计算电磁学作业_二)
- 格式:doc
- 大小:72.00 KB
- 文档页数:2
一、填空题1、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d的导体板,则其电容为 ;答案内容:;20d Sε2、导体静电平衡必要条件是 ,此时电荷只分布在 。
答案内容:内部电场处处为零,外表面;3、若先把均匀介质充满平行板电容器,(极板面积为S ,极反间距为L ,板间介电常数为r ε)然后使电容器充电至电压U 。
在这个过程中,电场能量的增量是 ;答案内容:202ULsr εε4、在一电中性的金属球内,挖一任意形状的空腔,腔内绝缘地放一电量为q 的点电荷,如图所示,球外离开球心为r 处的P 点的场强 ; 答案内容:r r qE e ∧=204περ;5、 在金属球壳外距球心O 为d 处置一点电荷q ,球心O 处电势 ;答案内容:d q04πε;6、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势 。
答案内容:⎪⎭⎫ ⎝⎛++-πεb q Q a q r q 041 7、导体静电平衡的特征是 ,必要条件是 。
答案内容:电荷宏观运动停止,内部电场处处为零;8、判断图1、图2中的两个球形电容器是串连还是并联,图1是_________联,图2是________联。
答案内容:并联,串联;9、在点电荷q +的电场中,放一金属导体球,球心到点电荷的距离为r ,则导体球上感应电荷在球心处产生的电场强度大小为: 。
答案内容:2014qr πε ;10、 一平板电容器,用电源将其充电后再与电源断开,这时电容器中储存能量为W 。
然后将介电常数为ε的电介质充满整个电容器,此时电容器内存储能量为 。
答案内容:0W εε; 11、半径分别为R 及r 的两个球形导体(R >r ),用一根很长的细导线将它们连接起来,使二个导体带电,电势为u ,则二球表面电荷面密度比/R r σσ= 。
答案内容:/r R ;12、一带电量 为Q 的半径为r A 的金属球A ,放置在内外半径各为r B 和r C 的金属球壳B 内。
高电压技术 试卷 第 1 页(共8页)1.有一电容为C 0=11.0pF/m 、电感为L 0=0.99μh/m 的架空输电线路与波阻抗为Z 2=50欧姆的电缆线路相连,现有一幅值为U 0=50kV 的无限长直角电压波从架空线路进入电缆线路,求电缆线路上的电压波大小。
【解答】架空线路波阻抗1300Z ===Ω (2分) 电缆线路电压波 '2201222505014.350300Z U U kV Z Z ⨯==⨯=++ (3分) 2.如图所示,长为900m 的AB 线路两端连接无穷长线路,一无穷长直角波传递到A 点时折射电压为U 0,设U 0自A 点开始传播的瞬间为t =0,波的传播速度为v =300m /μs 。
试求t =8μs 时B 点的电压。
【解答】B 点的折射系数 22122220024002003Z Z Z α⨯===++ (2分) 当200239,3B s t s u U U μμα≤<==(2分) 所以,(8)20023B t s u U U μα===(1分)3.某110kV 变电所进线段长度为1km ,变电所中的避雷器与变压器之间的距离为50m ,避雷器残压为260kV ,当入侵波的陡度为1.5kV/m 时,若避雷器能起到保护变压器的作用,则变压器雷电冲击耐压值至少应为多大?高电压技术 试卷 第 2 页(共8页)【解答】变压器承受电压为 '22602 1.550410R U U a L kV =+=+⨯⨯=(3分)故变压器雷电冲击耐压值至少应为410kV 。
(2分)4.为了检测数公里长线路中故障点的位置,在其一端经集中参数电阻R(R 等于线路的波阻抗z)投入一方波(见图46a),在此处测到的波形如图46b 所示。
请分析此故障是何种故障?故障点距观测点的距离是多少? (线路的波速度为300m/µs )【解答】解:是断线(开路)故障。
(2分)故障点距观测点距离为 430060022T l v m ==⨯=。
电磁学练习题电场强度与电势差计算题目电磁学练习题:电场强度与电势差计算题目在电磁学中,电场强度和电势差是两个基本概念,它们描述了电场中的电荷相互作用和能量转化的关系。
掌握计算电场强度和电势差的方法对于理解和解决实际问题非常重要。
本文将通过一系列练习题,帮助读者巩固和运用相关知识。
练习题一:均匀带电细杆的电场强度和电势差计算假设存在一根长度为L、线密度为λ的无限长均匀带电细杆,电势零点位于无穷远处。
我们需要求出在距离杆上不同位置的点A和点B处的电场强度和电势差。
解答:1. 电场强度的计算由于带电细杆是无限长的,我们可以假设它仅存在于x轴上。
考虑杆上一小段长度dx,它对点A处的电场强度贡献为dE,根据库仑定律,dE的大小可以表示为:\[ dE = \frac{1}{4πε_0} \frac{dq}{r^2} \]其中dq是这段长度dx上的电荷量,r是杆上的电荷到点A的距离。
根据线密度λ的定义(λ=Q/L,Q是细杆上的总电荷量),我们可以得到:\[ dq = λdx = \frac{Q}{L}dx \]将dq的表达式代入dE的计算公式,我们可以得到整根细杆对点A 处的电场强度E_A:\[ E_A = \frac{1}{4πε_0} \int \frac{Q}{L} \frac{dx}{x^2} \]进行积分计算,可得:\[ E_A = \frac{Q}{4πε_0L} \int \frac{dx}{x^2} = \frac{Q}{4πε_0L} \left( -\frac{1}{x} \right) \Bigg|_{-\infty}^{x} = \frac{Q}{4πε_0Lx} \]同样的方法,我们可以计算出点B处的电场强度E_B:\[ E_B = \frac{Q}{4πε_0Lx} \]2. 电势差的计算电势差是从参考点(电势零点)到某点的电势能增加的量。
在本题中,我们让电势零点位于无穷远处,所以点A和点B的电势差可以定义为:\[ V_{AB} = - \int_A^B E \cdot dl \]其中,E是电场强度,dl是微小位移矢量。
2012高考练习电磁学计算题1.如图,在xOy 坐标中第Ⅰ和第Ⅳ象限中分布着平行于x 轴的匀强电场,第Ⅳ象限的长方形OPQH 区域内还分布着垂直坐标平面的、大小可以任意调节的匀强磁场.一质子从y 轴上的a 点射入场区,然后垂直x 轴通过b 点,最后从y 轴上的c 点离开场区.已知:质子质量为m 、带电量为q ,射入场区时的速率为v 0,通过b 点时的速率为022v ,d Oa OP 22==,d Ob OH 3223==(1)在图中标出电场和磁场的方向;(2)求:电场强度的大小以及c 到坐标原点的距离Oc ;(3)如果撤去电场,质子仍以v 0从a 点垂直y 轴射入场区.试讨论质子可以从长方形OPQH 区域的哪几条边界射出场区,从这几条边界射出时对应磁感应强度B 的大小范围和质子转过的圆心角θ的范围.[建议改]:d 323==2.如图所示,两根半径为r 光滑的41圆弧轨道间距为L ,电阻不计,在其上端连有一阻值为R 0的电阻,整个装置处于竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L 、质量为m 、电阻为R 的金属棒从轨道的顶端PQ 处开始下滑,到达轨道底端MN 时对轨道的压力为2mg ,求:(1)棒到达最低点时电阻R 0两端的电压;(2)棒下滑过程中R 0产生的热量; (3)棒下滑过程中通过R 0的电量.3.如图甲所示,在水平面上固定有宽为m L 0.1=足够长的金属平行导轨,导轨左端接有的Ω=5.0R 的电阻, 垂直于导轨平面有一磁场,且磁感应强度随时间变化规律如图乙所示。
在0=t 时刻,在距导轨左端d=5m 处有一阻值Ω=5.0r 光滑导体棒,放置在导轨上,第1S 内导体棒在一变力作用下始终处于静止状态,不计导体棒与导轨之间的接触电阻。
求: ⑪第1s 内的感应电动势大小; ⑫第1s 末拉力的大小及方向;⑬若1s 后拉力保持与第1s 末相同,求导体棒的最终速度。
4.如下图所示,带电平行金属板PQ 和MN 之间的距离为d ;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B 。
2023北京初三二模物理汇编电磁学计算题一、计算题1.(2023·北京朝阳·统考二模)如图甲所示的电路,闭合开关S,将滑动变阻器R的滑片P由A端移动到B端时,定值电阻0R的电功率P和电流I的关系图像如图乙所示。
假设电源电压保持不变,求:(1)滑动变阻器的滑片P在A端时,通过电路中的电流;(2)电源电压;(3)滑动变阻器的最大阻值。
2.(2023·北京丰台·统考二模)如图所示的是某款电饭锅的简化电路,1R、2R为阻值一定的电热丝。
该电饭锅开始焖烧米饭时,开关S和1S同时闭合,电饭锅处于高功率加热状态;经过一段时间后,开关1S自动断开,电饭锅处于低功率保温状态;再经过一段时间后,米饭完全成熟。
图为用该电饭锅焖熟一锅米饭的全过程中,功率随时间变化的图像。
已知电阻1R的阻值是88Ω,家庭电路的电压U是220V。
当该电饭锅正常工作时,求:(1)保温时的电流;(2)加热时电阻1R的功率;(3)焖熟一锅米饭的全过程消耗的电能。
3.(2023·北京平谷·统考二模)如图所示的电路,电源两端的电压为6V保持不变。
闭合开关S后,电压表的示数为2V,电阻2R的功率为0.8W。
求:(1)电阻1R的阻值;(2)通电10s电路消耗的电能。
4.(2023·北京西城·统考二模)如图所示是小洁设计的汽车油量表模拟电路。
其中R是滑动变阻器的电阻片,滑动变阻器的滑片P跟滑杆连接,滑杆可以绕固定轴O转动,另一端固定着一个浮子。
把电流表的刻度盘改为相应的油量体积数,可以直接读出油箱中的油量。
已知:电源两端电压为12V且保持不变,电流表的量程为0~0.6A。
闭合开关S,当油箱内为满油量时,滑动变阻器的滑片P滑动到电阻片的一端,电流表指针指在“0.6A”处;当油箱内空箱时,滑动变阻器的滑片P滑动到电阻片的另一端,电流表指针指在“0.15A”处。
求:(1)电路中的保护电阻R0;(2)滑动变阻器的电阻片的最大阻值R;(3)当油箱内为一半油量时,滑片P恰好滑动到电阻片中点,此时对应的电流表的示数I。
房改房大锅饭大公国静电场中的导体:例题1如图,半径为的接地导体球附近有一个静止点电荷,它与球心相距为,求导体球表面上感应电荷。
解:点电荷在球心处的电势为设为球面上感应面电荷密度,在球面上各点不尽相同(注意:对一个孤立的带电球形导体而言,其电荷是均匀分布在球面上的,即面电荷密度处处相同。
而今,导体球处于点电荷的电场中,对球面上各点的感应电荷分布是不均匀的。
)为此,可先在球面上任取一面积元,其上的感应电荷为,它在球心点的电势为整个球面上的感应电荷在球心点的电势为显然,,上式成为而球心点的电势为与之代数和,且其和应等于零,即由此可得,导体球表面上的感应电荷q′为按题意,导体球接地,以地的电势为零,考虑到位于点电荷q的静电场中的导体是一个等势体,这样,球心的电势亦应为零;而球心的电势则等于点电荷q和球面上的感应电荷q′所激发的电场在点O的电势之代数和。
据此即可求出解。
2.如图,三块平行的金属板A、B和C,面积均为。
板A、B相距,板A、C相距,B、C 两板都接地。
如果使A板带正电,并略去边缘效应,问B板和C板的内、外表面上感应电荷各是多少? 以地的电势为零,问A板的电势为多大解: 按题意,可判断感应电荷的分布如图所示。
因为B、C两板接地,所以两板都带负电,且即(a)考虑到 , , , , 则(b)由式(a)、(b),可得或这里,, , 代入上式,便可算出两板内表面感应电荷分别为,由于 B、C 板接地,外表面感应电荷为零。
又由 , 且,带入上述数值可算得 A 板的电势为。
有介質的靜電場:例题1.在无限长电缆内,导体圆柱A和同轴导体圆柱壳B的半径分别为和(<),单位长度所带电荷分别为+λ和-λ,内、外导体之间充满电容率为的均匀电介质。
求电介质中任一点的场强及内、外导体间的电势差。
解:取高斯面,它是半径为(<<)、长度为的同轴圆柱形闭合面。
左、右两底面与电位移的方向平行,其外法线方向皆与成夹角θ=π/2,故电位移通量为0;柱侧面与的方向垂直,其外法线与同方向,θ=0°通过侧面的电位移通量为cos0°(2π)。
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯EqLq P面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧ABR ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:dσAσBA Bq ∞∞ -λ +λ(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线均匀分布.试在图示的坐标系中求出xdd/2 d/2轴上两导线之间区域]25,21[a a 磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F 的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 a bc d O RR x yI I 30° 45° I ∆l 1I ∆l 2心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0=4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB1 mI是铝导线,铝线电阻率为ρ1 =2.50×10-8 Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
计算电磁学习题集1.麦克斯韦方程是根据那些电磁现象的实验定律创建的?概述这些实验的过程和意义(画出实验的原理示意图)。
2.试由矢量场的旋度和散度积分式推导出矢量场的旋度和散度微分式。
3.麦克斯韦方程组的四个微分方程之间虽有具有一定的关系(根据亥姆霍兹定理,矢量场同时要由其旋度和散度才能唯一确定)。
可在四个微分方程和电流连续性方程中,只有三个方程是独立的。
试证明由麦克斯韦方程组的两个散度方程和电流连续性方程可以推导出两个旋度方程。
4.试推证导电媒质中欧姆定律的微分形式EJσ=。
5.虚拟了磁荷和磁流的观念后,对应于导电媒质中欧姆定律的微分形式E J σ=,有导磁媒质中欧姆定律的微分形式H J mm σ=,其中m σ称为磁导率。
试推导m σ的量纲表达。
6.对于时谐电磁场的电场表达式:)t )cos((2)t )cos((2t),(y x ϕωϕω+++=r E e r E e r E y y x x )t )cos((2z ϕω++r E e z z 试画示意图阐述这样表达的合理性。
7.利用傅里叶变换,由麦克斯韦方程的瞬时形式(时域)推导其复数形式(频域)。
8.试从微观上分别阐述媒质在电磁场中极化和磁化的过程(画示意图),解释极化强度和磁化强度的物理涵义。
9.对于高频系统和微波系统来说,电流的时谐表示一般为:)sin(r k J J 0⋅−=t ω。
试结合电流连续性方程t -∂∂=⋅∇t),(t),(r r ρJ ,论证:高频系统和微波系统中到处都进行着充、放电的过程。
10.在非均匀介质中,ε和µ是坐标位置的函数。
试对于无源区导出:(1)只含E 和H 的麦克斯韦方程;(2)E 和H 的波动方程。
11.推导在导电媒质中的波动方程和矢量位方程。
12.利用麦克斯韦积分方程推导两种媒质边界上的边界条件:s ρ=−⋅)(21n D D e ms ρ=−⋅)(21n B B e msJ E E e 21n −=−×)(s21n JH H e =−×)(13.在各向异性媒质中,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=→→0,0,2j,1,0j,01,0εε,当:(1)x E e E 0=;(2)y E e E 0=;(3)z E e E 0=;(4))y x E e (e E0+=;(5))2y z E e e (E 0+=;(6))z y x E e e (e E 0−+=;求D 。
《电磁学》作业答案二1.33如附图所示,在半径为R1和R2的两个同心球面上,分别均匀地分布着电荷Q1和Q2, 求:(1)Ⅰ、Ⅱ、Ⅲ三个区域内的场强分布;(2)若Q1=-Q2,情况如何?画出此情形的E-r 曲线。
解:(1)应用高斯定理可求得三个区域内的场强为E -r 曲线 0 1 = E r (r<R 1); re rQ E ˆ 4 2 0 1 2 pe = r (R 1<r<R 2) re r Q Q E ˆ 4 20 2 1 3 pe + = r ( r> R 2) ( 2 ) 若Q1=-Q2,E 1=E 3=0, re r Q E ˆ 4 2 0 1 2 pe =r E -r 曲线如图所示。
1.35实验表明:在靠近地面处有相当强的电场,E垂直于地面向下,大小约为100N/C;在离地面 1.5千米高的地方,E也是垂直地面向下的,大小约为25N/C。
(1) 试计算从地面到此高度大气中电荷的平均密度;(2) 如果地球上的电荷全部均匀分布在表面,求地面上电荷的面密度。
解:(1)以地心为圆心作球形高斯面,恰好包住地面,由对称性和高斯定理得[]) / ( 10 4 . 4 ) ( 4 ) ( 4 / ) ( ) 2 ( ) ( 4 ) ( ) ( 4 cos ) ( 4 cos 3 13 2 1 0 21 2 2 1 2 0 1 2 0 1 2 2 2 1 2 2 2 02 2 2 2 2 1 1 012 1 11 m C hE E h R Q Q E E R Q Q Q Q E h R h E E R S Q Q h R E dS E S d E h R S Q Q R E dS E S d E SSSS- ´ = - = - »Þ - » - - = + - - = + × - = = × + = × - = = × òòòò òò òòe p r pe e p e p q e p q 相减 包围电荷代数和 是 为半径作同心球面 再以 包围电荷代数和 是 r r r r (2) 以地球表面作高斯面210 0 2 021 1 1 / 10 85 . 8 4 1 1 4 cos m C E R dS R E dS E S d E SSS- ´ - = = = = × - = = × òòòò òò e s p s e s e p q r r 1.37一对无限长的共轴直圆筒,半径分别为R1和R2,筒面上都均匀带电。
恒定磁场的高斯定理和安培环路定理1. 选择题1.磁场中高斯定理:⎰=∙ss d B 0,以下说法正确的是:( )A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场 答案:D2.在地球北半球的某区域,磁感应强度的大小为5104-⨯T ,方向与铅直线成60度角。
则穿过面积为1平方米的水平平面的磁通量 ( )A .0B .5104-⨯Wb C .5102-⨯Wb D .51046.3-⨯Wb答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场)3610(k j i B++=通过立方体所在区域,通过立方体的总的磁通量有( )A .0B .40 WbC .24 WbD .12Wb 答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:( )。
A .1:2B .1:1C .1:4D .2:1 答案:B5.均匀磁场的磁感应强度B垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A .B R 22π B .B R 2π C .0 D .无法确定 答案:B6.在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为( )A .B r2π B .B r 22π C .απsin 2B r - D .απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出 答案:D 8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ B .2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰C .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ D .2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
计算电磁学课程作业(二)
1. 在非均匀介质中,ε和μ是坐标位置的函数。
试对于无源区导出:(1)只含E 和H 的麦克斯韦方程;
(2)E 和H 的波动方程。
2. 推导在导电媒质中的波动方程和矢量位方程。
3. 利用麦克斯韦积分方程推导两种媒质边界上的边界条件: s ρ=-⋅)(21n D D e
m s ρ=-⋅)(21n B B e
m s J E E e 21n -=-⨯)(
s 21n J H H e =-⨯)(
4. 在各向异性媒质中,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=→→0,0,2j,1,0j,01,0εε,当: (1)x E e E
0=; (2)y E e E
0=; (3)z E e E
0=; (4))y x E e (e E
0+=; (5))2y z E e e (E
0+=; (6))z y x E e e (e E
0-+=;
求D 。
5. 线极化的均匀平面波投射到以下结构的媒质中:
H D γj ε+=E
H B μγ
+-=E j 1 式中
ε,μ,γ均为常数,试分析其传播特性(分别在时域和频域中)。
6. 对于无源区,齐次的矢量波动方程在时域为(齐次的矢量达朗伯方程):
022=∂∂-∇t H H εμ2;022=∂∂-∇t
E E εμ2 频域为(齐次的矢量亥姆霍兹方程):
02=+∇H H k 2; 02=+∇E E k 2,(λπ
2=k ) 试分别写出齐次的矢量达朗伯方程和齐次的矢量亥姆霍兹方程的一般解(通解)形式。
并就电磁波在无限空间和有限空间传播与存在的连续谱和分立谱问题进行讨论。