12汽车系统动力学-可控悬架系统
- 格式:ppt
- 大小:3.89 MB
- 文档页数:41
1 绪论随着社会的发展和文明的进步,汽车作为一种交通工具,已成为人们出行的主要选择,汽车乘坐的安全性、舒适性已成为世人关注的焦点。
汽车作为高速客运载体,其运行品质的好坏直接影响到人的生命安全,因此,与乘坐安全性、舒适性密切相关的轿车动力学性能的研究就显得非常重要。
悬架系统汽车的一个重要组成部分,它连接车身与车轮,主要由弹簧、减震器和导向机构三部分组成。
它能缓冲和吸收来自车轮的振动,传递车轮与地面的驱动力与制动力,还能在汽车转向时承受来自车身的侧倾力,在汽车启动和制动时抑制车身的俯仰和点头。
悬架系统是提高车辆平顺性和操作稳定性、减少动载荷引起零部件损坏的关键。
一个好的悬架系统不仅要能改善汽车的舒适性,同时也要保证汽车行驶的安全性,而提高汽车的舒适性必须限制汽车车身的加速度,这就需要悬架有足够的变形吸收来自路面的作用力。
然而为了保证汽车的安全性,悬架的变形必须限定在一个很小的范围内,为了改善悬架性能必须协调舒适性和操作稳定性之间的矛盾,而这个矛盾只有采用这折衷的控制策略才能合理的解决。
因此,研究汽车振动、设计新型汽车悬架系统、将振动控制在最低水平是提高现代汽车性能的重要措施[1][2]。
1.1 车辆悬架系统的分类及发展按工作原理不同,悬架可分为被动悬架(Passive Suspension)、半主动悬架(Semi-Active Suspension)和主动悬架(Active Suspension)三种,如图1.1所示[3]。
(a)被动悬架 (b)全主动悬架 (c)半主动悬架图 1.1 悬架的分类图1.1中Mu为非簧载质,Ms为簧载质量,Ks为悬架刚度,Kt为轮胎刚度;C1为被动悬架阻尼,C2为半主动悬架可变阻尼,F为主动悬架作动力。
目前我国车辆主要还是采用被动悬架(Passive Suspension)。
其两自由度系统模型如图1.1(a)所示。
传统的被动悬架一般由参数固定的弹簧和减振器组成,其弹簧的弹性特性和减振器的阻尼特性不能随着车辆运行工况的变化而进行调节,而且各元件在工作时不消耗外界能源,故称为被动悬架。
第9章电控悬架系统9.1 概述车辆行驶在复杂的环境里,即路况(路面不平度等级)、车速以及工况(加速、制动、转向、直线行驶)经常要发生变化。
例如汽车在急速起步或急速加速时会产生“加速后仰”现象,汽车高速行驶紧急制动时会产生“制动点头”现象;汽车在急转弯行驶时会产生“转向侧倾”现象。
上述情况会对汽车的行驶平顺性和操纵稳定性产生不利的影响。
被动悬架由于其结构特点,很难保证汽车的乘坐舒适性和操纵稳定性同时达到最佳。
因此,为解决这一问题产生了根据工况要求保证汽车的性能达到最佳的电控悬架。
电控悬架采用传感器技术、控制技术和机电液一体化技术对汽车的行驶工况进行监测。
由控制计算机根据一定的控制逻辑产生控制指令控制执行元件产生动作,保证汽车具有良好的行驶性能.9.1.1 电控悬架的功能1 调节车身高度。
汽车载荷变化时,电控悬架系统能自动维持车身高度不变,汽车即使在凸凹不平道路上行驶也可保持车身平稳。
2 提高车辆的行驶平顺性和操纵稳定性,抑制车辆姿态的变化(后仰、点头、侧倾) 。
当汽车急速起步或加速行驶时,由于惯性力及驱动力的作用,会使车尾下蹲产生"后仰"现象。
电控悬架能够及时地改变悬架的俯仰角刚度,抑制后仰的发生。
当汽车在高速行驶中紧急制动时,由于惯性力和轮胎与地面摩擦力的作用,会使车头下沉产生制动点头现象。
电控悬架能使汽车在这种工况下车头的下沉量得到抑制。
当汽车急转弯时,由于离心力的作用汽车车身向一侧倾斜,转弯结束后离心力消失。
汽车在这样的工况下会产生汽车车身的横向晃动.电控悬架在这种工况下能够减少车身倾斜的程度、抑制车身横向摇动的产生。
因此,电控悬架在一定程度上能使悬架适应负荷状况、路面不平度和操纵情况的变化.3 提高车轮与地面的附着力,改善汽车制动性能和提高汽车抵抗侧滑能力。
普通汽车在制动时车头向下俯冲,由于前、后轴载荷发生变化,使后轮与地面的附着条件恶化,延长了制动过程。
电控悬架系统可以在制动时使车尾下沉,充分利用车轮与地面的附着条件,加速制动过程,缩短制动距离。
《汽车系统动力学》教学大纲一、课程性质与任务1.课程性质:本课程是车辆工程专业的专业选修课。
2.课程任务:本课程要求学生学习和掌握车辆系统的主要行驶性能,如牵引性能、车辆的动态载荷、转向动力学等。
研究路面不平度激励的振动。
了解该领域世界发展及最新成果。
通过学习本课程,掌握汽车动力学分析的一般的理论和方法,为今后汽车系统动力学分析、从事该领域研究、开发奠定基础。
二、课程教学基本要求本课程是研究所有与汽车系统运动有关的学科,其内容可按车辆运动方向分为纵向、垂向和侧向动力学三大部分。
要求学生了解车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点理解受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学(垂向)和操纵动力学(侧向)内容。
运用系统方法及现代控制理论,结合实例分析,介绍了车辆动力学模型的建立、计算机仿真、动态性能分析和控制器设计的方法,同时使学生对常用的车辆动力学分析软件有所了解。
成绩考核形式:末考成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容绪篇概论和基础理论第一章车辆动力学概述1.教学基本要求让学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、术语、标准和法规、发展趋势。
2.要求学生掌握的基本概念、理论、技能通过本章教学使学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、发展趋势。
3.教学重点和难点教学重点是车辆动力学的研究内容和范围、车辆特性和设计方法。
教学难点是车辆特性和设计方法。
4.教学内容第一节历史回顾1.车辆动力学的历史发展第二节研究内容和范围1.纵向动力学2.行驶动力学3.操作动力学第三节车辆特性和设计方法1.期望的车辆特性2.设计方法3.汽油机与柴油机速度特性的比较第四节术语、标准和法规1.汽车术语、标准和法规第五节发展趋势1.车辆的主动控制2.多体系统动力学3.闭环系统和主观与客观评价第二章车辆动力学建模方法及基础理论1.教学基本要求让学生了解动力学方程的建立方法、非完整系统动力学、多体系统动力学方法。
基于多体动力学的车辆悬挂系统优化设计车辆悬挂系统是车辆重要的组成部分,它直接影响到车辆的行驶稳定性、舒适性和操控性能。
基于多体动力学的车辆悬挂系统优化设计是提高车辆整体性能的重要手段。
本文将分析悬挂系统的工作原理,并探讨多体动力学在优化设计中的应用。
最后,介绍一种基于多体动力学的车辆悬挂系统优化方法。
一、悬挂系统的工作原理悬挂系统主要起到连接车身和车轮的作用,它通过减震和支撑车身的重量,使车辆在不平整路面上行驶时具备良好的悬挂特性。
悬挂系统一般包括弹簧、减震器和悬挂臂等组件。
弹簧负责支撑车身重量,减震器则负责减小悬挂系统的振动。
悬挂臂通过连接车身和车轮,以实现悬挂系统的动作。
二、多体动力学在优化设计中的应用多体动力学是研究多体系统运动的一种数学方法。
在优化车辆悬挂系统设计中,多体动力学分析可以帮助确定车辆在不同路况下的悬挂系统工作状态,进而优化悬挂设计。
通过对车轮和车身的运动学、动力学和振动特性进行仿真分析,可以获得车辆在行驶过程中的状态和优化设计的依据。
多体动力学原理的应用可以是通过模拟悬挂系统的工作状态,分析车轮与路面之间的力学相互作用。
例如,可以通过仿真分析不同悬挂系统参数对车辆行驶稳定性和悬挂特性的影响,如弹簧刚度、减震器阻尼等。
通过改变这些参数,可以优化悬挂系统的工作状态,提高车辆的行驶性能和舒适性。
另外,多体动力学还可以用来研究车辆悬挂系统在不同工况下的动态性能。
例如,在过坑、刹车和转弯等不同工况下,悬挂系统会受到不同力的作用,从而影响到车辆的稳定性和操控性。
通过多体动力学分析,可以确定悬挂系统在不同工况下的受力情况,进而针对性地优化悬挂系统的设计。
三、基于多体动力学的车辆悬挂系统优化方法基于多体动力学的车辆悬挂系统优化设计方法,可以通过以下步骤进行:1. 建立悬挂系统的多体动力学模型,包括车轮、悬挂臂、车身等组件,并确定边界条件和初始条件。
2. 选择合适的工况进行仿真。
例如,可以选择不同的路况、速度、转弯半径等参数,模拟车辆在不同工况下的运动。