算器.
五.教学过程设计
1.方程的根与相应函数图象的关系
复习总结一元二次方程与相应函数与轴的交点及其坐标的关系:
一元二次方程根的个数
图象与轴交点个数
图象与轴交点坐标
意图:回顾二次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.
问题一、上述结论对其他函数成立吗?为什么?
在《几何画板》下展示如下函数的图象:
、、、、
,
比较函数图象与轴的交点和相应方程的根的关系。
函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标.
意图:通过各种函数,将结论推广到一般函数。
2.函数零点概念
对于函数,把使的实数叫做函数的零点.
说明:函数零点不是一个点,而是具体的自变量的取值.
3.方程的根与函数零点的关系
方程有实数根函数的图象与轴有交点函数有零点
以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为函数问题来求解,同样,函数问题有时也可转化为方程问题.这正是函数与方程思想的基础.4.零点存在性定理
问题二、观察图象(气温变化图)片段,根据该图象片段,将其补充成完整函数图象,并问:是否有某时刻的温度为0℃?为什么?(假设气温是连续变化的)
意图:通过类比得出零点存在性定理.
给出零点存在性定理:如果函数在区间上的图象是连续不断一条曲线,并且有,那么,函数在区间内有零点.即存在,使得,这个c也就是方程的根.
问题三、不是连续函数结论还成立吗?请举例说明。
在《几何画板》下结合函数的图象说明。
问题四、若,函数在区间在上一定没有零点吗?
问题五、若,函数在区间在上只有一个零点吗?可能有几个?
问题六、时,增加什么条件可确定函数在区间在上只有一个零点?
在《几何画板》下结合函数的图象说明问题四、五、六。
意图:通过四个问题使学生准确理解零点存在性定理.
5.例题:求函数的零点的个数.
问题七、能否确定一个区间,使函数在该区间内有零点.
问题八、该函数有几个零点?为什么?
意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法.
六.目标检测设计
1.已知函数f (x)的图象是连续不断的,且有如下对应值表,则函数在哪几个区间内有零点?为什么?
x 1 2 3 4 6 10
f (x)20 -5.5 -2 6 18 -3
2.函数在区间[-5,6]上是否存在零点?若存在,有几个?
3.利用函数图象判断下列方程有几个根
(1)
(2)
4.指出下列函数零点所在的大致区间
(1)
(2)
最后,师生共同小结(略)
思考题:函数的零点在区间内有零点,如何求出这个零点?
设计意图:为下一节“二分法”的学习做准备.
——摘自人教网。