重要的杂环化合物
- 格式:ppt
- 大小:1.24 MB
- 文档页数:31
吡啶与嘧啶结构式概述说明以及解释1. 引言1.1 概述吡啶和嘧啶是两种重要的杂环化合物,在有机化学和药物化学领域具有广泛的应用。
它们都属于氮杂环化合物,拥有特殊的分子结构和性质。
本文将对吡啶和嘧啶的结构式、性质及应用进行综述,并探讨它们的合成方法和反应机理。
1.2 文章结构本文共分为五个部分。
首先是引言部分,概述文章的目的和内容。
接下来是吡啶与嘧啶结构式的介绍,包括吡啶和嘧啶的具体结构式及其区别与联系。
第三部分将详细阐述吡啶与嘧啶的性质及其在不同领域中的应用。
然后,我们将着重探讨吡啶与嘧啶的合成方法和反应机理,包括各自的合成路线以及互相之间可能存在的转化反应机制。
最后,在结论中总结了吡啶与嘧啶的特点和重要性,并展望了未来研究领域可能面临的挑战。
1.3 目标本文旨在全面介绍吡啶和嘧啶的结构式、性质及应用,并对它们的合成方法和反应机理进行深入探讨。
通过该文,读者可以更好地理解吡啶和嘧啶这两种重要化合物,了解它们的特点和重要性,以及在不同领域中的应用前景。
同时,本文也为相关领域的研究人员提供了一些可能的发展方向和挑战。
2. 吡啶与嘧啶结构式2.1 吡啶的结构式吡啶是一种含有氮原子的芳香化合物,其分子式为C5H5N。
吡啶分子由一个六元环和一个氮原子组成,六元环上有五个碳原子和一个氮原子,碳原子上分别连接着一个氢原子。
吡啶的结构示意图如下所示:```H|H–C=N–C–H|H```2.2 嘧啶的结构式嘧啶也是一种含有氮原子的芳香化合物,其分子式为C4H4N2。
嘧啶分子由一个六元环和两个氮原子组成,六元环上有四个碳原子和两个氮原子。
其中一个氮原子连接着另一个含碳基团。
嘧啶的结构示意图如下所示:```H H\ /C = N –C|N|H```2.3 吡啶与嘧啶的区别与联系尽管吡啶和嘧啶都属于芳香异族化合物且具有相似的命名后缀“-in”,它们之间存在一些区别和联系。
区别:- 结构差异: 吡啶分子的六元环上只有一个氮原子,而嘧啶分子的六元环上有两个氮原子,并且其中一个氮原子连接着碳基团。
2-芳基苯并噻唑的合成研究进展摘要:2-芳基苯并噻唑是一类非常重要的杂环化合物,是构建药物分子、天然产物、功能材料和很多生物活性分子的骨架。
由于这些良好的特性,2-取代的苯并噻唑类化合物在医药方面有着很广泛的应用,它在抗菌、抗肿瘤、抗过敏、抗惊厥、消炎、保护神经系统和免疫调节等方面都有较好的活性。
关键词:2-芳基苯并噻唑;合成;研究一、2-芳基苯并噻唑的的重要性2-芳基苯并噻唑是一类非常重要的杂环化合物,是构建药物分子、天然产物、功能材料和很多生物活性分子的骨架[1] 例如,唑泊习他(zopolrestat1)是一种抑制醛糖还原酶的药物,能够治疗糖尿病[2];2-(4-氨基苯基)苯并噻唑及其衍生物(如5F203(2)和PMX610(3))是一类高效且具有良好选择性的抗肿瘤试剂,对人类乳腺癌、卵巢癌和结肠癌有毫微摩尔级的抑制活性;席夫碱(4)可用作类淀粉蛋白抑制剂,用于治疗老年痴呆症(图1)。
图1含取代基团的苯并噻唑类药物苯并噻唑类化合物在农用化学品中也表现出除草、抗菌和杀毒等方面的活性。
除草剂Benazoline是人工合成的具有生物活性的苯并噻唑衍生物。
另外,苯并噻唑类化合物在工程材料领域中也有着广泛应用,被用作塑料染色剂、橡胶硫化促进剂以及荧光探针材料等。
例如,荧光素存在于萤火虫中,在其体内经酶氧化导致生物发光;2-巯基苯并噻唑作为自由基转移试剂,在聚丁二烯和聚异戊二烯的硫化反应中起催化作用。
二、2-芳基苯并噻唑的合成研究进展1.以邻氨基芳基硫酚为原料合成2-芳基苯并噻唑最常用的方法是以邻氨基芳基硫酚为原料,和羧酸、醛、腈类、β-二酮或苄胺等缩合,该类反应经过了中间体邻酰氨基苯硫酚。
当使用芳基羧酸和邻氨基芳基硫酚反应时,一般需要在强酸或者高温条件下才能够得到较高产率的2-芳基苯并噻唑。
邻氨基苯硫酚和芳香醛也能够缩合得到2-芳基苯并噻唑,该方法一般需要Lewis酸或者强氧化剂。
除此之外,能够提供苯甲酰基的化合物都能与邻氨基苯硫酚反应生成2-芳基苯并噻唑。
1. 三氟苯胺简介三氟苯胺(2,3,4-三氟苯胺)是一种重要的芳香族杂环化合物,化学式为C6H4F3N。
它是三氟甲基苯胺的同分异构体,具有三个氟原子取代苯环上的氢原子。
三氟苯胺在有机合成、药物合成和材料科学领域具有广泛的应用价值。
2. 三氟苯胺的性质2.1 物理性质三氟苯胺是白色至浅黄色结晶固体,具有具有特殊的芳香气味。
它的熔点约为6-8摄氏度,沸点约为193-195摄氏度。
三氟苯胺在常温下不溶于水,但可溶于大多数有机溶剂,如乙醇、乙醚和二甲基甲酰胺。
2.2 化学性质在化学反应中,三氟苯胺表现出一系列重要的性质。
它可以发生氢键和范德华力作用,与Lewis酸和亲电试剂发生取代反应,同时也可作为亲核试剂与电子不足的化合物发生亲核加成反应。
三氟苯胺还可参与芳烃的氟化反应、重氮化反应等重要的有机合成反应。
3. 三氟苯胺的应用3.1 有机合成由于三氟苯胺具有较强的亲电性和亲核性,在有机合成中被广泛应用于芳香族化合物的合成反应。
它可作为重要的试剂在芳香族硝化反应中提高反应的亲电取代活性,促进化学反应的进行。
3.2 药物合成三氟苯胺也是药物合成领域重要的中间体,许多具有生物活性的有机化合物的合成中都需要三氟苯胺作为原料。
它作为一种重要的杂环化合物,可以用于合成抗血小板药物、抗癌药物和抗菌药物等。
3.3 材料科学在材料科学领域,三氟苯胺可用于制备具有特殊功能的高性能材料。
它可以用于合成高性能聚合物、涂料和功能性有机材料,这些材料具有优异的耐热性、耐腐蚀性和电学性能,广泛应用于航空航天、电子、光学等领域。
4. 三氟苯胺的合成方法4.1 氟化反应三氟苯胺可通过三氟甲基苯的氟化反应制备。
氟化反应是以三氟甲基苯为原料,在氢氟酸、氢氧化钠等条件下进行反应,生成三氟苯胺。
4.2 重氮化反应另外,三氟苯胺还可通过重氮化反应合成。
在重氮化反应中,三氟甲基苯胺首先发生硝基化反应制成重氮化合物,再通过还原反应得到三氟苯胺。
5. 结语3,4-三氟苯胺作为一种重要的芳香族杂环化合物,在有机合成、药物合成和材料科学领域具有广泛的应用价值。
吡唑环的合成方法概述及解释说明1. 引言1.1 概述吡唑环是一种重要的有机化合物,具有广泛的应用领域。
它不仅在药物领域扮演着重要角色,还广泛用于材料科学、农药合成和有机光电等领域。
因此,吡唑环的合成方法对于有机化学研究和实际应用至关重要。
1.2 文章结构本文将对吡唑环的合成方法进行综述。
首先,我们将介绍传统方法和新颖方法两个方面。
其中传统方法是指已经被广泛接受并使用的吡唑环合成方法,而新颖方法则包含了近年来研究者们不断提出的新思路和技术。
接下来,我们将比较传统方法与新颖方法的优缺点,并分析其适用性及潜在发展方向。
其次,在解释说明部分,我们将深入探讨吡唑环的结构和性质。
通过系统地分析其分子组成和特殊的环状结构,我们可以更好地理解吡唑环化合物的特点及其反应活性。
此外,我们还将介绍吡唑环在不同应用领域中的重要作用,如药物研究、农药合成以及有机光电材料等,并展望未来吡唑环研究的发展方向。
1.3 目的本文旨在全面介绍和讨论吡唑环的合成方法,并探讨其结构与性质以及广泛应用领域。
通过对传统方法和新颖方法的比较分析,我们希望能够为研究者提供一种思路和技术选择的参考,并为吡唑环合成方法的进一步发展提供展望和建议。
最终,我们期待本文能够促进吡唑环化合物的研究和应用,推动有机化学领域的发展。
2. 吡唑环的合成方法:2.1 传统方法:传统上,吡唑环的合成通常基于亲电芳香取代反应和环化反应。
其中最典型的方法是通过让已存在的吡唑片段与其他化合物发生反应来构建吡唑环结构。
例如,一种常见的传统方法是以卤代芳烃或酸作为底物,并与氨基化合物进行缩合反应,然后在适当条件下进行氧化和脱水反应得到目标产物。
此外,将卤代吡啶与羰基化合物通过钯催化偶联反应(如Suzuki偶联、Heck 偶联等)也是一种常见的传统方法。
该方法具有选择性好、反应条件温和等优点。
2.2 新颖方法:随着有机化学合成领域的发展,许多新颖的合成策略和方法被设计出来用于吡唑环的合成。
吲哚并咔唑结构式-概述说明以及解释1.引言1.1 概述概述部分:吲哚并咔唑是有机化学中一类重要的杂环化合物,具有独特的结构和广泛的应用。
吲哚并咔唑是一种具有芳香性的异极性分子,其结构由吲哚和咔唑两个环组成。
吲哚环由六个碳原子和一个氮原子构成,而咔唑环则由四个碳原子和一个氮原子构成。
这种结构使得吲哚并咔唑具有丰富的化学反应性和生物活性。
吲哚并咔唑具有广泛的应用领域。
在药物化学中,吲哚并咔唑类化合物常被用作抗菌、抗癌、抗病毒等药物的骨架结构。
同时,吲哚并咔唑类化合物也被广泛应用于有机光电器件、材料科学、农药研究等领域。
其独特的结构和多样的活性使得吲哚并咔唑成为有机化学研究的热点之一。
本文将从吲哚结构和咔唑结构两个方面入手,详细介绍吲哚并咔唑的定义和特点,并探讨吲哚和咔唑的合成方法。
在结论部分,将重点讨论吲哚并咔唑的结构和应用以及未来的研究方向。
通过对吲哚并咔唑的深入了解,希望能够为相关领域的科学研究提供有益的参考和启发。
1.2文章结构1.2 文章结构本文按照以下结构组织和阐述吲哚并咔唑的相关内容:1. 引言:在这一部分中,对吲哚并咔唑的概念进行简要介绍,并阐述本文的目的和意义。
2. 正文:2.1 吲哚结构式2.1.1 吲哚的定义和特点:对吲哚这种有机分子的基本概念进行详细讲解,包括其化学结构和物化性质等方面的特点。
2.1.2 吲哚的合成方法:详细介绍吲哚的合成方法,包括传统的合成途径以及近年来的新型合成策略,同时探讨各种方法的优缺点。
2.2 咔唑结构式2.2.1 咔唑的定义和特点:继续阐述咔唑这种有机分子的基本知识,包括其结构和性质等方面的特点。
2.2.2 咔唑的合成方法:详细介绍咔唑的合成方法,包括常用的合成途径以及新兴的咔唑合成策略,同时分析各种方法的优劣势。
3. 结论:3.1 吲哚并咔唑的结构和应用:总结和比较吲哚并咔唑的结构特点和应用领域,如药物化学、材料科学等,探讨其潜在的应用前景。
3.2 未来研究方向:在吲哚并咔唑领域的研究存在的问题和不足之处,并展望未来可能的研究方向和发展趋势。
噻吩结构式-概述说明以及解释1.引言1.1 概述噻吩是一种含有硫原子的五元环芳香烃类化合物,具有独特的化学结构和性质。
由于其稳定的芳香性质和丰富的化学反应性,噻吩在有机合成、药物研发、染料制备等领域具有重要的应用价值。
本文将系统介绍噻吩的化学结构、性质及在生物领域的应用,并展望其未来的发展前景。
通过深入了解噻吩,我们可以更好地认识和利用这一重要的有机化合物,推动相关领域的发展和进步。
1.2 文章结构本文主要分为三个部分:引言、正文和结论。
在引言部分,我们将简要介绍噻吩分子的概述,包括其化学结构和性质,并说明本文的目的和意义。
在正文部分,我们将详细探讨噻吩的化学结构、性质以及在生物领域的应用。
我们将从噻吩分子的结构出发,分析其在化学反应中的作用及影响,探讨其在实际应用中的特性和优势,并举例说明其在药物、生物传感器等领域中的应用情况。
最后,在结论部分,我们将总结噻吩分子的重要性,展望其未来在化学和生物领域的发展趋势,并对本文进行简要的总结。
通过本文的分析,读者将能更深入地了解噻吩分子在科学研究和实际应用中的重要作用和价值。
1.3 目的本文的目的是介绍噻吩的化学结构、性质以及在生物领域的应用。
通过深入了解噻吩的特性和功能,可以更好地认识这种化合物在化学和生物学中的重要性和应用前景。
同时,通过本文的阐述,也旨在激发读者对噻吩及其相关研究领域的兴趣,促进对噻吩化合物的进一步研究和应用。
通过对噻吩这一重要化合物的全面了解,有助于推动其在医药、材料科学等领域的发展和应用,为人类社会的进步做出贡献。
2.正文2.1 噻吩的化学结构噻吩是一种含硫的芳香环烃,其化学结构如下:噻吩的分子式为C4H4S,由一个含有5个原子的杂环芳烃组成,其中有一个硫原子取代在芳香环中。
噻吩的分子结构呈现出类似苯环的六元芳香环状结构,但其中一个碳原子被硫原子取代。
硫原子的存在增强了噻吩的亲电性和杂环特性,使得噻吩在许多有机反应中表现出独特的性质。
羧胺三唑结构式全文共四篇示例,供读者参考第一篇示例:羧胺三唑是一种具有特殊结构的有机化合物,也被称为三唑酰胺。
它的分子结构包含一个羧基和一个三唑环,是一种重要的杂环化合物。
羧胺三唑通常以其分子式C3H3N3O2表示,其结构式如下图所示:羧胺三唑的结构中包含一个三元环,其中有两个碳原子和一个氮原子相连,位置排列呈az形式,同时一个氮原子与一个氧原子相连,形成羧基。
由于其特殊的结构,羧胺三唑在药物化学和农药领域被广泛应用。
羧胺三唑具有多种生物活性,主要表现在抗微生物、抗菌、抗炎和抗肿瘤等方面。
它可以通过抑制生物体内某些特定的代谢途径,干扰细胞的正常生理功能,从而达到治疗疾病的目的。
羧胺三唑也可以作为杀虫剂和杀菌剂,用于农业生产中防治植物病虫害。
在医药领域,羧胺三唑类化合物被广泛用于治疗多种疾病,如白血病、淋巴瘤、痛风和风湿性关节炎等。
三唑类抗真菌药物是目前治疗真菌感染的首选药物之一,具有很高的疗效和广泛的应用前景。
除了医药领域,羧胺三唑类化合物还被广泛应用于农业生产中。
作为杀虫剂和杀菌剂,它可以有效防治农作物上的病虫害,提高农产品的产量和质量。
与传统的化学农药相比,羧胺三唑类化合物具有较低的毒性和环境友好性,被认为是未来绿色农业发展的重要方向之一。
羧胺三唑类化合物也存在一些不足之处。
部分羧胺三唑化合物可能对人体和环境产生潜在的毒性和危害,因此在使用过程中需要严格控制剂量和浓度。
由于其特殊的结构和反应活性,羧胺三唑类化合物的合成较为复杂,制备成本较高,限制了其在工业中的大规模应用。
第二篇示例:羧胺三唑是一种重要的有机化合物,其化学结构中含有一个羧基和一个三唑环。
羧胺三唑化合物在药物、农药和材料领域具有广泛的应用。
本文将简要介绍羧胺三唑的结构式、性质和应用。
羧胺三唑的结构式为C3H3N3O2,化学式为C3H3N3O2。
其分子结构中包含一个三唑环和一个羧基。
三唑环由三个碳原子和三个氮原子组成,其中一个氮原子和一个碳原子与羧基连接。
羟基四氢呋喃是一种重要的含氧杂环化合物,在有机合成和药物研究领域有着广泛的应用。
在质谱分析中,对于羟基四氢呋喃的碎片离子峰进行准确的识别和分析具有重要意义。
本文将对羟基四氢呋喃的碎片离子峰进行详细的介绍和分析。
1. 羟基四氢呋喃的结构特点羟基四氢呋喃的分子式为C4H8O2,结构式为HOCH2CH2CH2CHOH。
其分子中含有两个羟基和一个环状结构,具有一定的化学反应活性。
2. 羟基四氢呋喃的质谱分析羟基四氢呋喃的质谱图中,会观察到一系列碎片离子峰。
其中,最主要的碎片离子峰有m/z=60、m/z=45、m/z=31等,这些碎片离子峰具有重要的结构信息。
3. m/z=60的碎片离子峰m/z=60的碎片离子峰对应着羟基四氢呋喃分子中环状结构的离子化产物。
这一碎片离子峰的出现表明环状结构在质谱中具有一定的稳定性,并且对于羟基四氢呋喃的结构分析具有重要意义。
4. m/z=45的碎片离子峰m/z=45的碎片离子峰对应着羟基四氢呋喃分子中一个羟基的丢失。
这一碎片离子峰的出现表明羟基在质谱中会发生丢失,而且对于羟基四氢呋喃的结构分析具有重要意义。
5. m/z=31的碎片离子峰m/z=31的碎片离子峰对应着羟基四氢呋喃分子中一个甲基和一个羟基的丢失,是一个较为复杂的碎片离子峰。
这一碎片离子峰的出现表明在质谱中羟基四氢呋喃分子结构的复杂化合物会产生多种复杂的碎片离子,为结构分析提供了更多的信息。
6. 结论通过对羟基四氢呋喃的碎片离子峰进行分析可知,质谱分析可以为化合物的结构鉴定提供重要的信息。
对于羟基四氢呋喃这样的含氧杂环化合物,其碎片离子峰的分析对于化合物的结构分析非常重要。
希望本文的介绍可以对羟基四氢呋喃的质谱分析提供一定的参考价值。
羟基四氢呋喃(THF)是一种常见的含氧杂环化合物,由于其在有机合成和药物研究领域的广泛应用,对其碎片离子峰进行准确的识别和分析具有重要意义。
接下来将继续深入分析羟基四氢呋喃的碎片离子峰,结合其质谱图中的离子峰出现规律和具体特征,进一步探讨其在质谱分析中的意义。
杂环化合物大全【药师学习百科】——第5期杂环一概念与碳环相对,指的是成环的原子不仅包括碳,还包括氮、氧或硫等原子。
简单的杂环环系从3到10元不等;可以是脂环(如四氢呋喃),也可以是芳环(如吡啶)。
复杂的杂环系可以由2个或更多简单环并合而成(如吲哚)。
杂环化合物的系统命名法如下把杂环看做碳环中碳原子被杂原子替换而形成的环,称为“某杂(环的名称)”;给杂原子编号,使杂原子的位置号尽可能小。
其他官能团视为取代基。
杂环化合物大全(部份学员对大体杂环方面知识还有所欠缺,本人特整理此表,志于全面,欢迎补充)环数名称分子式结构式衍生物单环三元环吖丙啶C2H5N环氧乙烷C2H4O环氧丙烷环硫乙烷C2H4S四元环吖丁啶C3H7N 恶丁烷C3H6O 噻丁环C3H6S五元环含一个杂原子呋喃C4H4O四氢呋喃呋喃甲醛吡咯C4H5N四氢吡咯噻吩C4H4S四氢噻吩含两个杂原子吡唑C3H4N2咪唑C3H4N2恶唑噻唑异恶唑异噻唑六元环含一个杂原子吡啶C5H5N六氢吡啶烟酸烟酸胺异烟肼吡喃C5H6O噻喃C5H6S含两个杂原子哒嗪嘧啶吡嗪哌嗪七元环及以上杂䓬䓬指环庚三烯正离子……稠环五元及六元稠杂环吲哚苯并咪唑咔唑喹啉异喹啉蝶啶7H-嘌呤吖啶吩嗪吩噻嗪非杂环环戊二C5H6烯或称茂简易药化学习法一、大多数药物可按照药名提示联想其具有的结构(药名与结构)二、通过具有的结构熟悉化学名,即看见化学名,知道是什么药物。
三、按照结构分析得出理化性质。
由此,大体上就掌握了该药的主要性质。
有少部份药物的药名与结构之间找不出任何的联系,这种情况只好下功夫记忆了。
四、药物的用途,通常指的是它属于哪类药物,例如吲哚美辛为非甾体抗炎药,呋噻米为利尿药。
考题一般不要求知道更具体的用途。
另外,执业药师考题上,要求咱们记药物的结构式,并非是要求咱们默写出每一个药物的结构式,而是看到结构式能够知道它是哪个药物,这比默写出结构式要容易了。
例一吡罗昔康一)、药名提示:1、“吡”提示有吡啶环;2、“昔康”为1,2-苯并噻嗪结构。
重要的杂环化合物基本命名汪中明 2015-05-19一、单环体系1、五员环呋喃(furan) 噻吩(thiophene) 吡咯(pyrrole)2-甲基呋喃(2-methylfuran) 2-甲基吡咯(2-methylpyrrole) 吡咯-2-甲酸(pyrrole-2-carboxylic acid) 吡唑(pyrazole) 咪唑(imidazole) 噁唑(oxazole) 异噁唑(isoxazole) 噻唑(thiazole)5-甲基吡唑(5-methylpyrazole) 吡唑-5-甲酸(pyrazole-5-carboxylic acid) N-甲基吡唑-5-甲酸2、六员环吡啶(pyridine) 2H-吡喃(2H-pyran) 4H-吡喃(4H-pyran) 4H-硫杂吡喃(4H-thiopyran)2-甲基吡啶(2-methylpyridine) 吡啶-2-甲酸(pyridine-2-carboxylic acid) 2H-pyran-2-carboxylic acid 哒嗪(pyridazine) 嘧啶(pyrimidine) 吡嗪(pyrazine)3-甲基哒嗪(3-methylpyridazine) 5-甲基嘧啶(5-methyl pyrimidine) 2-甲基吡嗪(2-methylpyrazine) 哒嗪-3-甲酸(pyridazine-3-carboxylic acid) 嘧啶-5-甲酸(pyrimidine-5-carboxylic acid)3、稠杂环a.五员环苯并呋喃(benzofuran) 苯丙[b]噻吩(benzo[b]thiophene) 吲哚(1H-indole)5-甲基苯并呋喃(5-methylbenzofuran) 苯并呋喃-5-甲酸(benzofuran-5-carboxylic acid)异吲哚异苯并呋喃(isobenzofuran) 苯丙[c]噻吩(benzo[c]thiophene) 异吲哚(2H-isoindole)5-甲基苯丙[c]噻吩(5-methylbenzo[c]thiophene) 苯丙[c]噻吩-5-甲酸(benzo[c]thiophene-5-carboxylic acid)5-methyl-4,5,6,7-tetrahydro-2H-isoindole 4,5,6,7-tetrahydro-2H-isoindole-5-carboxylic acid5-methyl-4,5,6,7-tetrahydro-1H-indole 4,5,6,7-tetrahydro-1H-indole-5-carboxylic acid噻吩并[2,3-b]呋喃(thieno[2,3-b]furan) 噻吩并[3,2-b]呋喃(thieno[3,2-b]furan)5-甲基噻吩并[2,3-b]呋喃5-methylthieno[2,3-b]furan 3-甲基噻吩并[3,2-b]呋喃(3-methylthieno[3,2-b]furan)thieno[2,3-b]furan-5-carboxylic acid thieno[3,2-b]furan-3-carboxylic acid4,6-dihydrothieno[2,3-c]furan 2-methyl-4,6-dihydrothieno[2,3-c]furan 4,6-dihydrothieno[2,3-c]furan-2-carboxylic acid呋喃并[2,3-b]吡咯(furo[2,3-b]pyrrole) 3,4-二甲基-4H-呋喃并[3,2-b]吡咯(3,4-dimethyl-4H-furo[3,2-b]pyrrole)4H-[1,3]oxathiolo[5,4-b]pyrrole 4H-[1,3]oxathiolo[4,5-b]pyrrole5-methyl-4H-[1,3]oxathiolo[4,5-b]pyrrole 4H-[1,3]oxathiolo[4,5-b]pyrrole-5-carboxylic acidb.六员环喹啉(quinolone) 异喹啉(isoquinoline) 1,2,3,4-tetrahydroquinoline 1,4-dihydroquinoline5-甲基苯并[b]-4H-吡喃(5-methylbenzo[b]pyran) 5-methylbenzo[c]pyranCinnoline(噌啉) 6-methylcinnoline-3-carboxylic acidQuinazoline(喹唑啉) 5-methylquinazoline 7-methylquinazoline quinazoline-7-carboxylic acidQuinoxaline(喹喔啉)pyrido[2,3-d]pyrimidine pyrido[3,4-d]pyrimidine pyrido[4,3-d]pyrimidine pyrido[3,2-d]pyrimidine pyrimido[4,5-d]pyrimidine pyrimido[5,4-d]pyrimidine pyrimido[5,4-c]pyridazine2-methylpyrimido[4,5-d]pyrimidine 7-methylpyrimido[4,5-d]pyrimidine-2-carboxylic acidpyrido[2,3-c]pyridazine pyrido[2,3-d]pyridazine 3,8-dimethylpyrido[2,3-d]pyridazinepyrido[3,4-c]pyridazine 5-methylpyrido[3,4-c]pyridazine 3,5-dimethylpyrido[3,4-c]pyridazinepyrimido[5,4-c]pyridazine 4-methylpyrimido[5,4-c]pyridazine pyrimido[5,4-c]pyridazine-6-carboxylic acid 吖啶(acridine) 2-甲基吖啶2-甲基吩嗪(2-methylphenazine)。