仪表着陆系统 ILS(优质参照)
- 格式:ppt
- 大小:5.60 MB
- 文档页数:39
仪表着陆系统(ILS)电磁环境分析及测试系统集成作者:张蕴菁来源:《中国新通信》 2018年第8期随着当前航班任务的日益频繁,相关的飞机起降次数不断增加,而飞机起飞和着陆事故的现象时有发生,且当前的仪表着陆系统与场地及电磁环境息息相关,因此,需要针对干扰信号对仪表着陆系统的影响,开展针对性的分析讨论,以确保系统运行的稳定性。
一、仪表着陆系统的概念与作用机理仪表着陆系统(ILS) 也称盲降系统,是应用最为广泛的飞机精密进近和着陆引导系统。
它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引,建立一条由跑道指向空中的虚拟路径,飞机通过机载接收设备,确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度,最终实现安全着陆,因此,仪表着陆系统能在低天气标准或飞行员看不到任何目视参考的天气下,引导飞机进近着陆。
仪表着陆系统通常由一个甚高频(VHF) 航向信标台。
一个特高频(UHF) 下滑信标台和几个甚高频(VHF) 指点标或者特高频(UHF) 测距仪(DME) 组成。
航向信标台给出与跑道中心线对准的航向面,下滑信标给出仰角2.5° -3.5°的下滑面,这两个面的交线即是仪表着陆系统给出的飞机进近着陆的准确路线。
二、电磁干扰分析2.1 电磁信号的干扰影响电磁信号的干扰对于仪表着陆系统信号不稳的影响较为直接,究其原因可能是因为机场附近的企业部门或者个人不按照相关的规定使用无线电频段,所以对相关信号的频率产生了干扰。
当信号频率与仪表着陆系统的频率相近时,会形成波形的叠加,造成对既有机场航道导航设置的偏移,使仪表着陆系统的信号抖动,造成ILS 信号的不稳定。
另外,导致电磁波对仪表着陆系统的相近波段的信号干扰的影响源还包括,各类移动通信站,交通系统的电磁辐射干扰,包括电气化铁路和有轨、无轨电车,电力系统的电磁辐射干扰,包括高压输变电线路及地下电缆和变电站等设备的干扰,最后,各类工业及医疗科研高频设备都可能对机场导航的信号产生干扰,工业的设备如高频感应加热设备,科研设备如电子加速器和电磁灶等,医疗设备如高频、超短波和紫外线理疗机等。
ILS精密进近程序整理:FSAAC论坛AAC-9121引用:R.R(飞行员)ILS精密进近是利用仪表着陆系统提供航迹和下滑引导进近着陆的一种进近程序。
一般,我们习惯叫ILS进近为“盲降”。
在讲之前,需要说明三个概念:1)盲降。
有些同学认为,从字面看上去,“盲”就是不看外面,“降”就是降落,所以“盲降”就是不看外面,只看仪表的降落。
我要说的是,这个概念是错误的。
ILS是Instrument Landing System的缩写,翻译过来就是“仪表着陆系统”,意思是参考仪表引导降落,也就是我们所说的“仪表进近”。
2)仪表进近。
仪表进近程序的定义是:航空器根据飞行仪表并对障碍物保持规定的超障余度所进行的一系列预定的机动飞行。
这种飞行程序是从规定的进场航路或起始进近定位点开始,到能够完成目视着陆的一点为止:并且包括失误进近的复飞程序。
很重要的一点“目视着陆”,这就告诉我们,仪表进近并不是一些同学想像的,只看仪表不看地面的进近:任何进近程序最后都要且必须建立目视参考。
(不考虑Ⅲ类ILS)仪表进近可以分为“精密进近”(提供航向道和下滑道引导,比如ILS、PAR、MLS。
所以不要以为只有ILS是盲降,PAR和MLS也可以叫盲降的。
)和“非精密进近”(只提供航迹引导,比如NDB、VOR)。
3)复飞点和决断高度/高。
复飞点是相对与“非精密进近”而言,配合“最低下降高度/高”使用:航图上会公布非精密进近程序飞机的最低下降高度/高,意思是飞机在到复飞点之前所能下降到的最低高度/高,不能低于这个高度/高,然后保持平飞至复飞点,能建立目视参考(能见跑道/引进灯)继续进近,否则立刻复飞;而“决断高度/高”是相对于精密进近而言:没有复飞点的概念,飞机在下滑道的引导下所能下降到的最低高度/高,在这个高度/高的时候,能建立目视参考(能见跑道/引进灯)继续进近,否则立刻复飞。
在理解了上面三点后,我们进入主题:ILS精密进近程序。
(一)ILS的组成ILS的地面设备由:航向台(LLZ)、下滑台(GP)、指点标和灯光系统组成。
航空无线电导航设备第1部分:仪表着陆系统(ILS)技术要求MH/T 4006.1-19981 范围本标准规定了民用航空仪表着陆系统设备的通用技术要求,它是民用航空仪表着陆系统设备制定规划和更新、设计、制造、检验以及运行的依据。
本标准适用于民用航空行业各类仪表着陆系统设备。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列要求最新版本的可能性。
GB 6364—86 航空无线电导航台站电磁环境要求Mt{/T 4003—1996航空无线电导航台和空中交通管制雷达站设置场地规范中国民用航空通信导航设备运行、维护规程(1985年版)中国民用航空仪表着陆系统Ⅰ类运行规定(民航总局令第57号)国际民用航空公约附件十航空电信(第一卷)(第4版1985年4月)国际民航组织8071文件无线电导航设备测试手册(第3册1972年)3 定义、符号本标准采用下列定义和符号。
3.1航道线course line在任何水平面内,最靠近跑道中心线的调制度差(DDM)为。
的各点的轨迹。
3.2航道扇区course sector在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.155的各点迹所限定的扇区。
3.3半航道扇区half course sector在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.0775的各点轨迹所限定的扇区。
3.4调制度差difference in depth of modulatlon(DDM)较大信号的调制度百分比减去较小信号的调制度百分比,再除以100。
3.5位移灵敏度(航向信标)displacement sensitivity(10calizer)测得的调制度差与偏离适当基准线的相应横向位移的比率。
3.6角位移灵敏度angular displacemeat seusitivity测得的调制度差与偏离适当基准线的相应角位移的比率。
虚拟中国国际航空公司论坛 » 虚拟国航大学 » ILS 仪表着陆系统收藏 订阅 推荐 打印ILS 仪表着陆系统本主题由 Panda 于 2009-6-29 03:53 PM 设置高亮懒熊猫副总裁Captain帖子377精华6积分100威望100金钱944贡献呼号:CCA-0215注册时间2008-12-29 驾驶舱 大 中 小 发表于 2009-1-13 05:16 PM 只看该作者ILS 仪表着陆系统仪表着陆系统——新手入门教程 (新手看蓝色和红色部分仪表着陆系统(Instrument Landing System , ILS )是目前最广泛使用的飞机精密进近指一条由跑道指向空中的狭窄“隧道”,飞机通过机载ILS 接收设备,确定自身与“隧道”的相对就可沿正确方向飞近跑道、平稳地下降高度,最终飞进跑道并着陆。
(1)定位器,即Localizer ,缩写LOC 它提供与跑道中心线左右对准的信号。
发射机安装在跑道的远端,发出的无线电信号是高指向性的,由跑道远端开始,呈扇形指向扩展。
离跑道越远,扇形所履盖的范围越大。
信号在跑道入口处的典型宽度是 700 英尺处,信号履盖范围扩展到2000-3000英尺。
通常,飞机位于跑道延长线偏角35度的范围到有效的LOC 信号(座舱中的LOC 仪表指针在满偏范围以内)。
(2)下滑道,即Glide Slope ,缩写GS 它在垂直方向定义飞机下降高度的路线。
发射天线安装在跑道旁边,离跑道入口(近端)约1000英尺(305米)。
信号中心线与跑号范围是有一定“厚度”的,GS 信号在垂直方向上的扇形中心角约为1.4度。
离天线1英里英尺。
也就是说,飞到离天线1英里时,如果飞机高度与信号中心线偏差大于70英尺,就GS 指针在满偏范围以外)。
(3)信标,即marker beacons 在飞机来向的跑道延长线上相隔一定距离安装有三个垂直向上发射信号的低功率信标电台号,座舱中的信标灯就点亮,并伴有摩尔斯电码的音频信号。
航空无线电导航设备第1部分:仪表着陆系统(ILS)技术要求MH/T 4006.1-19981 范围本标准规定了民用航空仪表着陆系统设备的通用技术要求,它是民用航空仪表着陆系统设备制定规划和更新、设计、制造、检验以及运行的依据。
本标准适用于民用航空行业各类仪表着陆系统设备。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列要求最新版本的可能性。
GB 6364—86 航空无线电导航台站电磁环境要求Mt{/T 4003—1996航空无线电导航台和空中交通管制雷达站设置场地规范中国民用航空通信导航设备运行、维护规程(1985年版)中国民用航空仪表着陆系统Ⅰ类运行规定(民航总局令第57号)国际民用航空公约附件十航空电信(第一卷)(第4版 1985年4月) 国际民航组织8071文件无线电导航设备测试手册(第3册1972年)3 定义、符号本标准采用下列定义和符号。
3.1航道线course line在任何水平面内,最靠近跑道中心线的调制度差(DDM)为。
的各点的轨迹。
3.2航道扇区course sector在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.155的各点迹所限定的扇区。
3.3半航道扇区half course sector在包含航道线的水平面内,最靠近航道线的调制度差(DDM)为0.0775的各点轨迹所限定的扇区。
3.4调制度差difference in depth of modulatlon(DDM)较大信号的调制度百分比减去较小信号的调制度百分比,再除以100。
3.5位移灵敏度(航向信标)displacement sensitivity(10calizer)测得的调制度差与偏离适当基准线的相应横向位移的比率。
3.6角位移灵敏度angular displacemeat seusitivity测得的调制度差与偏离适当基准线的相应角位移的比率。
仪表着陆系统安全评估仪表着陆系统(Instrument Landing System,简称ILS)是一种用于辅助飞行员在恶劣天气条件下进行精准降落的导航系统。
它由本地器(Localizer),下滑器(Glide Slope)和跑道指示灯(Runway Visual Range)组成。
在飞机接近目标机场时,仪表着陆系统会提供准确的方向和高度引导,确保飞机精准降落在目标跑道上。
对于仪表着陆系统的安全评估,需要考虑以下几个方面:1. 设备可靠性:仪表着陆系统的各个组成部分需要保证稳定可靠的工作。
所有设备都应该经过严格的测试和认证,确保其在恶劣天气条件下能够正常运行。
2. 导航精度:仪表着陆系统的导航精度是确保飞行器安全着陆的关键因素。
仪表着陆系统需要能够提供准确的方向和高度引导,使飞机能够保持正确的航向和下滑角度,从而避免发生意外。
3. 防干扰能力:仪表着陆系统应具备良好的防干扰能力,以抵御外部干扰和干扰源。
这些干扰可能来自于无线电频率干扰、电磁干扰、雷击等。
系统需要能够及时检测并排除这些干扰,确保飞行器的导航精度和安全性不受影响。
4. 可用性:仪表着陆系统的可用性是指在各种恶劣天气条件下,系统能够稳定可靠地工作的能力。
系统需要经过长时间的测试和实地验证,以确保其在各种环境下都能正常运行。
5. 人机界面:仪表着陆系统的人机界面应该友好易用,能够提供清晰明确的导航指示,使飞行员能够准确理解和执行导航指令,从而确保飞行器安全着陆。
总结起来,仪表着陆系统的安全评估需要考虑设备可靠性、导航精度、防干扰能力、可用性和人机界面等方面。
通过对这些因素的综合评估和测试,可以确保仪表着陆系统在恶劣天气条件下能够提供安全可靠的导航引导,从而降低飞行事故的风险。
仪表着陆系统工作原理仪表着陆系统(Instrument Landing System,简称ILS)是一种基于雷达和无线电导航技术的自动着陆辅助系统,用于帮助飞行员在恶劣天气条件下进行精确的着陆。
ILS由三个主要组件组成:1. 放导航信号的地面设备:这个设备通常被称为“局部器”(Localizer),它通过无线电信号发射和导航系统通信。
局部器发射两个信号,水平信号和垂直信号,协助飞行员控制飞机的水平和垂直位置。
飞行员可以通过接收这些信号来确保飞机在正确的航向和下降路径上。
2. 安装在飞机上的接收设备:在飞机上安装了称为接收局部器信号的接收设备。
接收设备接收地面发出的信号,并将其显示在驾驶舱的显示器上。
飞行员通过这个显示器来确定飞机的位置和航向,以便进行准确的着陆。
3. 自动着陆系统(Autoland System):许多现代飞机可以配备自动着陆系统,它使用ILS技术并结合自动驾驶系统,可以在没有飞行员干预的情况下完成整个着陆过程。
自动着陆系统监测ILS信号,并通过控制飞机的引导系统和动力系统来自动调整飞机的飞行姿态和速度,确保精确地着陆。
ILS的工作原理是基于地面设备发射的无线电信号和飞机上的接收设备接收信号。
地面设备发射水平和垂直信号,飞机上的接收设备接收这些信号,并将其显示在驾驶舱的显示器上。
飞行员使用这些信号来导航飞机,以确保飞机安全地降落在目标跑道上。
ILS是民用和军用飞机着陆过程中一项重要的辅助技术,可以大大提高飞行员在恶劣天气条件下的着陆能力。
除了上述提到的基本工作原理外,仪表着陆系统还有其他一些相关的技术和功能。
首先,仪表着陆系统通常配备了仪表陀螺系统,用于提供飞机的姿态和水平信息。
这些信息对于飞行员来说至关重要,因为在低能见度条件下,他们无法依赖外界视觉进行导航和操控。
仪表陀螺系统可以通过加速度计和陀螺仪测量飞机的滚转、俯仰和偏航信息,并将其显示在仪表板上,帮助飞行员保持飞机的平稳飞行。
仪表着陆系统(ILS)简介ILS的原理ILS的作用和历史仪表着陆系统ILS(Instrument Landing System)是“非目视”进近和着陆的标准助航系统。
它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。
随着新技术和新器件在ILS上的应用,ILS所提供的精确导航信号使得全天候的着陆成为可能。
为了着陆飞机的安全,在目视着陆飞行条例(VFR)中规定,目视着陆的水平能见度必须大于4.8Km,云底高不小于300M。
在很大一部分机场的气象条件都不能满足这一要求,这时着陆的飞机必须依靠ILS提供的引导进行着陆。
ILS是采用“等信号”原理来实现的,即通过比较两个信号的幅度差来给出左右和上下指示,当飞行器处于指定航线时,两个信号幅度相等,差值为零。
最早的ILS雏形出现在上个世纪三十年代,那时有一种叫“AN系统”的设备来帮助飞机着陆。
如图一所示。
它将“A”和“N”两个字母的MORSE码分开发射,当飞机偏离跑道中心线时,飞行员只能听到其中一个字母的MORSE 码,“A”或“N”,只有飞机对准跑道时,才能同时听到两个字母。
而飞机下滑的角度是这样形成的:飞机沿着一个固定信号强度(比如100uA)降落。
后来这两个MORSE 码被两个音频所代替(90Hz 和150Hz ),并且载波提高,航向为VHF ,下滑为UHF 。
如图二所示。
但上述两种系统的缺点是显而易见的,就是误差大,波瓣宽度十分大,容易受干扰。
现代的ILS 通过采用多个对数周期天线,并添加其它技术元素,如采用双频系统、分离辐射和空间调制、信号频谱精确控制和变换等措施来提高ILS 的精度和可靠性。
图一:AN 系统图二:双音频系统ILS的有关述语决断高度(DH):ILS引导飞机到达飞行员能看见跑道的最低允许高度,在这个高度上,驾驶员必须做出继续着陆还是复飞的决定。