实验一 算法的时间复杂度分析
- 格式:doc
- 大小:61.00 KB
- 文档页数:4
算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。
第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。
而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。
算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。
因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。
算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。
而度量一个程序的执行时间通常有两种方法。
一、事后统计的方法这种方法可行,但不是一个好的方法。
该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。
二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。
因此人们常常采用事前分析估算的方法。
在编写程序前,依据统计方法对算法进行估算。
一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。
一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。
为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。
1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。
但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。
并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
求解算法的时间复杂度的具体步骤是:⑴ 找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。
⑵ 计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。
这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。
例如:for (i=1; i<=n; i++)x++;for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。
Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。
计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。
O(1)Temp=i;i=j;j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。
算法的时间复杂度为常数阶,记作T(n)=O(1)。
如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。
此类算法的时间复杂度是O(1)。
O(n^2)2.1. 交换i和j的内容sum=0;(一次)for(i=1;i<=n;i++) (n次)for(j=1;j<=n;j++) (n^2次)sum++;(n^2次)解:T(n)=2n^2+n+1 =O(n^2)2.2.for (i=1;i<n;i++){y=y+1; ①for (j=0;j<=(2*n);j++)x++; ②}解:语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n^2-n-1f(n)=2n^2-n-1+(n-1)=2n^2-2该程序的时间复杂度T(n)=O(n^2). O(n)2.3.a=0;b=1; ①for (i=1;i<=n;i++) ②{s=a+b; ③b=a; ④a=s; ⑤}解:语句1的频度:2,语句2的频度: n,语句3的频度: n-1,语句4的频度:n-1,语句5的频度:n-1,T(n)=2+n+3(n-1)=4n-1=O(n).O(logn )2.4.i=1; ①while (i<=n)i=i*2; ②解:语句1的频度是1,设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=logn取最大值f(n)= logn,T(n)=O(logn )O(n^3)2.5.for(i=0;i<n;i++){for(j=0;j<i;j++){for(k=0;k<j;k++)x=x+2;}}解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).。
一、实验目的本次实验旨在通过对比分析几种常用排序算法的性能,深入了解各种算法在不同数据规模和不同数据分布情况下的时间复杂度和空间复杂度,为实际应用中算法的选择提供参考。
二、实验环境- 操作系统:Windows 10- 编程语言:C++- 编译器:Visual Studio 2019- 测试数据:随机生成的正整数序列三、实验内容本次实验主要对比分析了以下几种排序算法:1. 冒泡排序(Bubble Sort)2. 选择排序(Selection Sort)3. 插入排序(Insertion Sort)4. 快速排序(Quick Sort)5. 归并排序(Merge Sort)6. 希尔排序(Shell Sort)四、实验方法1. 对每种排序算法,编写相应的C++代码实现。
2. 生成不同规模(1000、5000、10000、50000、100000)的随机正整数序列作为测试数据。
3. 对每种排序算法,分别测试其时间复杂度和空间复杂度。
4. 对比分析不同算法在不同数据规模和不同数据分布情况下的性能。
五、实验结果与分析1. 时间复杂度(1)冒泡排序、选择排序和插入排序的平均时间复杂度均为O(n^2),在数据规模较大时性能较差。
(2)快速排序和归并排序的平均时间复杂度均为O(nlogn),在数据规模较大时性能较好。
(3)希尔排序的平均时间复杂度为O(n^(3/2)),在数据规模较大时性能优于冒泡排序、选择排序和插入排序,但不如快速排序和归并排序。
2. 空间复杂度(1)冒泡排序、选择排序和插入排序的空间复杂度均为O(1),属于原地排序算法。
(2)快速排序和归并排序的空间复杂度均为O(n),需要额外的空间来存储临时数组。
(3)希尔排序的空间复杂度也为O(1),属于原地排序算法。
3. 不同数据分布情况下的性能(1)对于基本有序的数据,快速排序和归并排序的性能会受到影响,此时希尔排序的性能较好。
(2)对于含有大量重复元素的数据,快速排序的性能会受到影响,此时插入排序的性能较好。
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
一、实验目的1. 理解冒泡排序算法的基本原理和实现过程。
2. 分析冒泡排序算法的时间复杂度和空间复杂度。
3. 通过实验验证冒泡排序算法在不同数据规模下的性能表现。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发环境:PyCharm三、实验内容1. 冒泡排序算法的实现2. 冒泡排序算法的性能测试3. 结果分析四、实验步骤1. 实现冒泡排序算法```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```2. 生成测试数据```pythonimport randomdef generate_data(n):return [random.randint(0, 10000) for _ in range(n)]```3. 测试冒泡排序算法性能```pythondef test_bubble_sort():data_sizes = [100, 1000, 10000, 100000]for size in data_sizes:data = generate_data(size)sorted_data = bubble_sort(data.copy())assert sorted_data == sorted(data), "排序结果错误"print(f"数据规模:{size}, 排序耗时:{time.time() - start_time:.4f}秒")start_time = time.time()test_bubble_sort()print(f"实验总耗时:{time.time() - start_time:.4f}秒")```五、结果分析1. 冒泡排序算法的时间复杂度分析冒泡排序算法的时间复杂度主要取决于两层循环的执行次数。
查找算法实验报告查找算法实验报告一、引言查找算法是计算机科学中的一个重要概念,它在数据处理和信息检索中起着关键作用。
本实验旨在探究几种常见的查找算法,并对它们的性能进行比较和分析。
二、顺序查找算法顺序查找算法是最简单直观的一种查找方法,它逐个比较待查找元素与数据集中的元素,直到找到匹配项或遍历完整个数据集。
该算法的时间复杂度为O(n),其中n为数据集的大小。
尽管顺序查找算法的效率较低,但在小规模数据集或无序数据集中仍然具有一定的应用价值。
三、二分查找算法二分查找算法是一种高效的查找算法,它要求数据集必须是有序的。
该算法通过将待查找元素与数据集的中间元素进行比较,从而将查找范围缩小一半。
如果中间元素与待查找元素相等,则查找成功;如果中间元素大于待查找元素,则在左半部分继续查找;如果中间元素小于待查找元素,则在右半部分继续查找。
通过不断缩小查找范围,二分查找算法的时间复杂度为O(log n),其中n为数据集的大小。
二分查找算法在大规模有序数据集中具有较高的查找效率。
四、哈希查找算法哈希查找算法是一种基于哈希表的查找方法,它通过将待查找元素映射到哈希表中的一个位置,从而快速定位到目标元素。
哈希查找算法的时间复杂度为O(1),即常数级别。
然而,哈希查找算法对哈希函数的选择和哈希冲突的处理有一定的要求。
如果哈希函数设计不合理或哈希冲突过多,可能会导致查找效率下降。
五、比较与分析在本实验中,我们对上述三种查找算法进行了性能比较和分析。
实验结果表明,在小规模数据集或无序数据集中,顺序查找算法的效率较高;而在大规模有序数据集中,二分查找算法的效率最高。
哈希查找算法虽然具有常数级别的时间复杂度,但在哈希函数和哈希冲突处理上需要额外的开销。
因此,在实际应用中,我们需要根据具体需求选择合适的查找算法。
六、实验总结通过本次实验,我们深入了解了查找算法的原理和应用。
顺序查找算法、二分查找算法和哈希查找算法各具特点,在不同场景下有不同的优劣势。
第1篇一、实验目的1. 理解冒泡排序算法的基本原理和操作步骤。
2. 掌握冒泡排序算法的实现方法。
3. 分析冒泡排序算法的时间复杂度和空间复杂度。
4. 通过实验验证冒泡排序算法的效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验原理冒泡排序是一种简单的排序算法,其基本思想是通过多次比较和交换相邻元素,将待排序的序列变为有序序列。
冒泡排序算法的基本步骤如下:1. 从第一个元素开始,相邻的两个元素进行比较,如果它们的顺序错误(即第一个元素大于第二个元素),则交换它们的位置。
2. 重复步骤1,对相邻的元素进行比较和交换,直到整个序列的最后一个元素。
3. 第一轮排序完成后,最大的元素被放置在序列的最后一个位置。
4. 从第一个元素开始,对剩余的元素重复步骤1和步骤2,直到序列的倒数第二个元素。
5. 重复步骤3和步骤4,直到整个序列有序。
四、实验步骤1. 编写冒泡排序算法的C++代码,实现上述算法步骤。
2. 在主函数中创建一个待排序的数组。
3. 调用冒泡排序函数对数组进行排序。
4. 输出排序前后的数组,验证排序结果。
五、实验代码```cppinclude <iostream>using namespace std;// 冒泡排序函数void bubbleSort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) {// 交换相邻元素int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}// 打印数组函数void printArray(int arr[], int n) {for (int i = 0; i < n; i++) {cout << arr[i] << " ";}cout << endl;}int main() {// 创建待排序的数组int arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr) / sizeof(arr[0]);// 打印排序前的数组cout << "排序前的数组:\n";printArray(arr, n);// 调用冒泡排序函数bubbleSort(arr, n);// 打印排序后的数组cout << "排序后的数组:\n";printArray(arr, n);return 0;}```六、实验结果与分析1. 运行实验程序,输出排序前后的数组,验证排序结果是否正确。
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。