生物统计学考试总结[1]
- 格式:doc
- 大小:2.26 MB
- 文档页数:19
生物统计学总结绪论统计工作的四大步骤:设计、搜集、整理、分析统计资料的三大类型:♏计量资料:对每个观察值单位用定量方法测得每项指标量的大小所得的资料♏计数资料:将观察单位按照某种属性类别分组,所得的观察单位数♏等级资料:将观察单位按某种属性的不同程度分组所得的资料同质与变异同质:除研究因素外,其他因素相同或相近为同质集中趋势的指标:平均数定义:描述一组同质计量资料的集中趋势,反映某一组观察值的平均水平或某一分布的平均位置的指标作用:作为一组资料的代表值,可用于组间的分析比较均数的两个重要特征✍代表性1.离均差和等于02.离均差平方最小小于常用平均数指标:1.算术均数(1)定义:全部观察值相加之和除以观察值个数所得的商总体均数样本均数(2)算法:1)直接法:2)加权法:3)缩减法(3)注意事项:1)只有在合理分组的基础上对同质数据取均数才有意义2)均数用于近似正态分布的对称分布,尤其是正态分布2.几何均数G(不能用算术均数时)(1)定义:几个观察值相乘之积,开几次方所得根(2)计算(3(1(2(3(1秩次相(2(31)百分位数常用于描述一组资料(样本或总体)在某百分位数上的水平和分布特征,多个百分位数结合使用,可全面描述观察值分布特征,包括位置的大小和变异度2)一般分布中部的百分位数相当稳定,代表性好,靠近两端的百分位数,只在样本含量足够大(>120个)才足够稳定,所以当样本含量不够大时,不宜取两端百分位数3)用百分位数确定正常值范围,习惯上95%离散趋势的描述1. 极差R:样本资料中最大值和最小值之差在一定程度上能说明样本波动幅度的大小,但它只受样本中两个极端个体数值大小的影响,不能反映样本中各个观测值的变异程度,稳定性差2. 四分位数间距:是上四分位数与下四分位数之差,用四分位数间距可反映变异程度的大小.稳定性好,灵敏度不够3. 标准差:1)定义:描述一组同质计量资料离散程度大小的指标反映了均数对一组观察值的代表性说明了观察值围绕均数分布的离散程度,个体变异2)计算:3)应用:4.12计量资料的统计推断统计推断用样本信息推断总体特征参数估计:由样本结果对总体参数在一定概率水平下所做出的估计假设检验正态分布1)概念:一种连续型随机变量的概率分布密度函数:分布函数:2)特征:1.在横轴上均数处最高2.以均数为中心,左右对称3.有两个参数4.曲线下的面积分布有一定的规律F(x)3)应用:1.以曲线下的面积反映频率及概率分布2.估计正常值范围或正常值范围的正态分布法✍双侧正常值范围3.质量控制4.正态分布是很多种统计方法的理论基础标准正态分布,u分布Uα与面积的关系t4.t介值与t介值表tα,ν:给定自由度为ν,两侧双尾面积之和为α时,相应t值。
生物统计学总结绪论统计工作的四大步骤:设计、搜集、整理、分析统计资料的三大类型:♏计量资料:对每个观察值单位用定量方法测得每项指标量的大小所得的资料♏计数资料:将观察单位按照某种属性类别分组,所得的观察单位数♏等级资料:将观察单位按某种属性的不同程度分组所得的资料同质与变异同质:除研究因素外,其他因素相同或相近为同质变异:观测值的不齐性总体与样本:总体:根据研究目的所确定的同质观察单位的全体=所有研究对象性质相同的全体观察单位某项变量值的集合总体含量:总体中所包含的观察单位数有限总体:总体观察单位数可数无限总体:总体观察单位数不可数样本:从总体中随机抽取的部分观察单位样本含量:样本中所包含的观察单位数抽样:从总体中获得样本的过程放回式抽样不放回式抽样抽样误差:因个体变异的存在,由抽样而导致的样本指标与总体指标之差统计量:有样本所得指标或数参数:由总体所得指标,关于特征的表征频数:完全相同的观察只出现的次数频率:某一观察值出现的次数与样本含量的比值概率:描述某事物发生可能性大小的一个度量样本空间:一次实验所有可能的结果的集合基本事物:样本空间每一个可能的结果小概率事件:P<=0.05或P<=0.01的事件小概率原理:小概率事件在一次抽样中不可能发生计量资料的统计描述集中趋势的指标:平均数定义:描述一组同质计量资料的集中趋势,反映某一组观察值的平均水平或某一分布的平均位置的指标作用:作为一组资料的代表值,可用于组间的分析比较均数的两个重要特征✍代表性1.离均差和等于02.离均差平方最小小于常用平均数指标:1.算术均数(1)定义:全部观察值相加之和除以观察值个数所得的商总体均数样本均数(2)算法:1)直接法:2)加权法:3)缩减法(3)注意事项:1)只有在合理分组的基础上对同质数据取均数才有意义2)均数用于近似正态分布的对称分布,尤其是正态分布2.几何均数G(不能用算术均数时)(1)定义:几个观察值相乘之积,开几次方所得根(2)计算1)直接法2)(3)应用注意:1)几何均数适用于观察值相差很大,甚至呈倍数关系(等比或几何级数资料)或用于对数正态分布资料2)观察值不能有零,不能同时有正负,若都为负,去符号最后加符号,观察值比较小或有零,可加1,最后减去3)同一资料求得的几何均数小于均数中位数M(1)定义:把一组观察值按大小顺序排列,位次居中的(2)计算:1)直接法2)频数表法:(3)注意事项1)适用场合:偏态,开口(一端或两端无界限),分布不清的2)特性:只代表了居中观察值的特性,敏感性低,不受特小特大值的影响3)对于正态分布资料,理论上,中位数=均数(数值上)百分位数(1)定义:将n个观察值由小到大排列,编上秩次,将n个秩次100等分,与X%秩次相对应的数值,即X的百分位数,是一个位置指标,以Px表示(x代表百分秩次)Px将整个数列分为两半,X%比Px小,1-X%比Px大(2)计算:(3)应用注意1)百分位数常用于描述一组资料(样本或总体)在某百分位数上的水平和分布特征,多个百分位数结合使用,可全面描述观察值分布特征,包括位置的大小和变异度2)一般分布中部的百分位数相当稳定,代表性好,靠近两端的百分位数,只在样本含量足够大(>120个)才足够稳定,所以当样本含量不够大时,不宜取两端百分位数3)用百分位数确定正常值范围,习惯上95%离散趋势的描述1.极差R:样本资料中最大值和最小值之差在一定程度上能说明样本波动幅度的大小,但它只受样本中两个极端个体数值大小的影响,不能反映样本中各个观测值的变异程度,稳定性差2.四分位数间距:是上四分位数与下四分位数之差,用四分位数间距可反映变异程度的大小.稳定性好,灵敏度不够3.标准差:1)定义:描述一组同质计量资料离散程度大小的指标反映了均数对一组观察值的代表性说明了观察值围绕均数分布的离散程度,个体变异2)计算:3)应用:1.表示变量分布的离散程度2.结合均数描述正态分布特征3.结合均数计算变异系数4.结合样本含量计算标准误4)注意:(1)不同单位,相同标准差,不能比较(2)大个体差异大,变异度大,小个体则变异度小4.变异系数CV1)定义:标准差与均数之比,用百分数表示2)计算:3)应用:单位不同的几组资料变异度及均数相差悬殊的几组资料的变异度的比较,不单独使用自由度ν泛指可以自由取值的变量的个数正常值:正常动植物解剖生理生化等各种数据的波动范围1)必要性1.区分正常和异常2.看不同种群在不同时间地域上某一指标的差异2)选取1.极差中的一部分2.单侧或双侧正常值之分,由指标实际情况及实验要求确定3.方式之一为正常值范围的百分位数,习惯上95%双侧:确定P2.5或P97.5单侧:P5或P95,看实验需要计量资料的统计推断统计推断用样本信息推断总体特征参数估计:由样本结果对总体参数在一定概率水平下所做出的估计假设检验正态分布1)概念:一种连续型随机变量的概率分布密度函数:分布函数:2)特征:1.在横轴上均数处最高2.以均数为中心,左右对称3.有两个参数4.曲线下的面积分布有一定的规律F(x)3)应用:1.以曲线下的面积反映频率及概率分布2.估计正常值范围或正常值范围的正态分布法✍双侧正常值范围3.质量控制4.正态分布是很多种统计方法的理论基础标准正态分布,u分布Uα与面积的关系对数正态分布原观察值x呈偏态(正偏),取对数后,lgX呈正态分布✍x服从对数正态分布均数的抽样误差1.定义:平均数与总体均数之差2.均数抽样误差大小的度量标准误1)定义:样本均数的标准差2)意义:反映抽样误差的大小是样本均数围绕总体均数分布的离散程度,衡量了样本均数的可靠程度3)计算:一般一次抽样估计总体没有标准误,只针对样本4)用途:(1)计算可信区间(参数估计)(2)用于统计推断(假设检验)t分布1.t变换与t变量2.t分布的特征1)单峰,一0为中心,左右对称2)曲线中间比正态分布低,两端翘得比正态分布高3)有无数根,中间越低,两端越翘t分布与自由度有关,自由度越小,中间越低,两端越翘当自由度趋向无穷时,t分布趋向标准正态分布,t u3.概率密度函数与分布函数4.t介值与t介值表tα,ν:给定自由度为ν,两侧双尾面积之和为α时,相应t值。
生物统计学一.名词解释1. 总体:根据研究目的确定的研究对象的全体。
2. 个体:其中的一个研究单位。
3. 样本:总体的一部分。
4. 样本含量:样本中所包含的个体数目。
5. 参数:总体计算的特征数。
6. 统计数:样本计算的特征数。
7. 抽样:从总体中获得样本的过程。
8. 随机抽样:总体中每一个个体都有同样的机会被抽取组成样本。
9. 随机样本:通过随机抽样方式获得的样本。
1. 数量性状:能够以量测或计数的方式表示其特征的性状。
2. 质量性状:能观察到而不能直接测量的性状。
3. 计数资料:用量测方式获得的数量性状资料。
4. 计量资料:用计数方式获得的数量性状资料。
5. 半定量资料:将观察单位按所考察的性状或指标的等级顺序分组,然后清点各组观察单 位的次数而得的资料。
6. 全距:资料中最大值与最小值之差。
7. 组限:各组的最大值与最小值。
8. 组中值:每一组的中点值=(下限+上限)/2=上限-组距/2。
1. 中位数:将资料内所有观测值从小到大依次排列,当观测值的个数是奇数时,位于中间的那个观察值,或当观测值的个数是偶数时,位于中间的两个观测值的平均数。
2.众数:资料中出现次数最多的那个观测值或次数最多一组的组中值。
3. 离均差:各个观测值与平均数之差。
(X-X )。
4. 自由度:独立观测值的个数。
5. 样本方差:统计数∑--)1/(2n X X )(。
MS6. 样本标准差:统计学上把样本方差S 2的平方根。
S=Nx x ∑-2)(7. 变异系数:标准差于平均数的比值。
C ·V 8. 均方:统计数∑--)1/(2n X X )(。
MS 1. 必然现象:在保持条件不变的情况下,重复进行试验,其结果总是确定的,必然发生。
2. 随机现象:在一次观察或试验中其结果呈现偶然性的现象。
3. 试验:指通过选择有代表性的试验单位在一定条件下进行的带有探索性地研究工作。
4. 随机试验:通常我们把根据某一研究目的,在一定投条件下对自然现象所进行的观察或试验统称。
生物统计知识点总结生物统计学基本概念1. 总体和样本生物统计学中,研究对象的全体称为总体,而从总体中选取的部分个体称为样本。
样本是总体的代表,通过对样本进行研究和分析,可以对总体进行推断。
2. 参数和统计量总体的特征称为参数,它是总体的固有属性。
而样本的特征称为统计量,它是样本的统计学特征,用来推断总体的参数。
3. 随机变量在生物统计学中,用来研究某种现象的变量称为随机变量。
随机变量有两种类型,离散型和连续型。
离散型随机变量的取值是有限个或者可数个,而连续型随机变量的取值是连续的。
4. 抽样分布抽样分布是指在总体中随机抽取样本后得到的分布。
当样本容量足够大时,抽样分布具有一些特定的性质,如正态分布、t分布、F分布等,这些分布在生物统计学中是非常重要的。
生物统计学常用方法1. 描述统计描述统计是对数据进行整理、归纳和描述的过程,主要包括测量中心趋势的指标(如均值、中位数、众数)、测量离散程度的指标(如标准差、方差)以及数据的图表展示。
2. 推断统计推断统计是通过样本对总体参数进行推断的过程。
推断统计主要包括参数估计和假设检验两个部分。
参数估计是通过样本来估计总体参数的值,而假设检验是对总体参数的某种假设进行检验的过程。
3. 方差分析方差分析是一种用来比较两个或多个总体均值是否相等的统计方法。
它包括单因素方差分析和多因素方差分析,用于研究不同因素对总体均值的影响。
4. 回归分析回归分析是用来研究一个或多个自变量对因变量的影响程度和方向的统计方法。
回归分析分为简单线性回归和多元线性回归,以及非线性回归等方法。
5. 生存分析生存分析是研究生存时间或事件发生时间的统计方法,它包括生存曲线、生存率和生存分布等内容,主要用于临床医学和流行病学领域。
生物统计学在生物学领域的应用生物统计学在生物学领域有着广泛的应用。
它可以用来设计实验、收集和整理数据、进行数据分析和结果解释。
以下是一些生物统计学在生物学领域的应用示例。
《生物统计学》复习资料一、填空题1.变量之间的相关关系主要有两大类:(正相关)和(负相关)。
2.试验误差可以分为(随机误差)和(系统误差)两类。
3.样本标准差的计算公式( )。
解析:4.方差分析必须满足(正态性)、(方差齐性)和可加性3个基本假定。
5.在假设检验中,如果检验样本间差异是否极显著,则显著水平a取值为(0.05)。
6.在分析变量之间的关系时,一个变量X确定,Y是随着X变化而变化,两变量呈因果关系,则X称为(自变量),Y称为(因变量)。
二、单项选择题1.抽取样本的基本首要原则是(B)A、统一性原则B、随机性原则C、完全性原则D、重复性原则2.如果对各观测值加上一个常数a,其标准差(D)A、扩天√a倍B、扩大a倍C、扩大a²倍D、不变3.在一组数据中,其中一个数据9的离均差是3,那么该组数据的平均数是(B)A、12B、10C、6D、34.平均数是反映数据资料(B)0的代表值。
A、变异性B、集中性C、差异性D、独立性5.方差分析适合于(A)数据资料的均数假设检验。
A、两组以上B、两组C、一组D、任何6.在假设检验中,是以(A)为前提。
A、肯定假设B、备择假设C、无效假设D、有效假设7.统计学研究的事件属于(D)事件。
A、不可能事件B、必然事件C、小概率事件D、随机事件8.下列属于大样本的是(A)。
A、40B、25C、20D、109.在方差分析中,已知总自由度是15,组间自由度是3,组内自由度是(B)A、18B、12C、10D、510.已知数据资料有10对数据,并呈线性回归关系,它的总自由度、回归自由度和残差自由度分别是(C)A、9、1和8B、1、8和9C、8、1和9D、9、8和1三、判断题(正确的打√,错误的打×。
)1.对于有限总体不必用统计推断方法。
(×)2. 资料的精确性高,其准确性也一定高。
(×)3. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
⼤学⽣物统计复习考试总结1.“唯⼀差异”原则:在多个因⼦的试验时还要将所⽐较的那个因⼦以外的因⼦控制在相同的⽔平上。
2.试验⽅案:是根据试验⽬的和要求所拟进⾏⽐较的⼀组试验处理的总称。
3.⽔平:试验因素的量的不同级别或质的不同状态称为⽔平。
4.多因素试验:是指在同⼀试验⽅案中包含2个或2个以上的试验因素,各个因素都分为不同⽔平,其他试验条件均应严格控制⼀致的试验。
各因素不同⽔平的组合称为处理组合。
5.试验指标:⽤于衡量试验效果的指⽰性状称为试验指标。
6.试验效应:试验因素对试验指标所起的增加或减少的作⽤称为试验效应。
7.单因素试验中的简单效应:在同⼀因素内两种⽔平间试验指标的相差属简单效应。
8.多因素试验中:(1)简单效应:⼀个因素的⽔平相同,另⼀因素不同⽔平间的产量差异仍属简单效应。
(2)平均效应:⼀个因素内各简单效应的平均数称为平均效应, 亦称为主要效应。
(3)交互作⽤效应:两个因素简单效应间的平均差异称为交互作⽤效应,简称互作.9.准确性:是指观测值与其理论真值间的符合程度。
10.精确性:是指观测值间的符合程度。
11.试验⼩区:在⽥间试验中,安排⼀个处理的⼩块地段称为试验⼩区,简称⼩区。
12.边际效应:是指⼩区两边或两端的植株,因占较⼤空间⽽表现的差异,⼩区⾯积应考虑边际效应⼤⼩,边际效应⼤的需相应增⼤⼩区⾯积。
13.⽣长竞争:是指当相邻⼩区种植不同品种或相邻⼩区施⽤不同肥料时,由于株⾼、分蘖(枝)能⼒或⽣长期的不同,通常将有⼀⾏或更多⾏受到影响。
这种影响因不同性状及其差异⼤⼩⽽有不同。
14.区组:将全部处理⼩区分配于相对同质的⼀块⼟地上,这称为⼀个区组。
15.完全区组:⼀般试验须设置3~4次重复,分别安排在3~4个区组上,这时重复与区组相等,每⼀区组或重复包含有全套处理,称为完全区组。
16.不完全区组:⼀个重复安排在⼏个区组上,每个区组只安排部分处理,称为不完全区组。
17.总体:具有共同性质的个体所组成的集团,称为总体。
生物统计学总结绪论统计工作的四大步骤:设计、搜集、整理、分析统计资料的三大类型:♏计量资料:对每个观察值单位用定量方法测得每项指标量的大小所得的资料♏计数资料:将观察单位按照某种属性类别分组,所得的观察单位数♏等级资料:将观察单位按某种属性的不同程度分组所得的资料同质与变异同质:除研究因素外,其他因素相同或相近为同质变异:观测值的不齐性总体与样本:总体:根据研究目的所确定的同质观察单位的全体=所有研究对象性质相同的全体观察单位某项变量值的集合总体含量:总体中所包含的观察单位数有限总体:总体观察单位数可数无限总体:总体观察单位数不可数样本:从总体中随机抽取的部分观察单位样本含量:样本中所包含的观察单位数抽样:从总体中获得样本的过程放回式抽样不放回式抽样抽样误差:因个体变异的存在,由抽样而导致的样本指标与总体指标之差统计量:有样本所得指标或数参数:由总体所得指标,关于特征的表征频数:完全相同的观察只出现的次数频率:某一观察值出现的次数与样本含量的比值概率:描述某事物发生可能性大小的一个度量样本空间:一次实验所有可能的结果的集合基本事物:样本空间每一个可能的结果小概率事件:P<=0.05或P<=0.01的事件小概率原理:小概率事件在一次抽样中不可能发生计量资料的统计描述集中趋势的指标:平均数定义:描述一组同质计量资料的集中趋势,反映某一组观察值的平均水平或某一分布的平均位置的指标作用:作为一组资料的代表值,可用于组间的分析比较均数的两个重要特征代表性1.离均差和等于02.离均差平方最小小于常用平均数指标:1.算术均数(1)定义:全部观察值相加之和除以观察值个数所得的商总体均数样本均数(2)算法:1)直接法:2)加权法:3)缩减法(3)注意事项:1)只有在合理分组的基础上对同质数据取均数才有意义2)均数用于近似正态分布的对称分布,尤其是正态分布2.几何均数G(不能用算术均数时)(1)定义:几个观察值相乘之积,开几次方所得根(2)计算1)直接法2)(3)应用注意:1)几何均数适用于观察值相差很大,甚至呈倍数关系(等比或几何级数资料)或用于对数正态分布资料2)观察值不能有零,不能同时有正负,若都为负,去符号最后加符号,观察值比较小或有零,可加1,最后减去3)同一资料求得的几何均数小于均数中位数M(1)定义:把一组观察值按大小顺序排列,位次居中的(2)计算:1)直接法2)频数表法:(3)注意事项1)适用场合:偏态,开口(一端或两端无界限),分布不清的2)特性:只代表了居中观察值的特性,敏感性低,不受特小特大值的影响3)对于正态分布资料,理论上,中位数=均数(数值上)百分位数(1)定义:将n个观察值由小到大排列,编上秩次,将n个秩次100等分,与X%秩次相对应的数值,即X的百分位数,是一个位置指标,以Px表示(x代表百分秩次)Px将整个数列分为两半,X%比Px小,1-X%比Px大(2)计算:(3)应用注意1)百分位数常用于描述一组资料(样本或总体)在某百分位数上的水平和分布特征,多个百分位数结合使用,可全面描述观察值分布特征,包括位置的大小和变异度2)一般分布中部的百分位数相当稳定,代表性好,靠近两端的百分位数,只在样本含量足够大(>120个)才足够稳定,所以当样本含量不够大时,不宜取两端百分位数3)用百分位数确定正常值范围,习惯上95%离散趋势的描述1. 极差R:样本资料中最大值和最小值之差在一定程度上能说明样本波动幅度的大小,但它只受样本中两个极端个体数值大小的影响,不能反映样本中各个观测值的变异程度,稳定性差2. 四分位数间距:是上四分位数与下四分位数之差,用四分位数间距可反映变异程度的大小.稳定性好,灵敏度不够3. 标准差:1)定义:描述一组同质计量资料离散程度大小的指标反映了均数对一组观察值的代表性说明了观察值围绕均数分布的离散程度,个体变异2)计算:3)应用:1.表示变量分布的离散程度2.结合均数描述正态分布特征3.结合均数计算变异系数4.结合样本含量计算标准误4)注意:(1)不同单位,相同标准差,不能比较(2)大个体差异大,变异度大,小个体则变异度小4.变异系数CV1)定义:标准差与均数之比,用百分数表示2)计算:3)应用:单位不同的几组资料变异度及均数相差悬殊的几组资料的变异度的比较,不单独使用自由度ν泛指可以自由取值的变量的个数正常值:正常动植物解剖生理生化等各种数据的波动范围1)必要性1.区分正常和异常2.看不同种群在不同时间地域上某一指标的差异2)选取1.极差中的一部分2.单侧或双侧正常值之分,由指标实际情况及实验要求确定3.方式之一为正常值范围的百分位数,习惯上95%双侧:确定P2.5或P97.5单侧:P5或P95,看实验需要计量资料的统计推断统计推断用样本信息推断总体特征参数估计:由样本结果对总体参数在一定概率水平下所做出的估计假设检验正态分布1)概念:一种连续型随机变量的概率分布密度函数:分布函数:2)特征:1.在横轴上均数处最高2.以均数为中心,左右对称3.有两个参数4.曲线下的面积分布有一定的规律F(x)3)应用:1.以曲线下的面积反映频率及概率分布2.估计正常值范围或正常值范围的正态分布法双侧正常值范围3.质量控制4.正态分布是很多种统计方法的理论基础标准正态分布,u分布Uα与面积的关系对数正态分布原观察值x呈偏态(正偏),取对数后,lgX呈正态分布x服从对数正态分布均数的抽样误差1.定义:平均数与总体均数之差2.均数抽样误差大小的度量标准误1)定义:样本均数的标准差2)意义:反映抽样误差的大小是样本均数围绕总体均数分布的离散程度,衡量了样本均数的可靠程度3)计算:一般一次抽样估计总体没有标准误,只针对样本4)用途:(1)计算可信区间(参数估计)(2)用于统计推断(假设检验)t分布1.t变换与t变量2.t分布的特征1)单峰,一0为中心,左右对称2)曲线中间比正态分布低,两端翘得比正态分布高3)有无数根,中间越低,两端越翘t分布与自由度有关,自由度越小,中间越低,两端越翘当自由度趋向无穷时,t分布趋向标准正态分布,t u3.概率密度函数与分布函数4.t介值与t介值表tα,ν:给定自由度为ν,两侧双尾面积之和为α时,相应t值。
生物统计概论知识点总结1. 生物统计学的基本概念生物统计学是一门应用数学统计学方法于生物学中的统计分析方法的学科,它的主要任务是通过对生物学数据的收集、处理、分析和解释,使生物学家能够更好地理解生物学现象。
生物统计学包括描述统计学和推断统计学两个部分,描述统计学主要是通过数据的整理、显示和概括,来描述数据的性质和规律;而推断统计学则是通过对样本数据进行分析和推断,从而对总体进行研究。
生物统计学的对象包括植物、动物和微生物等各种生物,研究范围很广。
2. 生物统计学的应用领域生物统计学在生物学研究中起着至关重要的作用,它不仅是生物学研究的基础,也是医学、环境科学和农业等领域的基础。
在医学中,生物统计学可以用于临床试验的设计、分析和解释,可以帮助医生确定治疗方法的有效性和安全性;在环境科学中,生物统计学可以用于对环境数据进行分析,以评估环境污染的程度和影响;在农业中,生物统计学可以用于对农作物生长及产量的预测和评估,帮助农民提高农作物的产量和质量。
3. 生物统计学的基本方法生物统计学包括描述统计学和推断统计学两个部分,描述统计学主要包括数据的整理、显示和概括,从而描述数据的性质和规律;而推断统计学则是通过对样本数据进行分析和推断,从而对总体进行研究。
生物统计学的基本方法包括测量数据的收集、整理和描述,以及对数据的概率分布、参数估计、假设检验等统计分析方法。
同时,生物统计学还涉及到许多常见的实验设计,例如随机化设计、重复测量设计和方差分析设计等。
4. 统计学在生物学研究中的应用生物统计学在生物学研究中起着非常重要的作用,它可以帮助生物学家对生物学数据进行收集、处理、分析和解释,从而更好地理解生物学现象。
在生物学研究中,生物统计学可以用于对生物学数据的描述、概括和推断,可以帮助生物学家确定实验的设计、分析实验数据,以及形成对生物现象的科学推断和结论。
生物统计学还可以用于生物学模型的建立和验证,以及对生物学理论的检验和推断。
生物统计学考试总结第一章生物统计学:是数理统计在生物学研究中的应用,它是应用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
内容:试验设计:试验设计的基本原则、试验设计方案的制定和常用试验设计的方法统计分析:数据资料的搜集、整理和特征数的计算、统计推断、方差分析、回归和相关分析、协方差分析等生物统计学的作用:1. 提供整理、描述数据资料的科学方法并确定其特征2. 判断试验结果的可靠性3. 提供由样本推断总体的方法4. 试验设计的原则相关概念:1.总体:研究对象的全体,是具有相同性质的个体所组成的集合2.个体:组成总体的基本单元3.样本:由总体中抽出的若干个体所构成的集合n>30 大样本;n<30 小样本4.参数:描述总体特征的数量5.统计数:描述样本特征的数量由于总体一般很大,有时候甚至不可能取得,所以总体参数一般不可能计算出来,而采用样本统计数来估计总体的参数6..效应:由因素而引起试验差异的作用7. 互作:两个或两个以上处理因素间的相互作用产生的效应生物统计学的研究包括了两个过程:1. 从总体抽取样本的过程——抽样过程2. 从样本的统计数到总体参数的过程——统计推断过程第二章1.算术平均数:是所有观察值的和除以观察的个数平均数(AVERAGE)特性:(1)样本中各观测值与平均数之差-离均差-的总和等于零(2)样本中各观测值与其平均数之差平方的总和,比各观测值与任一数值离均差的平方和小,即离均差平方和最小(设a为x以外任何值)2.中位数:将试验或调查资料中所有观测依从大小顺序排列,居于中间位置的观测值称为中位数,以Md表示3.众数:在一个样本的所有观察值中,发生频率最大的一个值称为样本的众数,以M o表示4.几何平均数:资料中有n个观测值,其乘积开n次方所得的数值,以G表示。
5.极差(全距):样本数据资料中最大观测值与最小观测值的差值R=max{x1,x2,…,x n} — mix{x1,x2,…,x n}6.样本方差:总体方差:用n-1代替n作,可以避免偏小估计,从而实现样本方差对总体方差的无偏估计在统计上,自由度(df=n-1 )是指样本内独立而能自由变动的观测值的个数在计算其他统计数时,如果受到k个条件的限制,则其自由度为n-k7.样本标准差: 总体标准差:(1)标准差的大小,受多个观测值的影响,如果观测值与观测值间差异大,标准差就大(2)在计算标准差的时候,如果对各个观测值加上或者减去一个常数a ,其标准差不变;如果乘以或除以一个常数a ,则标准差扩大或者缩小a 倍 STDEV: 基于给定样本的标准偏差STDEVP :基于给定样本总体的标准偏差8变异系数(CV ):样本标准差除以样本的平均数,得到百分比(1)变异系数是样本变量的相对变量,是不带单位的纯数 (2)用变异系数可以比较不同样本相对变异程度的大小第三章概率的计算法则:(1)乘法定理:如果A 和B 为独立事件[P(A`B)=P(A)*P(B)],则事件A 和B 同时发生的概率等于各自事件的概率的乘积(2)加法定理:互斥事件[P(A+B)=P(A)+P(B)]A 和B 的和的概率等于事件A 和事件B 的概率之和加法定理推理1:如果A1、A2、…An 为n 个互斥事件,则其和事件的概率为: P (A 1+A 2…A n )=P (A 1)+P (A 2)+…+P (A n )加法定理:如果A 和B 是任何两件事件,则 概率分布:(1)离散型随机变量的概率分布P (x=xi )=pi (i =1,2,…, n )离散随机变量的方差(2)连续型随机变量的概率分布 连续型随机变量的概率分布1. 连续型随机变量可以取某一区间或整个实数轴上的任意一个值2. 它取任何一个特定的值的概率都等于03. 不能列出每一个值及其相应的概率4. 通常研究它取某一区间值的概率5. 用数学函数的形式和分布函数的形式来描述 概率密度函数:(1)设X 为一连续型随机变量,x 为任意实数,X 的概率密度函数记为f(x),它满足条件(2) ,f (x )不是概率几种常见的概率分布:(适用范围,尾函数,自由度)1. 二项分布的概率函数 记作B (n ,p )或者B (n ,π) (1)每次试验只有两个对立结果,分布记为A 与 ,它们出现的概率分布为p 与q (q =1-p )(2)试验具有重复性和独立性 二项式分布的概率累积函数:若随机变量x 服从二项式分布,则有二项分布的总体平均数为 二项分布的总体标准差为:二项成数(百分数)分布的平均数:二项成数(百分数)分布的标准差:)()()()(B A P B P A P B A P ∙-+=+()⎰=≤≤22)(21x x dxx f x x x P ∑==-=Ri i i x X P x 122)()(μσA ∑==np x p x i i x )(μ()npq x p x i i x =-=∑2)(μσ∑==i x x P x F 0)()(p nnpn x p ===μμn pq n npq n x p===σσ例:假设年龄60~64岁的100名男性在1986年注射了一种新的流感疫苗而在第二年内死亡5人,这正常嘛?(注:1986年,60~64岁的男性老人第二年的死亡率约为0.02)解:要知道100个男性的样本死亡5人是不是“异常”事件,这种估计的一个准则是寻找至少5人死亡的概率。
生物统计学考试总结第一章生物统计学:是数理统计在生物学研究中的应用,它是应用数理统计的原理和方法来分析和解释生物界各种现象和试验调查资料的一门学科,属于应用统计学的一个分支。
内容:试验设计:试验设计的基本原则、试验设计方案的制定和常用试验设计的方法统计分析:数据资料的搜集、整理和特征数的计算、统计推断、方差分析、回归和相关分析、协方差分析等生物统计学的作用:1. 提供整理、描述数据资料的科学方法并确定其特征2. 判断试验结果的可靠性3. 提供由样本推断总体的方法4. 试验设计的原则相关概念:1.总体:研究对象的全体,是具有相同性质的个体所组成的集合2.个体:组成总体的基本单元3.样本:由总体中抽出的若干个体所构成的集合 n >30 大样本; n <30 小样本4.参数:描述总体特征的数量5.统计数:描述样本特征的数量由于总体一般很大,有时候甚至不可能取得,所以总体参数一般不可能计算出来,而采用样本统计数来估计总体的参数6..效应:由因素而引起试验差异的作用7. 互作:两个或两个以上处理因素间的相互作用产生的效应 生物统计学的研究包括了两个过程: 1. 从总体抽取样本的过程——抽样过程2. 从样本的统计数到总体参数的过程——统计推断过程第二章1.算术平均数:是所有观察值的和除以观察的个数平均数(A VERAGE )特性:(1)样本中各观测值与平均数之差-离均差-的总和等于零(2)样本中各观测值与其平均数之差平方的总和,比各观测值与任一数值离均差的平方和小,即离均差平方和最小2.中位数:将试验或调查资料中所有观测依从大小顺序排列,居于中间位置的观测值称为以外的任何数值为设x a中位数,以Md 表示3.众数:在一个样本的所有观察值中,发生频率最大的一个值称为样本的众数,以M o 表示4.几何平均数:资料中有n 个观测值,其乘积开n 次方所得的数值,以G 表示。
5.极差(全距):样本数据资料中最大观测值与最小观测值的差值R =max{x 1,x 2,…,x n} — mix{x 1,x 2,…,x n}6.样本方差: 总体方差:用n -1代替n 作,可以避免偏小估计,从而实现样本方差对总体方差的无偏估计 在统计上,自由度(df =n -1 )是指样本内独立而能自由变动的观测值的个数 在计算其他统计数时,如果受到k 个条件的限制,则其自由度为n -k7.样本标准差: 总体标准差:(1)标准差的大小,受多个观测值的影响,如果观测值与观测值间差异大,标准差就大 (2)在计算标准差的时候,如果对各个观测值加上或者减去一个常数a ,其标准差不变;如果乘以或除以一个常数a ,则标准差扩大或者缩小a 倍 STDEV: 基于给定样本的标准偏差STDEVP :基于给定样本总体的标准偏差8变异系数(CV ):样本标准差除以样本的平均数,得到百分比(1)变异系数是样本变量的相对变量,是不带单位的纯数 (2)用变异系数可以比较不同样本相对变异程度的大小第三章概率的计算法则:(1)乘法定理:如果A 和B 为独立事件,则事件A 和B 同时发生的概率等于各自事件的概率的乘积 (2)加法定理:互斥事件A 和B 的和的概率等于事件A 和事件B 的概率之和加法定理推理1:如果A1、A2、…An 为n 个互斥事件,则其和事件的概率为: P (A 1+A 2…A n )=P (A 1)+P (A 2)+…+P (A n )加法定理:如果A 和B 是任何两件事件,则 概率分布:(1)离散型随机变量的概率分布 变量(x ) x 1 x 2 x 3 … x n 概率(P )p 1 p 2 p 3 … p nP (x=xi )=pi (i =1,2,…, n )离散随机变量的方差(2)连续型随机变量的概率分布 )()()(B P A P B A P ⨯=•)()()(B P A P B A P +=+)()()()(B A P B P A P B A P •-+=+()⎰=≤≤22)(21x x dxx f x x x P ∑==-=Ri i i x X P x 122)()(μσ连续型随机变量的概率分布1. 连续型随机变量可以取某一区间或整个实数轴上的任意一个值2. 它取任何一个特定的值的概率都等于03. 不能列出每一个值及其相应的概率4. 通常研究它取某一区间值的概率5. 用数学函数的形式和分布函数的形式来描述 概率密度函数:(1)设X 为一连续型随机变量,x 为任意实数,X 的概率密度函数记为f(x),它满足条件(2) ,f (x )不是概率几种常见的概率分布:(适用范围,尾函数,自由度)1. 二项分布的概率函数 记作B (n ,p )或者B (n ,π) (1)每次试验只有两个对立结果,分布记为A 与 ,它们出现的概率分布为p 与q (q =1-p )(2)试验具有重复性和独立性 二项式分布的概率累积函数:若随机变量x 服从二项式分布,则有二项分布的总体平均数为 二项分布的总体标准差为:二项成数(百分数)分布的平均数:二项成数(百分数)分布的标准差: B(n , p ) BINOMDISTx number_s 实验成功次数 n trials 独立实验次数 p probability_s 一次实验中成功的概率 cumulativeTrue:False:例:假设年龄60~64岁的100名男性在1986年注射了一种新的流感疫苗而在第二年内死亡5人,这正常嘛?(注:1986年,60~64岁的男性老人第二年的死亡率约为0.02)解:要知道100个男性的样本死亡5人是不是“异常”事件,这种估计的一个准则是寻找至少5人死亡的概率。
注:通常是把概率值为0.05或者更小的概率事件识别为异常(稀有事件)。
由于至少5人死亡的概率是0.05,可见100人中至少死亡5人是稍微有点异常,但不是很异常。
如果至少死亡10人,那么概率是3.44*10-5,这就很不正常,因而,在没有其他证据显示此疫苗有效前,应考虑停止使用。
A ∑==np x p x i i x )(μ()npq x p x i i x =-=∑2)(μσ∑==i x x P x F 0)()(p nnpn x p ===μμn pq n npq n x p ===σσ2. 泊松分布二项式分布中,如果p 值很小而n 值很大( p<0.1 和np<5 ),则泊松分布式中: 为参数,泊松分布的平均数、方差、标准差例:假如我们研究乳腺癌的遗传敏感性。
我们发现,母亲曾患有乳腺癌的1000名40~49岁的妇女,在研究开始后的1年中,有4人患有乳腺癌,而我们从大总体中知道在这相同的时间内,1000人中有1个人发生乳腺癌。
试问乳腺癌有没有敏感性?解:如果用二项分布,则n =1000,p =1/1000,解:如果用泊松分布,则n =1000,p =1/1000, 则平均值 =1 则:这个事件是异常事件,则认为有乳腺癌的妇女,她们的子代具有遗传敏感性3. 正态分布(高斯分布)为总体平均数, 为总体标准差 正态分布的特征1. 当 时,f (x )有最大值2. 当 的绝对值相等的时候,f (x )值也相等3. 当 的绝对值越大,f (x )值就越小,但永远不等于04. 正态分布曲线完全由函数 和 来决定5. 正态分布曲线在 处各有一个拐点6. 正态分布求和为0!)(x e x P x λλ-=λ,...2,1,0,==x np λλσλσλμ===2),(2σμN μσμ=x μ-x σμ-x μσσμ±=xNORMDISTxi X 函数值的区间点 Mean 算术平均值 Standard_dev 标准差cumulativeTrue: 累积False:概率密度函数值标准正态分布:NORMSDISTxi Z标准正态分布的区间点NORMSINVuprobability正态分布概率,介于0~1之间,含0,14. t 分布:是小样本分布,小样本分布一般是指n <30。
t 分布适用于当总体标准差未知时用样本标准差代替总体标准差,由样本平均数推断总体平均数以及2个小样本之间差异的显著性检验等 P45TDIST :返回自由度为n 的t 分布在x 点处的单尾或者双尾概率。
TINV : 返回自由度为n 的t 分布的双尾概率分布函数的反函数.注意:1)TINV 返回 t 值,P (|X | > t ) = probability ,即P (|X | > t ) = P (X < -t or X > t ) 2)单尾 t 值可通过用两倍概率替换概率而求得 eg :如果概率为 0.05 而自由度为 10 , 双尾值由 TINV(0.05,10) 计算得到2.28139;TINVProbability 双尾学生 t 分布的概率Degrees_freedom 自由度1,02==σμσμ-=x u而同样概率和自由度的单尾值由TINV(2*0.05,10) 计算得到1.812462。
5.卡方分布P456.F分布1、概率抽样:根据已知的概率选取样本简单随机抽样:完全随机地抽选样本分层抽样:总体分成不同的“层”,然后在每一层内进行抽样整群抽样:将一组被调查者(群)作为一个抽样单位等距抽样:在样本框中每隔一定距离抽选一个被调查者 2、非概率抽样:不是完全按随机原则选取样本 非随机抽样:由调查人员自由选取被调查者 判断抽样:通过某些条件过滤来选择被调查者3、配额抽样:选择一群特定数目、满足特定条件的被调查者抽样分布:从一个给定的总体中抽取(不论是否有放回)容量(或大小)为n 的所有可能的样本,对于每一个样本,计算出某个统计量(如样本均值或标准差)的值,不同的样本得到的该统计量的值是不一样的,由此得到这个统计量的分布,称之为抽样分布1. 所有样本指标(如均值、比例、方差等)所形成的分布称为抽样分布2. 是一种理论概率分布3. 随机变量是 样本统计量——样本均值, 样本比例等 4 结果来自容量相同的所有可能样本(符号)样本平均数的基本性质:(1)样本均值的均值(数学期望)等于总体均值μμ=x 定义: 一个参数θ的估计量是θˆ ,如果θθ=)ˆ(E ,则称θˆ 是θ 的无偏估计(2)样本均值的方差等于总体方差的1/n nx22σσ=(3)样本平均数的标准误差的定义(4)当总体服从正态分布N~(μ, σ2 )时,来自该总体的所有容量为n 的样本的均值 也服从正态分布, 的数学期望为μ,方差为σ2/n 。
即 ~N (μ, σ2/n )中心极限定理:设从均值为μ,方差为σ 2的一个任意总体中抽取容量为n 的样本,当n 充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n 的正态分布 两个独立样本平均数差数的分布 P44第四章假设检验:又称显著性检验:根据总体的理论分布和小概率原理,对未知或不完全知道的总体提出两种彼此对立的假设,然后由样本的实际结果,经过一定的计算,做出在一定概率意义上应该接受的那种假设的推断。