概率论数理统计第16讲 1王
- 格式:ppt
- 大小:830.00 KB
- 文档页数:31
概率论与数理统计第1章随机事件与概率第4讲条件概率与乘法公式01 条件概率02 乘法公式本 讲 内容在解决许多概率问题时,往往需要在某些附加条件下世界万物都是互相联系、互相影响的,随机事件也不例?条件概率外.通事故发生的可能性明显比天气状况优良情况下要大得定程度的相互影响.多.在同一个试验中的不同事件之间,通常会存在着一例如,在天气状况恶劣的情况下交求事件的概率.概率,将此概率记作P(B|A).如在事件A 发生的条件下求事件B 发生的在100件产品中有72件为一等品,从中取两件产品,记A表示“第一件为一等品”,B表示“第二件为一等品”. 求P(B),P(B|A).Ὅ例1解由前例可知无论有放回抽样和无放回抽样都有(1)有放回抽样(2)无放回抽样独立性如何定义?.设A 、B 为两事件, P ( A ) > 0 , 则称为事件 A 发生的条件下事件 B 发生的条件概率.称为在事件B 发生的条件下事件A 的条件概率.同理Ὅ 定义Ὅ性质条件概率也是概率, 故概率的重要性质都适用于条件概率.例如:在100件产品中有72件为一等品,从中取两件产品,记A 表示“第一件为一等品”,B 表示“第二件为一等品”. Ὅ例2 2) 可用缩减样本空间法1) 用定义计算:P (A )>0A 发生后的缩减样本空间所含样本点总数在缩减样本空间中B 所含样本点个数无放回抽样Ὅ 计算.在全部产品中有4%是废品,有72%为一等品. 现从其中任取一件,发现是合格品,求它是一等品的概率.Ὅ例3解设A=依题意,P(A)=所求概率为P(B|A) .{任取一件为合格品},B={任取一件为一等品}0.96,0.72.P(B)=利用事件的关系及概率性质公式求条件概率Ὅ例4设A,B,C 是随机事件,A与C互不相容,则.由条件概率的定义:若已知P(A), P(B|A)时, 可以反过来求P(AB).注乘法公式.某工厂有职工400名,其中男女职工各占一半,Ὅ例5男女职工中技术优秀的分别为20人和40人,从中任选一名职工,计算(1)该职工技术优秀的概率;(2)已知选出的是男职工,他技术优秀的概率.解设A表示“选出的职工技术优秀”,B表示“选出的职工为男性”,则:(1)利用古典概率有.(2)通过缩减样本空间,有.Ὅ例6某杂志包含三个栏目“艺术”(记为事件A)、“图书”(记为事件B)、“电影”(记为事件C),调查读者的阅读习惯有如下结果:试求解01 条件概率02 乘法公式本 讲 内容乘法公式推广ab -1ab O F (x )xb a 1xf (x )O盒中装有100个产品, 其中3个次品,从中不放回Ὅ例7地取产品, 每次1个, 求(1)取两次,两次都取得正品的概率;(2)取三次,第三次才取得正品的概率.解令A i为第 i 次取到正品(波利亚罐子--传染病模型)一个罐子中包含b 个白球和r 个红球. b 个白球, r 个红球Ὅ 乘法公式应用举例8随机地抽取一个球,观看颜色后放进行四次,试求第一、二次取到白 球且第三、四次取到红球的概率.回罐中,并且再加进c 个与所抽出 的球具有相同颜色的球.这种手续于是W 1W 2R 3R 4表示事件“连续取四个球,第一、二个是白球,第三、四个是红球. ”设W i =R j ==P (W 1)P (W 2|W 1)P (R 3|W 1W 2)P (R 4|W 1W 2R 3)P (W 1W 2R 3R 4)解1,2,3,4{第i 次取出是白球},i =j ={第j 次取出是红球},1,2,3,4记A=为了防止意外,在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,系统(Ⅰ)和系统(Ⅱ)的有效概率分别为0.92和0.93,在系统(Ⅰ)失灵的情况下,系统(Ⅱ)仍有效的概率为0.85,求两个报警系统至少有一个有效的概率.Ὅ例9解报警系统至少一个有效”可表示为A ∪B ,由于“两个“系统(Ⅰ) 有效”,B=“系统(Ⅱ)有效”,且A 和 互斥,因此:学海无涯,祝你成功!概率论与数理统计。
概率论与数理统计习题答案第四版盛骤 (浙江大学)之阿布丰王创作浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,分歧格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A,B,C为三事件,用A,B,C的运算关系暗示下列事件。
(1)A发生,B与C不发生。
A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。
AB-ABC或AB-C(3)A,B,C中至少有一个发生暗示为:A+B+C(4)A,B,C都发生,暗示为:ABC(5)A,B,C S-(A+B+C)(6)A,B,C中未几于一个发生,即A,B,C中至少有两个同时不发生(7)A,B,C中未几于二个发生。
(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故暗示为:AB+BC+AC6.[三] 设A,B是两事件且P (A,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P(A,P (B即知AB≠φ,(否则AB=φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B)(*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB-。
第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A 所包含的样本点为(0,a ),(1,a ),(2,a )。
(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B 所包含的样本点为(0,a ),(0,b ),(0,c )。
2、解 (1)AB BC AC 或ABC ABC ABC ABC ;(2)ABBCAC(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ;(4)AB C 或ABC ;(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生); 3(1)错。
依题得()()()()0=-+=B A p B p A p AB p ,但空集≠B A ,故A 、B 可能相容。
(2)错。
举反例 (3)错。
举反例(4)对。
证明:由()6.0=A p ,()7.0=B p 知()()()()()3.03.1>-=-+=B A p B A p B p A p AB p ,即A 和B 交非空,故A 和B 一定相容。
4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P A B P B ==;5解:由题知()3.0=BC AC AB p ,()05.0=ABC P .因()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= 得,()()()()4.023.0=+=++ABC p BC p AC p AB p故A,B,C 都不发生的概率为()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1 ()05.04.02.11+--= 15.0=.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=();(3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@参考教材概率论与数理统计第四版(浙江大学主编)重要定理、性质、公式、结论经典例题、重要例题及不需要做的题目第一章概率论的基本概念(考小题)第一节随机试验(了解)第二节样本空间,随机事件(了解)第三节频率与概率(频率可以不用看,了解)第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)第六节独立性(重要,考小题为主,大题经常会用到)第二章随机变量及其分布(至少考小题,考大题一定会用到)第一节随机变量(了解)第二节离散型随机变量及其分布律(重要,经常考)第三节随机变量的分布函数(重要,每年必考)第四节连续型随机变量及其概率密度(重要,每年必考)第五节随机变量的函数分布(重要,大题的命题点)第三章多维随机变量及其分布(考大题可能性极大)第一节二维随机变量(了解)第二节边缘分布(理解)第三节条件分布(理解)第四节概率独立的随机变量(重要,基本每年必考)第五节两个随机变量函数的分布(重要,大题的经典命题点)第四章随机变量的数字特征(重要)第一节数学期望(重要,每年必考)第二节方差(重要,每年必考)第三节协方差与相关系数(重要,经常考)第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).第五章大数定律及中心极限定理(了解)第一节大数定律(了解,关注定律的前提条件与结论)第二节中心极限定理(了解,关注定理的前提条件与结论)考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@第六章样本及抽样分布(考小题为主)第一随机样本(了解,其中有重要概念,简单随机样本)第二直方图和箱线图(重要,考小题)第三抽样分布(重要,考小题)第七章参数估计(重要,考大题经典章节)第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)第三节估计量的评选标准(数一重要,数三不用看)第四区间估计(数一理解,考的比较少)第五正态总体均值与方差的区间估计(数一理解,考的比较少)第六(0-1)分布参数的区间估计(不用看)第七单侧置信区间(理解,一般不考)(第四-第七,只有数一考,数三均不用看)第八章假设检验(理解,一般不考,只有数一有要求,数三不考)第一假设检验(理解)第二正态总体均值的假设检验(理解)第三正态总体方差的假设检验(理解)第四,第五,第六,第七,第八(均不用看).考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题第一章概率论的基本概念P3最后4行的小写字体不用看P5例3不用做(一)频率不用看P6-7 例 1 与例 2 均不用做,P7 概率重点看P9 等可能概率一般都不单独考,考大题经常会用到,P13 例 6 不用做,P14 例 8 不用做 P14 条件概率重点看,P15 例 2 不用做,P16 例 3 不用做,P17 例 4 重点做P17(三)全概率公式和贝叶斯公式为难点P19例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做P23例4重点做P24-29 不用做的习题是 1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40第二章随机变量及其分布P30 例 1 不用看P37 泊松定理只需要记住结论,证明可以不用看P38 随机变量的分布函数为考研必考概念P42 连续性随机变量概率密度为考研必考点P50 随机变量的函数的分布是考大题的重要命题点P53 例 5 不用做P55-59 不用做的习题 1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39第三章多位随机变量及其分布P63 性质 4 的解释不用看P65 例 1 不用做,P66 例 3 重点做一下(提升计算能力)P68 例 1 不用做,P72 相互独立的随机变量为重点章节P76 两个随机变量的函数的分布为考大题的重要备考章节P78 例 3 不用做,P81 例 5 不用做P84-89 不用做的习题是 3、6、7、10、11、12、13、28、31第四章随机变量的数字特征P91 例 1 不用做,P92 例 3 与例 4 不用做,P93 例 5 不用做P95 中间的证明不用看,P96 例 8 与例 10 不用做P97 例 11 不用做,P100 例 13 不用做,P105 不用做P107 XY的两条重要性质的推导及含义不用看考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@P108 只需要看前四行即只需要记住定理 4 证明可以不用看P109 例 2 重点做(提升计算能力)P110 矩为一般考点,协方差矩阵不用看P113-118 不用做的习题是 1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38第五章大数定律及中心极限定理(难点非重点)P124 例 1 不用做P126-127 不用做的习题是 2、4、5、10、11、13第六章样本及抽样分布(一般考点考小题)P130 第四行简单随机样本为重要概念P130 第二节直方图和箱线图不用看P135 第三节抽样分布(考小题),P136 统计量定义及几个常见统计量要重点看而且要牢记其表达式P137 经验分布函数只有数三同学稍微了解P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记P145-147 定理 2 的证明与推广均不用看P147-148 不用做的习题是 1、5、6、10、11第七章参数估计(数一数三的绝对的重点和难点)P149 点估计数一数三的绝对重点矩估计重点非难点,最大似然估计重点且难点P163-155 例 4 例 5 例 6 重点做P156-158 第二节基于截尾样本的最大似然估计不用看P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点P168 0-1 分布参数的区间估计数一数三均不用看P169 单侧置信区间,只有数一看,为一般考点P193-177 数三不用做的习题为 4(3)、6、7、8、9、10、11-27 均不用做数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27第八章假设检验(数一特有的考点,难点非重点)数一只需要看前四节P178-193从第五节以后均不需要看P218-223 习题只需要做 1、2、3、4 其余的题目可以不用做考研数学问题咨询张伟老师新浪微博张伟老师仰望星空E-mail: zwpku@。
《概率论与数理统计》课程教学大纲课程中英文名称:概率论与数理统计(Probability and Statistics)课程代码:课程类别:必修课;一年级;二年级;公共类数学基础课学分/学时:3学分/51学时开课学期:适用专业:先修/后修课程:高等数学(或微积分)开课单位:课程负责人:1、课程性质与教学目标概率论与数理统计是研究随机现象客观规律并付诸应用的数学类学科,是工科本科各专业的一门重要基础理论课,通过本课程的学习,要求学生熟练掌握随机事件概率的常用计算方法,熟悉并掌握随机变量的分布及其计算,掌握离散型随机变量及其分布律的概念及其计算、掌握连续型随机变量及其密度函数的概念及其计算。
掌握随机变量的常用数字特征的概念及其计算。
理解并掌握依概率收敛的概念,理解大数定律、理解并掌握用中心极限定理解决应用问题。
理解和掌握数理统计的基本概念和理论、熟悉常用的统计量和抽样分布,熟悉并掌握常用的参数点估计和置信区间的求解。
掌握假设检验的基本概念、理解检验中的两类风险,理解并掌握显著性检验的基本步骤,掌握正态总体下未知参数的假设检验方法并会用于解决实际问题,了解拟合优度检验和独立性检验等非参数检验方法。
通过本课程的学习,使学生具备以下能力:课程教学目标1:有科学的世界观、人生观和价值观,有责任心和社会责任感。
树立远大的理想以及刻苦学习的信念。
课程教学目标2:使学生掌握概率统计的基本概念、基本思想和基本理论,培养学生用所学知识去分析问题和解决问题的综合能力和高级思维能力。
课程教学目标3:促进学生全面发展;打破习惯性认知模式,培养学生深度分析、大胆质疑、勇于创新的能力;引导学生养成自主学习、终身学习的自我管理素养。
2、教学内容及基本要求本课程教学内容与具体教学要求及学时分配等信息如下表所示。
3、教学方法课堂教学以板书为主,辅助PPT。
4、考核、成绩评定方式及重修要求考核方式主要由上课出勤、平时作业、课堂练习、阶段测验、期末考试等环节组成,综合各部分的成绩给出该门课程的总评成绩。
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)概率论与数理统计习题答案详解版(廖茂新复旦版)习题⼀1.设A,B,C为三个事件,⽤A,B,C的运算式表⽰下列事件:(1)A发⽣⽽B与C都不发⽣;(2)A,B,C⾄少有⼀个事件发⽣;(3)A,B,C⾄少有两个事件发⽣;(4)A,B,C恰好有两个事件发⽣;(5)A,B⾄少有⼀个发⽣⽽C不发⽣;(6)A,B,C都不发⽣.解:(1)A CB或A-B-C或A-(B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C)∪(AC B)∪(BC A).(5)(A∪B)C.(6)CY或CBA IA.B2.对于任意事件A,B,C,证明下列关系式:(1)(A+B) (A+B)(A+ B)(A+B)= ?;(2)AB+A B +A B+A B AB-= AB;(3)A-(B+C)=(A-B)-C.证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发⽣但B不发⽣的概率;(2)A,B都不发⽣的概率;(3)⾄少有⼀个事件不发⽣的概率.解(1)P(A B)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(B A)=P(BA )=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB)=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)⾄少购买⼀种电器的;(2)⾄多购买⼀种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
解:8/156.任意将10本书放在书架上。
其中有两套书,⼀套3本,另⼀套4本。