数列单元测试题(职业高中)
- 格式:doc
- 大小:142.50 KB
- 文档页数:2
中职学校2017—2018学年度第二学期单元考试数列单元测试题班级____________ 姓名____________ 学号______________2(C) 4 (D) 28.已知等比数列{a n}的公比为正数,且a3• a9=2 a52,a2=1,则a1=( )一.选择题1 .数列丄,2 A. (1)n2n (本大题10个小题共30分,每小题只有一个正确选项) -,-,丄,的一个通项公式可能是(4 8 161 C.( 1)得D.2.已知数列{a n}的通项公式a n n2 3n 4 ( n N* ),则a4等于((B) 2(C) 3 (D) 03 .一个等差数列的第5项等于10, 前3项的和等于3, 那么()(A)它的首项是2,公差是3(B)它的首项是2,公差是(C)它的首项是3,公差是2(D)它的首项是3,公差是4 .设S n是等差数列a n的前n项和,已知a23,a611,则S7等于(D. 63A-1 C. 2 D.219.计算机的成本不断降低,若每隔3年计算机价格降低-,现在价格为8100元的计3算机,9年后的价格可降为()A . 900 元B . 300 元C . 3600 元 D. 2400 元10.若数列a n的通项公式是a n ( 1)n(3n 2),则印a2 a20 ()(A) 30(B) 29 (C) -30(D) -29题号12345678910答案A. 13 B . 35 C . 495.等差数列{a n}的前n项和为S n,且S3 =6,印=4,贝U公差d等于.填空题(本题共有5个小题,每小题4分,共20分)A. 1B. - 2C. -3D. 36.等比数列{an}的前3项的和等于首项的3倍,贝U该数列的公比为(11.已知a 1 ,则a,b的等差中项是等比中项是 _______A.—2 B . 1 C. - 2 或1 D. 2 或一17.设等比数列{a n}的公比q 2,前n项和为S n,则鱼 ()a212. ________________________________________________ 若数列{a n}满足:a1 1,a n 1 2a.(n N ),则_____________________________________ ;前8 项的和—13. 在等差数列a n 中a s an 40,则a4 a§a6 a? a$ a? ag= ___________14. 已知数列a n 满足:a a 5 , a n 1 2a n 1 (n € N*),则 & _________________15 •等比数列a n的前10项和为30,前20项和为90,则它的前30项和为17. (12分)已知{a n}是一个等差数列,且a2 1,5 .(I)求{a n}的通项a n ; (H)求{a n}的前n项和S n的最大值. 19. (15分)设等差数列{a n}的前n项的和为S n,且S 4 =—62, S 6 =—75,求:(1求数列的通项公式a n (2)求数列的前n项和S n ;(3)求|a 1 |+|a 2 |+|a 3 |+ .... +|a 14 |三、解答题:本大题共4题,共50分,应写出解题过程或演算步骤16.(10 分)一个等比数列a n 中,a i a4 28,a? a312,求这个数列的通项公式18.(13分)已知等差数列a n满足:a37,a5 a726,a n的前n项和为S n .(I)求a n 及S n; (H)令b n=1a n2 1求数列b n的前n项和T n.。
中职数列单元测试题及答案一、选择题(每题2分,共10分)1. 等差数列的通项公式是:A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 + nd \)C. \( a_n = a_1 + (n-1) \times 2d \)D. \( a_n = a_1 + n \times 2d \)2. 等比数列的前n项和公式是:A. \( S_n = a_1 \times \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \times \frac{1 - r^n}{r - 1} \)C. \( S_n = a_1 \times \frac{1 - r^n}{1 + r} \)D. \( S_n = a_1 \times \frac{1 - r^n}{r + 1} \)3. 已知等差数列的第3项为6,第5项为10,求第1项a1和公差d:A. \( a_1 = 2, d = 2 \)B. \( a_1 = 4, d = 1 \)C. \( a_1 = 2, d = 1 \)D. \( a_1 = 4, d = 2 \)4. 等比数列中,若第3项为8,第5项为32,则该数列的公比r为:A. 2B. 4C. 8D. 165. 一个数列的前5项分别为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定答案:1-5 A B A B C二、填空题(每题2分,共10分)6. 等差数列中,若第4项为-1,第7项为6,则第10项为________。
7. 等比数列中,若首项为2,公比为3,第5项为__________。
8. 已知数列{an}的通项公式为an = 2n - 1,求第6项a6的值为________。
9. 等差数列的前n项和公式为Sn = n(a1 + an)/2,若S5 = 40,a1 = 4,求第5项a5的值为________。
职高数学《数列》练习题
1. 填空题
1. 给定等差数列的公差是$3$,首项是$2$,则第$6$项是
\_\_\_\_\_\_\_\_。
2. 给定等比数列的公比是$2$,首项是$3$,则第$5$项是
\_\_\_\_\_\_\_\_。
3. 给定等差数列的前$n$项和是$5n^2-3n$,则这个等差数列的首项是\_\_\_\_\_\_\_\_。
4. 给定等比数列的前$n$项和是$2^n-1$,则这个等比数列的首项是\_\_\_\_\_\_\_\_。
2. 解答题
1. 某个等差数列的首项是$1$,公差是$4$。
已知该数列的前$n$项和是$27n-13$,求这个数列的第$12$项。
2. 某个等比数列的首项是$3$,公比是$2$。
已知该数列的前$n$项和是$63(2^n-1)$,求这个数列的第$5$项。
3.应用题
1. 一条蚂蚁每天向上爬$3$厘米,每天晚上又会滑下去$2$厘米。
如果早上开始爬,晚上停止爬,计算在第$10$天早上蚂蚁爬到的位
置是第$10$项是多少。
2. 某公司每年新聘用的员工人数呈等比数列增长,第一年新聘
用的员工是$10$人,公比为$1.5$。
计算第$5$年公司新聘用的员工
人数。
以上为职高数学《数列》练习题,希望可以帮助您巩固学习。
如有任何问题,请随时提问。
第六章《数列》测试题一.选择题1. 数列-3,3,—3,3,…的一个通项公式是( )A . a n =3(-1)n+1B . a n =3(-1)nC . a n =3-(—1)nD . a n =3+(—1)n2.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6703.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33B .72C .84D .1894.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4B .-6C .-8D . -106..公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A) 1 (B )2 (C ) 4 (D )8 7.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10= (A) 12 (B) 16 (C ) 20 (D )248.设{n a }为等差数列,公差d = —2,n S 为其前n 项和.若1011S S =,则1a =( )A .18B .20C .22D .24 9在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( )A .2B .3C .4D .810.在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-二.填空题11.在等差数列{}n a 中,(1)已知,10,3,21===n d a 求n a = ; (2)已知,2,21,31===d a a n 求=n ;12. 设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则5______S =;13.在等比数列{a n }中,a 1=12,a 4=—4,则公比q=______________;14.等比数列{}n a 中,已知121264a a a =,则46a a 的值为_____________;15.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______. 三.解答题 16.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=—3. (I )求数列{a n }的通项公式;(II)若数列{a n }的前k 项和k S =-35,求k 的值.17.在等差数列{a n }中,解答下列问题:(1)已知a 1+a 2+a 312=,与a 4+a 5+a 618=,求a 7+a 8+a 9的值 (2)设10123=a 与3112=n a 且d=70, 求项数n 的值 (3)若11=a 且211=-+n n a a ,求11a18.在等差数列{a n }中,已知74=a 与47=a ,解答下列问题: (1)求通项公式n a(2)前n 项和n s 的最大值及n s 取得最大值时项数n 的值。
职高《数列》测试题1、4、三个正数a、b、c成等比数列,则lga、lgb、lgc是()A、等比数列B、既是等差又是等比数列C、等差数列D、既不是等差又不是等比数列2. 数列-3,3,-3,3,…的一个通项公式是()A. a n =3(-1)n+1B. a n =3(-1)nC. a n =3-(-1)nD. a n =3+(-1)n3、如果a, x1 ,x2, b 成等差数列,a, y1 ,y2 ,b 成等比数列,那么(x1+x2)/y1y2等于( )A、(a+b)/(a-b)B、(b-a)/abC、ab/(a+b)D、(a+b)/ab4、在等比数列{a n}中,a1+a n=66, a2a n-1=128, S n=126,则n的值为( )A、5B、6C、7D、85、若{ a n}为等比数列,S n为前n项的和,S3=3a3,则公比q为( )A、1或-1/2B、-1 或1/2C、-1/2D、1/2或-1/26、一个项数为偶数的等差数列,其奇数项之和为24,偶数项之和为30,最后一项比第一项大21/2,则最一项为( )A 、12B 、10C 、8D 、以上都不对7、在等比数列{a n }中,a n >0,a 2a 4+a 3a 5+a 4a 6=25,那么a 3+a 5的值是A 、20B 、15C 、10D 、58、数列{a n }是公差不为0的等差数列,且a 7,a 10,a 15是一等比数列{b n }的连续三项,若该等比数列的首项b 1=3则b n 等于A 、3·(5/3)n-1B 、3·(3/5)n-1C 、3·(5/8)n-1D 、3·(2/3)n-1二、填空题(5分×5=25分)1、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =2、各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q=3、已知a n =a n-2+a n-1(n ≥3), a 1=1,a 2=2, b n =1+n n a a ,则数列{b n }的前四项依次是 .5. 等比数列{a n }中a 2 =18, a 5 =144, 则a 1 = ,q =三、解答题(12分×4+13分+14=75分)16、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。
完整版)中职数学《数列》单元测试题Chapter 6 Test of SequencesI。
Multiple-choice ns1.What is a general formula for the sequence -3.3.-3.3. A。
an3(-1)n+1B。
an3(-1)nC。
an3 - (-1)nD。
an3 + (-1)n2.{anXXX sequence with the first term a11 and common difference d = 3.If an2005.what is the value of n?A。
667 B。
668 C。
669 D。
6703.In a geometric sequence {anwhere all terms are positive。
a13.and the sum of the first three terms is 21.what is the value of a3a4a5A。
33 B。
72 C。
84 D。
1894.In a geometric sequence {anif a29 and a5243.what is the sum of the first four terms of {anA。
81 B。
120 C。
168 D。
1925.If the common difference of an arithmetic sequence {a nis 2 and a1a3and a4form a geometric sequence。
what is the value of a 2A。
-4 B。
-6 C。
-8 D。
-106.If all terms of a geometric sequence {anwith a common。
of 2 are positive and a3a1116.what is the value of a5A。
职高数列练习题一、填空题1.已知数列a n = n2 - n, 则a5 = .2.等差数列3, 6, 9…的通项公式为.3.等比数列1, 3, 9,…的通项公式为.4.等差数列 3, 7, 11,…的公差为.,5.等比数列 5, -10, 20,…的公比为.,6.数列0, -2, 4, -6,8…的一个通项公式为a n= .7.等差数列{a n}中a1= 8, a7 = 4,则S7 = .8. 等比数列{a n}中a2 =18, a5 =, 则a1 = ,q = .二、选择题9. 数列-3,3,-3,3,…的一个通项公式是( )A. a n =3(-1)n+1B. a n =3(-1)nC. a n =3-(-1)nD. a n =3+(-1)n10. 等差数列1, 5, 9,…前10项的和是( )A.170B.180C.190D.20011.x, y, z成等差数列且x + y + z =18,则y =( )A.6B.8C.9D.1812. 已知等比数列{a n}中a2 = 2, a4 =32,则公比q = ( )A.4B.-4C.4D.1613. 已知数列{a n}中, a n+1= a n+1 ,且a1=2,则a999=( )A.1001B.1000C.999D.99814. 若三个数成等比数列,它们的和等于14,它们的积等于64,则这三个数是( )A 、2, 4, 8B 、8, 4, 2C 、2, 4, 8或8, 4, 2D 、2, -4, 815. 在等比数列}{n a 中,已知1a =2,3a =8,则5a =( ) (A )8 (B )10 (C )12 (D )32 16. 等差数列{a n }中,已知前13项和s 13=65,则a 7=( )A 、10B 、25C 、5D 、15三、判断题17. 常数列既是等差数列又是等比数列. ( ) 18. 等比数列的公比可以为零. ( ) 19. 22是数列{n 2-n-20}中的项. ( ) 20. 等差数列{a n }中a 3=5,则a 1+a 5等于10. ( ) 21. 数列1×2,2×3,3×4,4×5,…n(n + 1)的第10项为110. ( ) 三、计算题22. 已知一个等差数列的第5项是5,第8项是14,求该数列的通项公式及第20项.23. 已知等差数列{a n },a 6=5,a 3+a 8=5,求a 924. 在8和200之间插入3个数,使5个数成等比数列,求这三个数。
数列职高练习题一、填空题1. 下面数列的通项公式分别是多少?a) 2, 4, 6, 8, 10, ...b) 3, 6, 12, 24, 48, ...c) 1, 4, 7, 10, 13, ...2. 求下列等差数列的前n项和。
a) 2, 5, 8, 11, 14, ...b) 10, 15, 20, 25, 30, ...c) 4, 8, 12, 16, 20, ...二、选择题1. 下列数列中,等差数列是:a) 1, 3, 6, 9, 12, ...b) 1, 2, 3, 5, 8, ...c) 1, 4, 9, 16, 25, ...2. 若数列的前n项和可表示为Sn = (3n² + 5n) / 2,则该数列为:a) 等差数列且首项a₁ = 3,公差d = 5b) 随机数列c) 等差数列且首项a₁ = 5,公差d = 3三、证明题证明下列数列为等差数列,并求其通项公式。
1. 3, 7, 11, 15, ...2. 若等差数列的第5项为17,公差为4,求该等差数列的通项公式。
四、应用题1. 小明的父亲每天给他一些零花钱存进银行,第一天给了2元,第二天给了5元,第三天给了8元,以此类推。
若小明连续存了30天,求他存入银行的总金额。
2. 一架电梯每隔5秒钟会上升10米,问30秒内,电梯上升了多少米?五、解答题1. 一辆汽车从A地出发,以60km/h的速度行驶,一小时后,另一辆车离B地出发,以80km/h的速度追赶A地的汽车。
在追车行驶开始后的5小时,两车相遇在距离A地160千米的地方,求B地与A地的距离。
2. 数列1, 4, 7, 10, ...的前n项和为Sn,求Sn与n之间的关系,给出计算Sn的公式。
六、综合题已知数列Sn的通项公式为an = 3n² + 2n,求下列问题:1. 求数列的前5项和S5。
2. 求数列中第10项的值。
3. 证明数列是等差数列,并求其公差。
7. 若数列的前n项和可表示为Sn = (n² + n) / 2,则该数列为等差数列还是等比数列?并求其前5项和。
江苏省洪泽中等专业学校数学单元试卷(数列)时间:90分钟 满分:100分一、 选择题(每题3分,共30分)1.数列-1,1,-1,1,…的一个通项公式是( ).(A )n n a )1(-= (B )1)1(+-=n n a (C )n n a )1(--= (D )2sinπn a n = 2.已知数列{}n a 的首项为1,以后各项由公式给出,则这个数列的一个通项公式是( ).(A ) (B ) (C ) (D ) 3.已知等差数列1,-1,-3,-5,…,则-89是它的第( )项;(A )92 (B )47 (C )46 (D )454.数列{}n a 的通项公式52+=n a n ,则这个数列( )(A )是公差为2的等差数列 (B )是公差为5的等差数列(C )是首项为5的等差数列 (D )是首项为n 的等差数列5.在等比数列{}n a 中,1a =5,1=q ,则6S =( ).(A )5 (B )0 (C )不存在 (D ) 306.已知在等差数列{}n a 中,=3,=35,则公差d=( ).(A )0 (B ) −2 (C )2 (D ) 47.一个等比数列的第3项是45,第4项是-135,它的公比是( ).(A )3 (B )5 (C ) -3 (D )-58.已知三个数 -80,G ,-45成等比数列,则G=( )(A )60 (B )-60 (C )3600 (D ) ±609.等比数列的首项是-5,公比是-2,则它的第6项是( )(A ) -160 (B )160 (C )90 (D ) 1010.已知等比数列,85,45,25…,则其前10项的和=10S ( ) (A ) )211(4510- (B ))211(511- (C ))211(59- (D ))211(510-二、填空题(每空2分,共30分)11.数列2,-4,6,-8,10,…,的通项公式=n a12.等差数列3,8,13,…的公差d= ,通项公式=n a ___________,8a = .13.观察下面数列的特点,填空: -1,21, ,41,51-,61, ,…,=n a _________。
《数列》章节沖关一、选择题(本大题共15小题,每题3分,共45分)1.数列()1111,,,,26121n n +的前n 项和n S 为( )A .()11n +B . ()11n n +C . ()1n n +D . ()121n n +2.在等差数列{}n a 中,14727a a a ++=,3699a a a ++=,则9S =( ) A . 72 B . 54 C . 36 D .273.若{}n a 为等比数列,n S 为前项和,333S a =,则公比q 为( )A . 11-22或B . 11-2-或C . 11-2或D .1-24.等差数列{}n a 中,14a =,33a =则当n 取( )时,n S 最大 A . 7 B . 8 C . 9 D . 8或95.在等差数列{}n a 中,已知前13项和1365S =,则7a =( ) A . 15 B .52C .5D .10 6.已知1234,,,a a a a 成等差数列,且23,a a 是方程22520x x -+=的两个根,则14a a +=( )A . 1 B . 52 C . -1 D .52-7.在等差数列{}n a 中,公差d =1,且134,,a a a 成等比数列,则该数列中为0的项是 第( )项A. 4 B . 5 C . 6 D . 0不是该数列的项8.如果椭圆的短轴长、焦距、长轴长依次成等差数列,则这个椭圆的离心率为( ) A .45 B .35 C .34 D .239.等差数列{}n a 的前n 项和为n S ,若363,7,S S ==则9S =( ) A . 10 B . 11 C . 12 D . 1310.在等比数列{}n a 中,102048,60S S ==则30S =( )A . 75B . 68C . 63D . 5411.在等差比数列{}n a 中,若283736,15a a a a =+=,则公差d 为( )A .32-B .32C .32-或32D .23-或2312.已知数列{}n a ,11a =且1331n n a a +-=,则301a 等于( ) A .100 B .101 C .102 D .10313. 在等比数列{}n a 中,前n 项和Sn ,若267,91,S S ==,则4S =( ) A. 18 B . 20 C . 26 D . 28 在等比数列{}n a 中,14. 0n a >,若569a a =,则313233310log a log a log a log a ++++=(A .325log +B .8C .10D .12 15.等差数列的公差12d =,前100项的和100145S =,则它的前100项中所有奇数项的 A .85 B .1452C .70D .60ニ、填空题(本大题共12小题,每题3分,共36分) 16.等差数列84,80,76,┄┄的前________项为正数 17. 数列24816,,,,12233445--⨯⨯⨯⨯,的一个通项公式为_______18.已知数列{}n a 的前n 项和23n n S =+,则n a =______19.设n S 是等差数列{}n a 的前n 项和,若51010,5S S ==,则公差d =_______20.在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______21.在等比数列{}n a 中,若5421108,4a a a a -=-=,则n a =——— 22.在等差数列{}n a 中,前n 项和22n S n n =-,则567a a a ++=———— 23.公差d ≠0的等差数列{}n a 中,1216,,a a a 依次成等比数列,则公比q =_______ 24.已知{}n a 为等比数列且0n a >,24354625a a a a a a ++=,那么35a a +=______25.设n S 是等差数列{}n a 的前n 项和,若10a >且190S =,则当n =______时n S 最大26.在等比数列中,13a =,2q =,则6S =_______ 27.在等比数列中,284a a =,则5a =________三、解答题(本大题共4小题,第28题9分,第29、30、31题每题10分,共39分)28.在等差数列{}n a 中,132,12a S == (1)求数列{}n a 的通项公式(2)令3n a n b =,求数列{}n b 的前n 项和 29.在等差数列{}n a 中,1311130,a S S == (1)求公差d(2)试问该数列的前几项和最大?最大是多少?30.已知实数,,a b c 成等差数列,114a b c +++、、成等比数列,且15a b c ++=,求,,a b c31.在等比数列{}n a 中,若1221,n n a a a ++⋯+=-求22212n a a a ++⋯+的值.《数列》章节冲关答案一、选择题1.C2.B3.C4.D5.C6.B7.B8.A9.C 10.C 11.C 12.B 13.D 14.C 15.D 二、填空题16.21 17.a n =(-1)n 2(1)n n n + 18.a n =15(1)2(2)n n n -=⎧⎨⎩ 19.35- 20.21621.a n =2×13n - 22.63 23.14 24.5 25.9或10 26.189 27. ±2 三、解答题28.解:(1)因为a 1=2,a 1+a 2+a 3=12=3a 1+3d ,所以d =2,所以a n =2n . (2)因为b n =3an =32n =9n ,b n +1=9n+1,1199n n n n b b ++==9,所以{bn }是等比数列,b 1=91=9, q =9,b n 的前n 项和S n =9(19)19n ⨯--=1998n +-.29.解:(1)因为{a n }是等差数列,S 3=S 1,所以a 4+a 5+a 6+…+a 11=4(a 4+a 11)=0,即2a 1+13d =0. 又因为a 1=130,所以d =-20. (2)S n =130n +(20)(1)2n n --=-10n 2+140n =-10((n -7)2+490所以当n =7时取最大值,最大值为490.30.解:因为a 、b 、c 成等差数列,且a +b +c =15=3b ,所以b =5. 设a 、b 、c 的公差为d ,则a =5-d ,c =5+d .又因为a +1、b +1、c +4成等比数列,即6-d 、6、9+d 成等比数列,所以36=(6-d )(9+d )) 得d =-6或3.当d =-6时,a =11,b =5,c =-1; 当d =3时,a =2,b =5,c =8.31.解:因为{a n }是等比数列,且a 1+a 2+…+a n =2n -1=S n ,所以a n = S n -S n -1= (2n-1)-(2n -1-1)= 12n -,所以a n 2=(2n -1)2=222n -,得a n+12=22n,因此212n na a +=22=4,得{a n 2}是等比数列,且首项为a 12=S 12=1,公比是4,所以22212na a a +++=1(14)14n ⨯--=413n -.。
第六章数列测试题
一,选择题
1,气象站一天各时刻测得的气温排成的一列数( ) A 不是数列B 是数列C 是无序数列D 是有序数但不是数列
2,已知数列{a n }的通项公式为a n =n 2+3n+2,以下四个数中,是数列{a n }中的一项是( )
A 18 B54 C 102 D 156
3.数列1212-,1312-,141
2-…的一个通项公式是( )
A ,a n =
11
2
-n B a n =()21-n n C a n =
()1
11
2-+n 或 a n =
)
2(1
+n n D 以上都不对
4.下列各数列中,是等差数列的是( ) A 0,1,0,1,0,1,… B , , ,… C -1,1,-1,1,… D 8,8,8,8,…
5.已知35是3
5
3+与另一个数的等差中项,则另一个数( )
A
353- B 335- C 33 D 6
3
5- 6.在等差数列{a n }中,若a 1064=+a ,则a 8765432a a a a a a ++++++等于 A 10 B 35 C 40 D 65
7,等比数列前3项依次为,2,2,263则第4项是( ) A 1 B 1212 C 912 D 32
8.在0与16之间插入两个数,使前三个数成等差数列,后三个数成等比数列,则这两个数的和等于( ) A 8 B 10 C12 D 16
9,已知x,2x+2,3x+2是一个等比数列的前3项,则等比数列的第4项是( )
A -27
B 12
C D
10.设等比数列的首项与第2项的和为30,a 12043=+a ,则a 5+a 6=( ) A 120 B 240 C 480 D 600 二,填空题
1.数列a n =(n+1)(n+2)的第 项为110。
2.数列-7
4
,63,52,41,0,21,…的一个通项公式为
3.等差数列的第2项为-5,第6项与第4项之差为6,那么这个数列的首项是
4.已知2
3
,,875x 成等差数列,那么x=
5.等差数列的前4项之和为30,公差是3,则a 5=
6.在等比数列{a n }中,a 3=9, a 6=243,则s 6=
7.已知等比数列中, a n =6
3n
,则a 1= , q=
8.已知等比数列中,q=-3
1
,a n =1,s n =-20,则a =1
9.110是通项公式为的a ()()21++=n n n 数列的第 项
10,首项为5,末项为27,公差为2的等差数列共有 项 三,解答题
1,已知成等差数列的三个正数的和等于15,并且这三个数分别加上1,3,9后得到的三个数成等比数列,求这三个数。
2.已知数列{a n }的通项公式为a n =(-1)n
112+-n n ,求此数列的第5项。
3,判断420是不是数列{n(n+1)}中的项,如果是,是第几项
4、在-7和13之间插入3个数,使这5个数成等差数列,求插入的3个数。
5、已知等差数列{a
n }的通项公式为a
n
=3n-5,求其求和公式及s
20
6、等差数列{a
n }中, a
1
:a
3
=1:3且s
5
=45,求a
4
7、在等比数列{a
n }中,已知a,
96
,
2
3
4
1
=
=a求s
4
8、在等比数列{a
n
}中,s
n
为其前n项和,设a
n
>0,a28
,4
1
4
2
=
-
=a
s,求
n
n
a
a
3
+
的值。
9、已知三个数成等差数列,它们的和为18,平方和为116,求这三个数。
10、小王采用零存整取方式在农行存款,从元月份开始,每月第1天存入银行2000
元,银行以年利率℅计息,试问年终结算时本利和是多少元(精确到元)
11、等差数列{a
n
}中,已知d=3,且a
1
+a
3
+a
5
+a
7
+......+a
99
=100,
求前100项和。