立体几何体型学生
- 格式:doc
- 大小:1.82 MB
- 文档页数:20
立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
【题型一】 平行1:四边形法证线面平行【典例分析】如图,在正方体中,E ,F 分别是,CD 的中点.(1)求证:平面;(2)求异面直线与所成角的余弦值.【答案】(1)证明见解析;(2(1)在正方体中,取中点G ,连接FG ,,如图,而F 是CD 的中点,则,,又E 是的中点,则,, 因此,,,四边形是平行四边形,有,而平面,平面,平面.【经验总结】基本规律1.利用平移法做出平行四边形2.利用中位线做出平行四边形【变式演练】1.如图所示,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,,,,E 是PB 的中点.(1)求证:平面PAD ;(2)若,求三棱锥P -ACE 的体积.【答案】(1)证明见解析(2) 【分析】(1)取PA 的中点F ,连接EF ,DF ,利用平行四边形证明,再由线面平行的判定定理即可得证;(2)根据等体积法知,即可由棱锥体积公式求解.(1)取PA 的中点F ,连接EF ,DF ,∵点E ,F 分别为PB ,PA 的中点,1111ABCD A B C D -1AA //EF 11A CD 1ED 1A C 1111ABCD A B C D -1CD 1GA 1//FG DD 112FG DD =1AA 11//A E DD 1112A E DD =1//A E FG 1A E FG =1FGA E 1//EF GA EF ⊄11A CD 1GA ⊂11A CD //EF 11A CD AB AD ⊥//AB CD 222AB AD CD ===//CE 2PC =13//EC DF P ACE E ACP V V --=∴,,∴四边形EFDC 是平行四边形,∴,又∵平面PAD ,平面PAD ,∴平面PAD ;2.如图,在四棱锥中,面,,且,,,,为的中点.(1)求证:平面;(2)求平面与平面所成二面角的余弦值;(3)在线段上是否存在一点,使得直线与平面若存在求出的值,若不存在说明理由. 【答案】(1)证明见解析(2)(3)存在, (1)证明:取CP 中点F ,连接NF 、BF ,因为F ,N 分为PC ,PD 的中点,则,且, 又,且,,所以四边形NABF 是平行四边形, ,又面PBC ,面PBC 。
1.在正三棱柱ABC -A 1B 1C 1中,AB =AA 1,D 、E 分别是棱A 1B 1、AA 1的中点,点F 在棱AB 上,且4AB AF =.(1)求证:EF ∥平面BDC 1;(2)求证:1BC ⊥平面1B CE .2.如图,已知AB ⊥平面ACD ,//DE AB ,22AD AC DE AB ====,且F 是CD 的中点,AF =(1)求证://AF 平面BCE ;(2)求证:平面BCE ⊥平面CDE ;(3)求此多面体的体积.3.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF FC =,求证://PA 平面BDF ;(2)若BF PC ⊥,求证:平面BDF ⊥平面PBC .4.如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点。
PD 1C 1B 1A 1DC B A(1)求证:直线1BD ∥平面PAC ;(2)求证:平面PAC ⊥平面1BDD ;5.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1,AB AC AC AA ⊥=,E 、F 分别是棱1BC CC 、的中点.1(Ⅰ)求证:AB ⊥平面AA 1 C 1C ;(Ⅱ)若线段AC 上的点D 满足平面DEF //平面1ABC ,试确定点D 的位置,并说明理由;6.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,四边形ABCD 是平行四边形,且AC ⊥CD ,PA=AD ,M ,Q 分别是PD ,BC 的中点.(1)求证:MQ ∥平面PAB ;(2)若AN ⊥PC ,垂足为N ,求证:MN ⊥PD .7.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD . (Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ;(Ⅱ)求证:PA ⊥CD ;(Ⅲ)若PA PD AD ==,求证:平面PAB ⊥平面PCD .A8.如图,三棱柱111ABC A B C -是直棱柱,1,2AB AC AB AC AA ⊥===.点,M N 分别为1A B 和11B C 的中点.B 1(1)求证:MN 平面11A ACC ;(2)求点B 到平面ACM 的距离.9.如图,在四棱锥P A B C D -中,A B C D 是正方形,PD ⊥平面A B C D ,2PD AB ==,,,E F G 分别是,,PC PD BC 的中点.(1)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明;(2)证明平面EFG ⊥平面PAD ,并求出D 到平面EFG 的距离.10.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,90ABC ∠=,1==AB SA ,2=BC(1)求证:BA ⊥平面SAD ;(2)求异面直线AD 与SC 所成角的大小。
四类立体几何题型-高考数学大题秒杀技巧立体几何问题一般分为四类:类型1:线面平行问题类型2:线面垂直问题类型3:点面距离问题类型4:线面及面面夹角问题下面给大家对每一个类型进行秒杀处理.技巧:法向量的求算待定系数法:步骤如下:①设出平面的法向量为n =x ,y ,z .②找出(求出)平面内的两个不共线的向量a =a 1,b 1,c 1 ,b =a 2,b 2,c 2 .③根据法向量的定义建立关于x ,y ,z 的方程组n ⋅a =0n ⋅b =0④解方程组,取其中的一个解,即得法向量.注意:在利用上述步骤求解平面的法向量时,方程组n ⋅a =0n ⋅b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.秒杀:口诀:求谁不看谁,积差很崩溃(求外用外减,求内用内减)向量a =x 1,y 1,z 1 ,b =x 2,y 2,z 2 是平面α内的两个不共线向量,则向量n =y 1z 2−y 2z 1,x 2z 1−x 1z 2,x 1y 2−x 2y 1 是平面α的一个法向量.特别注意:空间点不容易表示出来时直接设空间点的坐标,然后利用距离列三个方程求解.类型1:线面平行问题方法一:中位线型:如图⑴,在底面为平行四边形的四棱锥P -ABCD 中,点E 是PD 的中点.求证:PB ⎳平面AEC .分析:方法二:构造平行四边形如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE ⎳CF ,求证:AE ⎳平面DCF .分析:过点E作EG⎳AD交FC于G,DG就是平面AEGD与平面DCF的交线,那么只要证明AE⎳DG即可。
方法三:作辅助面使两个平面是平行如图⑶,在四棱锥O-ABCD中,底面ABCD为菱形,M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD分析::取OB中点E,连接ME,NE,只需证平面MEN∥平面OCD。
高二数学立体几何试题答案及解析1.一个球的Л体积为,则此球的表面积为.【答案】【解析】因为球的体积公式:,所以=所以R=1,由表面积公式S=4=2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1B.C.D.2【答案】C【解析】略3.已知长方体中,,点在棱上移动,当时,直线与平面所成角为.【答案】【解析】为直线与平面所成角,,,,所以.【考点】线面角4.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD 的体积为_____________.【答案】【解析】矩形外接圆的直径为对角线长。
棱锥的体积为【考点】棱锥外接球问题5.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可得其还原图是半个圆锥,由题可得其底面圆半径为1,母线长为3,所以其体积为。
故选A。
【考点】由三视图求面积、体积。
6.(本小题满分12分)已知如图,四边形是直角梯形,,,平面,,点、、分别是、、的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)先证明平面∥平面,由面面平行可得线面平行;(Ⅱ)建立直角坐标系,由空间微量公式计算即可.试题解析:(Ⅰ)证明:∵点、、分别是、、的中点,∴∥,∥.∵平面,平面,平面,平面,∴∥平面,∥平面.∵,∴平面∥平面∵平面,∴∥平面.(Ⅱ)解:根据条件,直线,,两两垂直,分别以直线,,为建立如图所示的空间直角坐标系.设,∵,∴∴.设分别是平面和平面的一个法向量,∴,∴,即,.不妨取,得.∴.∵二面角是锐角,∴二面角的余弦值是.【考点】1.线面平行、面面平行的判定与性质;2.空间向量的应用.7.一个几何体的三视图如图所示,已知这个几何体的体积为,则()A.B.C.D.【答案】B【解析】根据题中所给的三视图,可知该几何体为底面为边长为和的长方形,顶点在底面上的摄影是左前方的顶点,所以有,解得,故选B.【考点】根据所给的几何体的三视图,还原几何体,求其体积及其他量.8.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,【考点】1.线面垂直的判定定理;2.二面角;9.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值为()A.B.C.D.【答案】B【解析】设该棱柱各棱长为a,底面中心为O,则A1O平面ABC.在三角形A1AO中,可得.设AB中点为D,可证,AD A1D.在直角三角形ADA1中,AA1=a,AD=,解得,.故与底面所成角的正弦值为.故选B.10.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________.【答案】【解析】【考点】圆锥体积11.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF= .则下列结论中正确的个数为①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④的面积与的面积相等,A.4B.3C.2D.1【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确【考点】1.正方体的结构特点;2.空间线面垂直平行的判定与性质12.设为两个不重合的平面,为两条不重合的直线,给出下列四个命题:①若,则;[②若,则;③若则;④若与相交且不垂直,则与一定不垂直.其中,所有真命题的序号是.【答案】①③【解析】②中两平面平行或垂直;④中两直线可能相交,平行或异面,可能出现异面直线垂直的情况;①③由线面垂直平行的判定与性质可知结论正确【考点】空间线面垂直平行的判定与性质13.一个的长方体能装卸8个半径为1的小球和一个半径为2的大球,则的最小值为()A.B.C.D.8【答案】B【解析】在的面上放4个小球,在在上面放一个大球,4个小球每个都与相邻两个相切,大球与四个小球都相切,记4个小球的球心依次为,大球球心为,则为正四棱锥,底面边长为2,侧棱长为3,其高为,对应上面再放4个小球,因此的最小值为,故选B.【考点】长方体与球.14.如图,在四面体中,,,点分别是的中点(1)求证:平面平面;(2)当,且时,求三棱锥的体积【答案】(1)见解析;(2).【解析】(1)证明面面垂直应证线面垂直,首先根据图形分析需要证明面即可说明平面平面;(2)解决本题关键是找出底面上的高,由(1)很容易可以得到高为,由此可以计算三棱锥的体积.试题解析:(1)证明:∵中,分别是的中点,.,.中,,是的中点,.,面,平面平面;(2)解:,是的中点,,,,∴平面,,,,,,.【考点】空间几何体的垂直、平行、体积问题.15.如图,已知四棱锥的底面为菱形,,,.(1)求证:;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)用几何法证明线线垂直的主要思路是证明线面垂直,则线线垂直,所以首先根据所给的条件能够确定是等腰直角三角形,是等边三角形,然后取的中点,连接,最后证明平面;(2)根据上一问的结论,根据勾股定理,证明,从而可以以为原点建立空间直角坐标系,分别求两个平面的法向量,利用公式求解.试题解析:(1)证明:取的中点,连接.∵,∴又四边形是菱形,且,∴是等边三角形,∴又,∴,又,∴(2)由,,易求得,,∴,以为坐标原点,以,,分别为轴,轴,轴建立空间直坐标系,则,,,,∴,,设平面的一个法向量为,则,,∴,∴,,∴设平面的一个法向量为,则,,∴,∴,,∴∴【考点】1.线与线的位置关系;2.二面角.16.如图,在正三棱锥中,.分别为棱.的中点,并且,若侧棱长,则正三棱锥的外接球的体积为__________.【答案】【解析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.∵M,N分别为棱SC,BC的中点,∴MN∥SB,∵三棱锥S-ABC为正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM,而AM∩AC=A,∴MN⊥平面SAC,∴SB⊥平面SAC ∴∠ASB=∠BSC=∠ASC=90°以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径.【考点】球的体积与表面积【方法点睛】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.17.如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.(1)求异面直线和所成的角的大小;(2)求证:直线平面.【答案】(1);(2)见解析.【解析】(1)通过构造中位线,得到,即为异面直线和所成的角,由已知数据求之即可;(2)要证平面,可在平面中构造一条直线与平行即可,连接交于点,连接,证明即可.试题解析:(1)∵,分别是,的中点,∴,∴为异面直线和所成的角.在△中,可求,,,故,即异面直线和所成的角是.(2)连接交于点,连接,∵为的中点,为的中点,∴为△的重心,∴.∵为的中点,为的中点,∴,∴,∴,∵面,面,∴面.【考点】1.异面直线所成的角;2.线线、线面平行的判定与性质.18.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段上,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于()A.B.C.D.【答案】B【解析】由俯视图可知为的中点,与重合,与点重合.所以此时三棱锥的正视图为三角形,其面积为.故B正确.【考点】三视图.【思路点晴】本题主要考查的是三视图,属于中档题.应先根据三棱锥的俯视图确定四点的位置,还原出三棱锥的立体图,根据其立体图可得其正视图,从而可求得正视图的面积.19.如图,在四棱锥中,底面是正方形,侧棱底面,,是的中点.则与底面所成的角的正切值为________.【答案】【解析】设底面边长为1,取中点,连接,,所以底面,那么为与底面所成的角,,,所以.【考点】线面角【思路点睛】主要考察了线面角的求法,属于基础题型,根据线面角的定义,线与射影所成角,所以此题的关键是求在平面内的射影,所以根据底面,取中点,得底面,再连接,为与底面所成的角,根据正切公式求解.20.在四棱锥中,底面,,,,,是的中点.(1)证明:;(2)证明:平面;(3)(限理科生做,文科生不做)求二面角的余弦值.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明异面直线垂直,一般的思路是证明线面垂直,线在面内,所以线线垂直的思路,所以根据条件转化为先证明平面,而要证明平面,得先证明,条件所给,易证;(2)证明线面垂直的思路是证明线与平面内的两条相交直线垂直,则线面垂直,根据上一问已证明,所以只需再证明,根据条件需证明,问题会迎刃而解;(3)由题可知两两垂直,建立空间直角坐标系,设,那就可以写出各点的坐标,并分别求两个平面的法向量与,利用公式,并观察是钝二面角.试题解析:(1)证明:底面,.又面,面,.(2)证明:,是等边三角形,,又是的中点,,又由(1)可知,面(3)解:由题可知两两垂直,如图建立空间直角坐标系,设,则.设面的一个法向量为,即取则,即设面的一个法向量为,即取则即,由图可知二面角的余弦值为.【考点】1.线线垂直,线面垂直的证明;2.二面角;3.向量法.21.如图,已知圆柱的高为,是圆柱的三条母线,是底面圆的直径,.(1)求证://平面;(2)求二面角的正切值.【答案】(1)证明见解析;(2).【解析】(1)先利用垂直关系建立空间直角坐标系,写出相关点的坐标,通过证明的方向向量和平面的法向量垂直进行证明;(2)先求出两个平面的法向量,利用空间向量求出其二面角的余弦值,再利用同角三角函数基本关系式求解.试题解析:由是直径,可知,故由可得:,以点为坐标原点建立空间直角坐标系(如图)则(1)由可得平面的一个法向量又又平面平面(2)由可得平面的一个法向量,由可得平面的一个法向量设二面角为,则所以二面角的正切值为.【考点】1.线面平行的判定;2.二面角;3.空间向量在立体中的应用.22.(2015秋•黄冈校级期末)如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)()A. B. C. D.【答案】A【解析】在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α,平面α与平面ABCD有一个公共点D,则它们有且只有一条过该点的公共直线.取特殊点B,可排除选项B,故选A.【考点】轨迹方程.23.(2015秋•内江期末)若一个几何体的正视图是一个三角形,则该几何体不可能是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】B【解析】圆柱的正视图可能是矩形,可能是圆,不可能是三角形.解:圆锥的正视图有可能是三角形,圆柱的正视图可能是矩形,可能是圆,不可能是三角形,棱锥的正视图有可能是三角形,三棱柱放倒时正视图是三角形,∴在圆锥、圆柱、棱锥、棱柱中,正视图是三角形,则这个几何体一定不是圆柱.故选:B.【考点】简单空间图形的三视图.24.已知两条不重合的直线和两个不重合的平面、,有下列命题:①若,,则;②若,,,则;③若是两条异面直线,,,,则;④若,,,,则.其中正确命题的个数是()A.B.C.D.【答案】B【解析】①不正确,还可能;②正确,,,又,;③不正确,还可能相交;④由面面垂直的性质定理可知④正确.综上可得②④正确.故B正确.【考点】1线面位置关系;2面面位置关系.25.如图,在三棱锥P﹣ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(Ⅰ)证明:AB⊥PC;(Ⅱ)证明:平面PAB∥平面FGH.【答案】见解析【解析】(Ⅰ)根据线面垂直的性质定理证明AB⊥面PEC,即可证明:AB⊥PC;(Ⅱ)根据面面平行的判定定理即可证明平面PAB∥平面FGH.解:(Ⅰ)证明:连接EC,则EC⊥AB又∵PA=PB,∴AB⊥PE,∴AB⊥面PEC,∵BC⊂面PEC,∴AB⊥PC(Ⅱ)连结FH,交于EC于O,连接GO,则FH∥AB在△PEC中,GO∥PE,∵PE∩AB=E,GO∩FH=O∴平面PAB∥平面FGH【考点】平面与平面平行的判定;空间中直线与直线之间的位置关系.26.以正方体的顶点D为坐标原点,如图建立空间直角坐标系,则与共线的向量的坐标可以是()A.B.C.D.【答案】D【解析】不妨令正方体的边长为1,则由图可知.,与共线的向量的坐标为.故D正确.【考点】空间向量共线问题.27.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=" 2AD" ="2CD" =2.E是PB的中点.(I)求证;平面EAC⊥平面PBC;(II)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.【答案】(I)证明见解析;(II).【解析】对于问题(I),可以先证明平面,再证明,然后即可证明所需结论;对于问题(II),首先建立以为坐标原点的空间坐标系,然后再求出相应点的坐标,再由题设条件求出的长以及平面的法向量,最后利用向量的夹角公式,就可以得到直线与平面所成角的正弦值.试题解析:(I),,,,,错误!未指定书签。
高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
立体几何题型01 空间几何体的有关计算题型02 点线面位置关系、空间角及距离题型03 内切球、外接球问题题型04 空间向量题型01 空间几何体的有关计算1(2024·山西晋城·统考一模)若一个正n棱台的棱数大于15,且各棱的长度构成的集合为{2,3},则n 的最小值为,该棱台各棱的长度之和的最小值为.2(2024·浙江·校联考一模)已知圆台的上下底面半径分别是1,4,且侧面积为10π,则该圆台的母线长为.3(2024·安徽合肥·合肥一六八中学校考一模)球O的半径与圆锥M的底面半径相等,且它们的表面积也相等,则圆锥M的侧面展开图的圆心角大小为,球O的体积与圆锥M的体积的比值为.4(2024·湖南长沙·雅礼中学校考一模)已知圆锥的母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.5(2024·广东深圳·校考一模)已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为3的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为.6(2024·辽宁沈阳·统考一模)正方体的8个顶点分别在4个互相平行的平面内,每个平面内至少有一个顶点,且相邻两个平面间的距离为1,则该正方体的棱长为()A.2B.3C.2D.57(2024·云南曲靖·统考一模)为努力推进“绿美校园”建设,营造更加优美的校园环境,某校准备开展校园绿化活动.已知栽种某绿色植物的花盆可近似看成圆台,圆台两底面直径分别为18厘米,9厘米,母线长约为7.5厘米.现有2000个该种花盆,假定每一个花盆装满营养土,请问共需要营养土约为( )(参考数据:π≈3.14)A.1.702立方米B.1.780立方米C.1.730立方米D.1.822立方米8(2024·新疆乌鲁木齐·统考一模)某广场设置了一些石凳供大家休息,这些石凳是由棱长为40cm的正方体截去八个一样的四面体得到的,则()A.该几何体的顶点数为12B.该几何体的棱数为24C.该几何体的表面积为(4800+8003)cm 2D.该几何体外接球的表面积是原正方体内切球、外接球表面积的等差中项9(2024·山西晋城·统考一模)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,AA 1=4,C 1 E =3EC,平面ABE 将该正四棱柱分为上、下两部分,记上部分对应的几何体为Ω上,下部分对应的几何体为Ω下,则()A.Ω下的体积为2B.Ω上的体积为12C.Ω下的外接球的表面积为9πD.平面ABE 截该正四棱柱所得截面的面积为25题型02 点线面位置关系、空间角及距离10(2024·河北·校联考一模)已知直线l 、m 、n 与平面α、β,下列命题正确的是()A.若α⎳β,l ⊂α,n ⊂β,则l ⎳nB.若α⊥β,l ⊂α,则l ⊥βC.若l ⊥n ,m ⊥n ,则l ⎳mD.若l ⊥α,l ⎳β,则α⊥β11(2024·浙江·校联考一模)已知直线a ,b 和平面α,a ⊄α,b ∥α,则“a ∥b ”是“a ∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12(2024·广东深圳·校考一模)已知α,β是两个不同的平面,m ,n 是两条不同的直线,则下列说法正确的是()A.若m ⊥n ,m ⊥α,n ⊥β,则α⊥βB.若m ⎳n ,m ⎳α,n ⎳β,则α⎳βC.若m ⊥n ,m ⎳α,α⊥β,则n ⊥βD.若m ⎳n ,m ⊥α,α⊥β,则n ⎳β13(2024·吉林白山·统考一模)正八面体可由连接正方体每个面的中心构成,如图所示,在棱长为2的正八面体中,则有()A.直线AE与CF是异面直线B.平面ABF⊥平面ABEC.该几何体的体积为432 D.平面ABE与平面DCF间的距离为26314(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,∠BAD=120°,AC⊥BD,△BCD是等边三角形.(1)证明:平面PAD⊥平面PCD.(2)求二面角B-PC-D的正弦值.15(2024·辽宁沈阳·统考一模)如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,且BC=BD= BA,∠CBA=∠CBD=120°,点P在线段AC上,点Q在线段CD上.(1)求证:AD⊥BC;(2)若AC⊥平面BPQ,求BPBQ的值;(3)在(2)的条件下,求平面ABD与平面PBQ所成角的余弦值.16(2024·重庆·统考一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB= AP,AB⊥AD,AB+AD=6,CD=2,∠CDA=45°.(1)若E为PB的中点,求证:平面PBC⊥平面ADE;(2)若平面PAB与平面PCD所成的角的余弦值为66.(ⅰ)求线段AB的长;(ⅱ)设G为△PAD内(含边界)的一点,且GB=2GA,求满足条件的所有点G组成的轨迹的长度.17(2024·云南曲靖·统考一模)在图1的直角梯形ABCD中,∠A=∠D=90°,AB=BC=2,DC=3,点E是DC边上靠近于点D的三等分点,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1= 6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在棱DC1上是否存在点P,使得二面角P-EB-C1的大小为45°?若存在,求出线段DP的长度,若不存在说明理由.18(2024·云南曲靖·统考一模)如图所示,正方体ABCD -A B C D 的棱长为1,E ,F 分别是棱AA ,CC 的中点,过直线EF 的平面分别与棱BB ,DD 交于点M ,N ,以下四个命题中正确的是()A.四边形EMFN 一定为菱形B.四棱锥A -MENF 体积为13C.平面EMFN ⊥平面DBB DD.四边形EMFN 的周长最小值为419(2024·山东济南·山东省实验中学校考一模)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,∠ABC =∠BAD =π2,AD =2,PA =BC =1,点E 为棱PD 上一点,满足PE =λPD0≤λ≤1 ,下列结论正确的是()A.平面PAC ⊥平面PCD ;B.在棱PD 上不存在点E ,使得CE ⎳平面PABC.当λ=12时,异面直线CE 与AB 所成角的余弦值为255;D.点P 到直线CD 的距离3;20(2024·新疆乌鲁木齐·统考一模)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA =AB ,点E ,F 分别是棱PB ,BC 的中点.(1)求直线AF 与平面PBC 所成角的正弦值;(2)在截面AEF 内是否存在点G ,使DG ⊥平面AEF ,并说明理由.21(2024·山西晋城·统考一模)如图,P 是边长为2的正六边形ABCDEF 所在平面外一点,BF 的中点O 为P 在平面ABCDEF 内的射影,PM =2MF.(1)证明:ME ⎳平面PBD .(2)若PA =2,二面角A -PB -D 的大小为θ,求cos2θ.22(2024·河南郑州·郑州市宇华实验学校校考一模)如图,在正方体ABCD -A 1B 1C 1D 1中,点P 是AD 1的中点,点Q 是直线CD 1上的动点,则下列说法正确的是()A.△PBD 是直角三角形B.异面直线PD 与CD 1所成的角为π3C.当AB 的长度为定值时,三棱锥D -PBQ 的体积为定值D.平面PBD ⊥平面ACD123(2024·浙江·校联考一模)在三棱柱ABC-A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.24(2024·广东深圳·校考一模)如图,在圆锥SO中,AB是圆O的直径,且△SAB是边长为4的等边三角形,C,D为圆弧AB的两个三等分点,E是SB的中点.(1)证明:DE⎳平面SAC;(2)求平面SAC与平面SBD所成锐二面角的余弦值.25(2024·广西南宁·南宁三中校联考一模)在如图所示的五面体ABCDEF中,ABEF共面,△ADF是正三角形,四边形ABCD为菱形,∠ABC=2π3,EF⎳平面ABCD,AB=2EF=2,点M为BC中点.(1)证明:EM∥平面BDF;(2)已知EM=2,求平面BDF与平面BEC所成二面角的正弦值.26(2024·安徽合肥·合肥一六八中学校考一模)如图,菱形ABCD的对角线AC与BD交于点O,AB =5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H,将△DEF沿EF折到△DEF 位置,OD =10.(1)证明:D H⊥平面ABCD;(2)求平面BAD 与平面ACD 的夹角的余弦值.27(2024·安徽合肥·合肥一六八中学校考一模)设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是()A.若b⎳α,c⊂α,则b⎳cB.若b⊂α,b⎳c,则c⊂αC.若c⎳α,α⊥β,则c⊥βD.若c⎳α,c⊥β,则α⊥β28(2024·吉林延边·统考一模)已知三棱柱ABC-A1B1C1,侧面AA1C1C是边长为2的菱形,∠CAA1 =πA1是矩形,且平面AA1C1C⊥平面ABB1A1,点D是棱A1B1的中点.3,侧面四边形ABB1(1)在棱AC上是否存在一点E,使得AD∥平面B1C1E,并说明理由;(2)当三棱锥B-A1DC1的体积为3时,求平面A1C1D与平面CC1D夹角的余弦值.29(2024·黑龙江齐齐哈尔·统考一模)如图1,在平面四边形PABC中,PA⊥AB,CD⎳AB,CD=2AB=2PD=2AD=4.点E是线段PC上靠近P端的三等分点,将△PDC沿CD折成四棱锥P-ABCD,且AP=22,连接PA,PB,BD,如图2.(1)在图2中,证明:PA⎳平面BDE;(2)求图2中,直线AP与平面PBC所成角的正弦值.30(2024·重庆·统考一模)如图,在边长为1的正方体ABCD-A1B1C1D1中,E是C1D1的中点,M是线段A1E上的一点,则下列说法正确的是()A.当M点与A1点重合时,直线AC1⊂平面ACMB.当点M移动时,点D到平面ACM的距离为定值C.当M点与E点重合时,平面ACM与平面CC1D1D夹角的正弦值为53D.当M点为线段A1E中点时,平面ACM截正方体ABCD-A1B1C1D1所得截面面积为73332 31(2024·福建厦门·统考一模)如图,在四棱锥E-ABCD中,AD⎳BC,2AD=BC=2,AB=2,AB⊥AD,EA⊥平面ABCD,过点B作平面α⊥BD.(1)证明:平面α⎳平面EAC;(2)已知点F为棱EC的中点,若EA=2,求直线AD与平面FBD所成角的正弦值.32(2024·吉林延边·统考一模)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,DE =BF =1,DE ∥BF ,DE ⊥平面ABCD ,动点P 在线段EF 上,则下列说法正确的是()A.AC ⊥DPB.存在点P ,使得DP ∥平面ACFC.三棱锥A -CDE 的外接球被平面ACF 所截取的截面面积是9π2D.当动点P 与点F 重合时,直线DP 与平面ACF 所成角的余弦值为3101033(2024·福建厦门·统考一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 题型03 内切球、外接球问题34(2024·黑龙江齐齐哈尔·统考一模)已知四面体ABCD 的各个面均为全等的等腰三角形,且CA =CB =2AB =4.设E 为空间内任一点,且A ,B ,C ,D ,E 五点在同一个球面上,则()A.AB ⊥CDB.四面体ABCD 的体积为214C.当AE =23时,点E 的轨迹长度为4πD.当三棱锥E -ABC 的体积为146时,点E 的轨迹长度为32π35(2024·吉林白山·统考一模)在四面体A -BCD 中,BC =22,BD =23,且满足BC ⊥BD ,AC ⊥BC ,AD ⊥BD .若该三棱锥的体积为863,则该锥体的外接球的体积为.36(2024·吉林延边·统考一模)已知一个圆锥的侧面展开图是一个圆心角为25π5,半径为5的扇形.若该圆锥的顶点及底面圆周都在球O 的表面上,则球O 的体积为.37(2024·河南郑州·郑州市宇华实验学校校考一模)已知正三棱柱ABC-A1B1C1的底面边长为2,以A1为球心、3为半径的球面与底面ABC的交线长为3π6,则三棱柱ABC-A1B1C1的表面在球内部分的总面积为.38(2024·江西吉安·吉安一中校考一模)已知球O的直径PQ=4,A,B,C是球O球面上的三点,△ABC是等边三角形,且∠APQ=∠BPQ=∠CPQ=30°,则三棱锥P-ABC的体积为( ).A.334B.934C.332D.273439(2024·湖南长沙·雅礼中学校考一模)如图所示,有一个棱长为4的正四面体P-ABC容器,D是PB的中点,E是CD上的动点,则下列说法正确的是()A.直线AE与PB所成的角为π2B.△ABE的周长最小值为4+34C.如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为63D.如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为26-25 40(2024·江西吉安·吉安一中校考一模)如图,在正三棱锥P-ABC中,有一半径为1的半球,其底面圆O与正三棱锥的底面贴合,正三棱锥的三个侧面都和半球相切.设点D为BC的中点,∠ADP=α.(1)用α分别表示线段BC和PD长度;(2)当α∈0,π2时,求三棱锥的侧面积S的最小值.41(2024·江西吉安·吉安一中校考一模)地球仪是地理教学中的常用教具.如图1所示,地球仪的赤道面(与转轴垂直)与黄道面(与水平面平行)存在一个夹角,即黄赤交角,大小约为23.5°.为锻炼动手能力,某同学制作了一个半径为4cm 的地球仪(不含支架),并将其放入竖直放置的正三棱柱ABC -A 1B 1C 1中(姿态保持不变),使地球仪与该三棱柱的三个侧面相切,如图2所示.此时平面AB 1C 恰与地球仪的赤道面平行,则三棱柱ABC -A 1B 1C 1的外接球体积为.(参考数据:tan23.5°≈0.43)题型04 空间向量42(2024·福建厦门·统考一模)已知平面α的一个法向量为n=(1,0,1),且点A (1,2,3)在α内,则点B (1,1,1)到α的距离为.43(2024·广西南宁·南宁三中校联考一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB +yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为6344(2024·湖南长沙·雅礼中学校考一模)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =AD =AA 1=1,∠DAB =90°,cos <AA 1 ,AB >=22,cos <AA 1 ,AD >=12,点M 为BD 中点.(1)证明:B 1M ⎳平面A 1C 1D ;(2)求二面角B -AA 1-D 的正弦值.。
文科立体几何大题-------求体积 题型一:变换顶点求体积 例题1如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,//AB CD ,2AB =,3CD =,M 为PC 上一点,且2PM MC =.(1)求证:BM ∥平面PAD ; (2)若2AD =,3PD =,3BAD π∠=,求三棱锥P -ADM 的体积.典型题练习1.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(Ⅰ)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(Ⅱ)求三棱锥E-ABC的体积.练习2在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为平行四边形,AA 1⊥平面ABCD .AB =2AD =4,3DAB π∠=. (1)证明:平面D 1BC ⊥平面D 1BD ;(2)若直线D 1B 与底面ABCD 所成角为6π,M ,N ,Q 分别为BD ,CD ,D 1D 的中点,求三棱锥C —MNQ 的体积.巩固练习1.如图示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 是矩形,PD AD =,E 、F 分别CD 、PB 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:EF ⊥平面PAB ; (Ⅲ)设33==BC AB , 求三棱锥P -AEF 的体积.练习2如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,60BAD ∠=︒.(1)求证:平面PBD ⊥平面P AC ;(2)若PA AB =,M 为线段PC 的中点,求三棱锥C -MBD 的体积。
文科立体几何大题-------求体积题型一:变换顶点求体积例题1.解析:1.(1)法一:过作交于点,连接.∵,∴.又∵,且,∴,∴四边形为平行四边形,∴.又∵平面,平面,∴平面.法二:过点作于点,为垂足,连接.由题意,,则,又∵,,∴,∴四边形为平行四边形,∴.∵平面,平面,∴.又,∴.又∵平面,平面;∵平面,平面,;∴平面平面.∵平面,∴平面.(2)过作的垂线,垂足为.∵平面,平面,∴.又∵平面,平面,;∴平面由(1)知,平面,所以到平面的距离等于到平面的距离,即.在中,,,∴.M //MN CD PD N AN 2PM MC =23MN CD=23ABCD =//AB CD //AB MN ABMN//BM AN BM ⊄PAD AN ⊂PAD //BM PAD M MN CD ⊥N N BN 2PM MC =2DN NC =3DC =2DN =//AB DN ABND //BN AD PD ⊥ABCD DC ⊂ABCD PD DC ⊥MN DC ⊥//PD MN BN ⊂MBN MN ⊂,MBN BN MN N =AD ⊂PAD PD ⊂PAD AD PD D ⋂=//MBN PAD BM ⊂MBN //BM PAD B AD E PD ⊥ABCD BE ⊂ABCD PD BE ⊥AD ⊂PAD PD ⊂PAD AD PD D ⋂=BE ⊥PAD //BM PAD M PAD B PAD BE ABC ∆2AB AD ==3BAD π∠=BE =13P ADM M PAD PAD V V S --∆==⨯133BE ⋅=⨯典型题练习1.解析:(Ⅰ)如图所示,取中点,取中点,连结,则即为所求. 证明:取中点,连结,∵为腰长为的等腰三角形,为中点,∴,又平面平面,平面平面,平面,∴平面,同理可证平面,∴,∵平面,平面,∴平面.又,分别为,中点,∴,∵平面,平面,∴平面.又,平面,平面,∴平面平面,又平面,∴平面.(Ⅱ)连结,取中点,连结,则,由(Ⅰ)可知平面,所以点到平面的距离与点到平面的距离相等.又是边长为的等边三角形,∴,又平面平面,平面平面,平面,∴平面,∴平面,∴为中点,∴,又,,∴∴.DC N BD M MN MN BC H AH ABC ∆3H BC AH BC ⊥ABC ⊥BCD ABC BCD BC =AH ⊂ABCAH ⊥BCD EN ⊥BCD //EN AH EN ⊄ABCAH ⊂ABC //EN ABC M N BD DC //MN BC MN ⊄ABC BC ⊂ABC //MN ABC MN EN N =MN ⊂EMN EN ⊂EMN //EMN ABC EF ⊂EMN //EF ABC DH CH G NG //NG DH //EN ABC E ABC N ABC BCD ∆2DH BC ⊥ABC ⊥BCD ABC BCD BC =DH ⊂BCD DH ⊥ABC NG ⊥ABC DH =N CD NG =3AC AB ==2BC =12ABC S BC AC ∆=⋅⋅=V V =1S NG =⋅⋅=练习2解析:(1)证明:∵D 1D ⊥平面ABCD ,, ∴D 1D ⊥BC .又AB =4,AD =2,,∴∵AD 2+BD 2=AB 2,∴AD ⊥BD .又∵AD ∥BC ,∴BC ⊥BD .又∵D 1D∩BD =D ,,,∴BC ⊥平面D 1BD ,而,∴平面D 1BC⊥平面D 1BD ; (2)解:∵D 1D ⊥平面ABCD ,∴∠D 1BD 即为直线D 1B 与底面ABCD 所成的角,即,而,∴DD 1=2.,∴BC ABCD ⊂平面3DAB π∠=BD ==1BD D BD ⊂平面11D D D BD ⊂平面1BC D BC ⊂平面16D BD π∠=BD =14C MNQ Q CMN Q BDC V V V ---==11121432C MNQ V -=⨯⨯⨯⨯=巩固练习1.解析:(Ⅰ)取PA 的中点G ,连FG ,由题可知:BF=FP ,则FG //AB FG = AB ,又CE= ED ,可得:DE//AB 且DE = AB ,∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD ,∴ EF//平面PAD ⋯⋯⋯4分 (Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD ,且交线为AD ,又底面ABCD 是矩形,∴ BA ⊥ AD ,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD ,G 为PA 的中点,∴DG ⊥ PA ,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分 (Ⅲ)由BC =1, AB =F 为PB 的中点,∴ = = = == = ⋯⋯⋯⋯12分练习2解析:(Ⅰ)证明:∵四边形ABCD 是菱形,∴. 又∵平面ABCD ,平面ABCD ,∴.又,平面,平面,∴平面, ∵平面,∴平面平面. (Ⅱ)解:1212AEF P V -AEF B V -ABE F V-ABE P V -21PD S ABE ⋅⋅⋅∆3121112213121⋅⋅⋅⋅⋅122AC BD ⊥PA ⊥BD ⊂≠PA BD ⊥PA AC A =PA ⊂≠PAC AC ⊂≠PAC BD ⊥PAC BD ⊂≠PBD PBD ⊥PAC BCD 11=2232C BDM M V V --=⨯⨯⨯。
高三数学第二轮复习教案立体几何问题的题型与方法一、考试内容:(A)直线、平面、简单几何体考试内容平面及其基本性质,平面图形直观图的画法。
平行直线,对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线的距离。
直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理。
平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质。
多面体、棱柱、棱锥、正多面体、球。
二、考试要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
(2)了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给出公垂线时的距离)。
(3)了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。
(4)了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。
掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。
(5)会用反证法证明简单的问题。
(6)了解多面体的概念,了解凸多面体的概念。
(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
(9)了解正多面体的概念,了解多面体的欧拉公式。
(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。
三、复习目标1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的基础上,掌握它们的求法(其基本方法是分别作出这些角,并将它们置于某个三角形内通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步巩固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握基本的立体几何解题方法和常用解题技巧,发掘不同问题之间的内在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和“说话要有根据”的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.四、双基透视高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2. 判定两个平面平行的方法:(1)根据定义——证明两平面没有公共点;(2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。
⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过程中均可直接作为性质定理引用。
4.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决.空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π⎡⎤⎢⎥⎣⎦,二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π].对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步培养运算能力、逻辑推理能力及空间想象能力.如求异面直线所成的角常用平移法(转化为相交直线);求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角α-l -β的平面角(记作θ)通常有以下几种方法:(1) 根据定义;(2) 过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);(3) 利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线图 3⑴理解并掌握棱柱的定义及相关概念是学好这部分知识的关键,要明确“棱柱 直棱柱 正棱柱”这一系列中各类几何体的内在联系和区别。
⑵平行六面体是棱柱中的一类重要的几何体,要理解并掌握“平行六面体 直平行六面体 长方体 正四棱柱 正方体”这一系列中各类几何体的内在联系和区别。
⑶须从棱柱的定义出发,根据第一章的相关定理对棱柱的基本性质进行分析推导,以求更好地理解、掌握并能正确地运用这些性质。
⑷关于平行六面体,在掌握其所具有的棱柱的一般性质外,还须掌握由其定义导出的一些其特有的性质,如长方体的对角线长定理是一个重要定理并能很好地掌握和应用。
还须注意,平行六面体具有一些与平面几何中的平行四边形相对应的性质,恰当地运用平行四边形的性质及解题思路去解平行六面体的问题是一常用的解题方法。
⑸多面体与旋转体的问题离不开构成几何体的基本要素点、线、面及其相互关系,因此,很多问题实质上就是在研究点、线、面的位置关系,与《直线、平面、简单几何体》第一部分的问题相比,唯一的差别就是多了一些概念,比如面积与体积的度量等.从这个角度来看,点、线、面及其位置关系仍是我们研究的重点.多面体与旋转体的体积问题是《直线、平面、简单几何体》课程当中相对独立的课题.体积和面积、长度一样,都是度量问题.常用“分割与补形”,算出了这些几何体的体积.7.欧拉公式:如果简单多面体的顶点数为V ,面数F ,棱数E ,那么V+F-E =2.计算棱数E 常见方法:(1)E =V+F-2;(2)E =各面多边形边数和的一半;(3)E =顶点数与共顶点棱数积的一半。
8.经纬度及球面距离⑴根据经线和纬线的意义可知,某地的经度是一个二面角的度数,某地的纬度是一个线面角的度数,设球O 的地轴为NS ,圆O 是0°纬线,半圆NAS 是0°经线,若某地P 是在东经120°,北纬40°,我们可以作出过P 的经线NPS 交赤道于B ,过P 的纬线圈圆O 1交NAS 于A ,那么则应有:∠AO 1P=120°(二面角的平面角) ,∠POB=40°(线面角)。
⑵两点间的球面距离就是连结球面上两点的大圆的劣弧的长,因此,求两点间的球面距离的关键就在于求出过这两点的球半径的夹角。
例如,可以循着如下的程序求A 、P 两点的球面距离。
S 球表=4πR 2 V 球=34πR 3 ⑴球的体积公式可以这样来考虑:我们把球面分成若干个边是曲线的小“曲边三角形”;以球心为顶点,以这些小曲边三角形的顶点为底面三角形的顶点,得到若干个小三棱锥,所有这些小三棱锥的体积和可以看作是球体积的近似值.当小三棱锥的个数无限增加,且所有这些小三棱锥的底面积无限变小时,小三棱锥的体积和就变成球体积,同时小三棱锥底面面积的和就变成球面面积,小三棱锥高变成球半径.由于第n 个小三棱锥的体积=31S n h n (S n 为⌒ ⌒ ⌒ ⌒该小三棱锥的底面积,h n 为小三棱锥高),所以V 球=31S 球面·R =31·4πR 2·R =34πR 3. ⑵在应用球体积公式时要注意公式中给出的是球半径R ,而在实际问题中常给出球的外径(直径).⑶球与其它几何体的切接问题,要仔细观察、分析、弄清相关元素的位置关系和数量关系,选择最佳角度作出截面,以使空间问题平面化。
10.主要题型:⑴以棱柱、棱锥为载体,考查线面平行、垂直,夹角与距离等问题。
⑵利用欧拉公式求解多面体顶点个数、面数、棱数。
⑶求球的体积、表面积和球面距离。
解题方法:求球面距离一般作出相应的大圆,转化为平面图形求解。
五、注意事项1.须明确《直线、平面、简单几何体》中所述的两个平面是指两个不重合的平面。
2.与“直线与直线平行”、“直线与平面平行”的概念一样“平面与平面平行”是指“二平面没有公共点”。
由此可知,空间两个几何元素(点、直线、平面称为空间三个几何元素)间“没有公共点”时,它们间的关系均称为“互相平行”。
要善于运用平面与平面平行的定义所给定的两平面平行的最基本的判定方法和性质。