微积分讲座---Z2.16 奇异函数的卷积特性
- 格式:pdf
- 大小:160.92 KB
- 文档页数:2
卷积的定义和物理意义卷积(Convolution)是分析数学中一个重要的运算,很多具体实际应用中会用到这个概念,卷积的数学定义就是一个式子,背后有什么物理背景意义呢?这里做一个分析。
函数卷积的定义:设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的实数x,上述积分是存在的。
这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g 的卷积,记为h(x)=(f*g)(x)。
容易验证,(f *g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。
这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。
数列卷积定义:如果卷积的变量是序列x(n)和h(n),则卷积的结果定义:其中星号*表示卷积。
当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。
另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
卷积的物理意义(定义的来源思路)如果一个信号是一组历史信号的组合,比如a(0),a(1),a(2)......a(n)......,其中a(i)是i时刻信号的量值,我们要计算在某一时刻n的信号的组合量值f(n), f(n)是a(0),a(1),a(2)......a(n)的组合。
如果是类似f(n)=a(0)+a(1)+a(2)+......+a(n)的简单线性组合就好办了,但是信号会随着时间的变化,不断的在衰减的,也就是说我们只知道0时刻信号量值是a(0),但不知道a(0)变化到n时刻的时候的实际值,所以不能简单用到上面的线性组合式子。
现在假设我们知道信号的衰减规律符合统一规律函数b(n),也就是说所有信号0时刻的衰减剩余率都是是b(0),1时刻的衰减剩余率是b(1)......,如果我们求n时刻的信号组合量f(n),因为n时刻a(n)信号刚出来,它的衰减剩余率应该为b(0)(理解一下),而 n-1时刻的信号衰减了一个时间周期了,它的衰减剩余率是b(1)......,写成式子就是:f(n)=a(0)b(n)+a(1)b(n-1)+a(2)b(n-2)+......+a(n)b(0)=sigma[a(i).b(n-i)],i 取值 from0 ton.上面的式子,就是a(i).b(n-i)乘积形式的由来,作为数学推广,不是一般性,可以把取值范围推广到负无穷到正无穷。
卷积的介绍先看到卷积运算,知道了卷积就是把模版与图像对应点相乘再相加,把最后的结果代替模版中⼼点的值的⼀种运算。
但是,近来⼜看到了积分图像的定义,⽴马晕菜,于是整理⼀番,追根溯源⼀下吧。
1 卷积图像1.1 源头⾸先找到了⼀篇讲解特别好的博⽂,原⽂为:贴过正⽂来看:---------------------------------------------------------------------------------------------------------------信号处理中的⼀个重要运算是卷积.初学卷积的时候,往往是在连续的情形, 两个函数f(x),g(x)的卷积,是∫f(u)g(x-u)du 当然,证明卷积的⼀些性质并不困难,⽐如交换,结合等等,但是对于卷积运算的来处,初学者就不甚了了。
其实,从离散的情形看卷积,或许更加清楚, 对于两个序列f[n],g[n],⼀般可以将其卷积定义为s[x]= ∑f[k]g[x-k] 卷积的⼀个典型例⼦,其实就是初中就学过的多项式相乘的运算, ⽐如(x*x+3*x+2)(2*x+5) ⼀般计算顺序是这样, (x*x+3*x+2)(2*x+5) = (x*x+3*x+2)*2*x+(x*x+3*x+2)*5 = 2*x*x*x+3*2*x*x+2*2*x+ 5*x*x+3*5*x+10 然后合并同类项的系数, 2 x*x*x 3*2+1*5 x*x 2*2+3*5 x 2*5 ---------- 2*x*x*x+11*x*x+19*x+10 实际上,从线性代数可以知道,多项式构成⼀个向量空间,其基底可选为 {1,x,x*x,x*x*x,...} 如此,则任何多项式均可与⽆穷维空间中的⼀个坐标向量相对应, 如,(x*x+3*x+2)对应于 (1 3 2), (2*x+5)对应于 (2,5). 线性空间中没有定义两个向量间的卷积运算,⽽只有加法,数乘两种运算,⽽实际上,多项式的乘法,就⽆法在线性空间中说明.可见线性空间的理论多么局限了. 但如果按照我们上⾯对向量卷积的定义来处理坐标向量, (1 3 2)*(2 5) 则有 2 3 1 _ _ 2 5 -------- 2 2 3 1 _ 2 5 ----- 6+5=11 2 3 1 2 5 ----- 4+15 =19 _ 2 3 1 2 5 ------- 10 或者说, (1 3 2)*(2 5)=(2 11 19 10) 回到多项式的表⽰上来, (x*x+3*x+2)(2*x+5)= 2*x*x*x+11*x*x+19*x+10 似乎很神奇,结果跟我们⽤传统办法得到的是完全⼀样的. 换句话,多项式相乘,相当于系数向量的卷积. 其实,琢磨⼀下,道理也很简单, 卷积运算实际上是分别求 x*x*x ,x*x,x,1的系数,也就是说,他把加法和求和杂合在⼀起做了。