2011炉顶煤气循环_氧气鼓风高炉综合数学模型_北科大
- 格式:pdf
- 大小:550.17 KB
- 文档页数:7
产业关键共性技术发展指南版精编Lele was written in 2021关于印发《产业关键共性技术发展指南(2011年)》的通知工信部科 [2011] 320号产业关键共性技术发展指南(2011年)工业和信息化部2011年7月前言为贯彻科学发展观,落实《国民经济和社会发展第十二个五年规划纲要》,充分调动社会资源,引导市场主体行为,指导产业关键共性技术发展方向,促进产业技术进步,实现工业和通信业的转型升级和结构优化,我部组织编制了《产业关键共性技术发展指南(2011年)》,用于指导产业关键共性技术的发展和应用。
产业关键共性技术是能够在多个行业或领域广泛应用,并对整个产业或多个产业产生影响和瓶颈制约的技术。
产业共性关键技术研发是一项长期的基础性工作。
由于关键共性技术的研究难度大、周期长,特别是在基础材料、关键工艺、核心元部件、系统集成等方面的关键共性技术,已经成为制约我国产业持续健康发展的核心问题;产业关键共性技术的研究开发是工业和通信业发展的基础,也是我国构建现代产业体系,加快转变发展方式,培育和发展战略性新兴产业,促进产业结构优化升级,增强自主创新能力和核心竞争力的关键环节。
产业关键共性技术发展指南(2011年)一、节能环保与资源综合利用二、原材料工业三、装备制造业四、消费品工业五、电子制造业六、软件和信息技术服务业七、通信业八、信息化和生产性服务业一、节能环保与资源综合利用1. 高效/高压大功率节能电机驱动系统技术主要技术内容:高压大功率电机系统能量回收及高能效协调控制技术;MW级高压大功率永磁电机设计技术;电力电子器件串联的均压技术和驱动保护技术;高压大功率电机变流系统的电磁兼容技术和高效冷却技术;以及高压大功率电机高效节能系统的工程化设计、制造、测试及集成技术等。
2. 大容量电炉生产高品质工业硅节能关键技术主要技术内容:原料选择、配比和预处理优化技术;电炉炉心功率密度优化技术:高压与低压供电无功补偿技术;炉外精炼工艺技术。
全氧条件下高炉高温热化学反应与能质传递协同原理作者:张欣欣薛庆国郭占成王静松李俊来源:《科技资讯》2016年第16期摘要:高炉作为目前主要的炼铁工艺,经过上百年的发展,其碳耗已接近该工艺的理论最低值,很难再有大的突破。
氧气高炉作为一种新型炼铁工艺,其可行性以及在节碳减排方面的突出优势已经在理论上和试验性高炉上得到了证实。
该工艺由于采用全氧鼓风代替传统的热风操作,同时将炉顶煤气脱除CO2后循环回高炉,使得炉内煤气中的CO和H2含量大幅增加,从而导致炉内炉料的冶金性能也发生了变化。
为了推进氧气高炉工艺的工业化应用,对氧气高炉炼铁工艺进行了系统的研究。
本研究建立了一种氧气高炉综合数学模型,对不同氧气高炉工艺流程进行模拟计算,并采用多种评价指标对氧气高炉炼铁工艺进行综合评价,确定适宜的氧气高炉工艺流程,为研究开发氧气高炉炼铁工艺提供理论基础。
以氧气高炉数学模型为基础,在不同气氛下分别进行烧结矿、球团矿和块矿的低温还原粉化实验,分析氧气高炉气氛下含铁炉料的低温还原粉化特性。
利用高温还原熔滴实验装置,进行不同操作条件下(传统高炉和氧气高炉)含铁炉料的高温软熔特性实验研究,讨论氧气高炉气氛与传统高炉气氛下炉料软熔特性的差异,初步探索氧气高炉软熔带的形成及分布规律。
采用程序还原及软熔实验装置,通过设定升温制度及分段改变煤气成分来模拟烧结矿、球团矿及其混合矿在氧气高炉与传统高炉中的还原及软熔行为,对炉料在氧气高炉工艺条件下的还原及软熔性质演变规律作出分析判断。
以氧气高炉数学模型为基础,采用自制的单颗粒还原实验装置对球团矿在H2、CO 以及两者的混合气氛中的还原行为及其交互作用进行了研究;采用颗粒模型与三界面未反应核模型相结合的方法对球团矿在CO/CO2/H2/H2O/N2混合气氛下的还原行为进行数值模拟研究;用单颗粒焦炭溶损实验装置,分别对H2O、CO2以及两者的混合气氛中的焦炭的溶损行为及其交互作用进行了研究。
一解释题:1.炉料、煤气的水当量答案:所谓水当量就是指单位时间内通过高炉某一截面的炉料或煤气,其温度升高或降低1℃所吸收或放出的热量,即单位时间内使煤气或炉料改变1℃所产生的热量变化。
(包括化学反应热、相变热和热损失等)。
2.炉料有效重力答案:料柱重力克服散料层内部颗粒间的相互摩擦和由侧压力引起的摩擦力之后的有效质量力。
3.高炉内的热交换现象答案:炉缸煤气在上升过程中把热量传给炉料.温度逐渐降低。
而炉料在下降过程中吸收煤气热量,温度逐渐上升,使还原.熔化和造渣等过程顺利进行。
这就是热交换现象。
4.透气性指数:答案:表示通过散料层的风量与压差的比值,即单位压差通过的风量,反映气流通过料柱时阻力的大小。
以Q/△P表示,其中Q—风量,△P—压差。
二填空题1.两种或多种粒度混合的散料床层,其空隙率与大小粒的( )比和( )比有关。
答案:直径;含量P1282.高炉炉料下降的力学表达式为( )。
答案:F=G料-P墙-P料-ΔP浮3.高炉内运动过程是指在炉内的炉料和( )两流股的运动过程。
答案:煤气4.高炉煤气、焦炉煤气和转炉煤气三种煤气中,发热值最低的是( ),发热值最高的是( )。
答案:高炉煤气;焦炉煤气5.初渣在滴落带以下的焦炭空隙间向下流动,同时煤气也要穿过这些空隙向上流动。
所以,炉渣的( )和( )对于煤气流的压头损失以及是否造成液泛现象影响极大。
答案:数量;物理性质(粘度和表面张力)6.在( )区间内,煤气与炉料的温差很小,大约只有50℃左右,是热交换极其缓慢的区域,常称为热交换的( )。
答案:炉身中下部;空区或热储备区7.高炉的热交换是指( )与炉料的热量传递。
答案:煤气流8.高炉内的( )是热量的主要传递者。
答案:煤气9.越到高炉下部炉料对热量的需求越()。
答案:大10.煤气的压降梯度升高至与炉堆积密度相等时,发生( )。
答案:悬料11.煤气的危害是中毒、( )、爆炸,而氮气的危害是( )。
答案:着火;窒息12.高炉原料特别是烧结矿,在高炉上部的低温区还原时严重( )、( ),使料柱( )降低( )恶化。
冶金炼铁高炉模型仿真与稳定燃烧控制冶金炼铁高炉是现代冶金工业中最重要的设备之一,它用于将铁矿石和焦炭等原料转化为高品质的生铁。
高炉的稳定燃烧是铁炉生产中的一项关键技术,对炉内温度、压力、气流分布等参数的准确控制能够保证高炉的正常运行和高效生产。
为了更好地理解高炉燃烧过程以及探索稳定燃烧控制的方法,研究人员开发了冶金炼铁高炉的模型仿真技术。
高炉模型仿真是一种通过计算机模拟高炉内燃烧过程的方法,可以对高炉内的燃烧反应、物质传输、流体力学以及热传递等过程进行模拟和分析。
高炉模型仿真主要包括炉腔结构模型、燃烧反应模型和物料传输模型等三个方面。
炉腔结构模型是对高炉内部结构进行几何描述,包括风口、鼓风管、炉身、煤气管道等。
燃烧反应模型是通过数学方程描述高炉内的燃烧过程,考虑燃烧产物的生成和热传递等因素。
物料传输模型则描述了在高炉内物料的输送和混合过程,包括固体原料、燃料和废气的流动等。
通过高炉模型仿真,研究人员可以对不同工艺参数进行优化和调整,并预测不同操作条件下高炉的运行状态。
模拟结果可以提供工程师在设计和操作高炉时的决策支持,同时也可以帮助了解高炉内部发生的化学反应过程以及物料输送规律。
稳定燃烧是高炉运行的基础,它直接影响到高炉的产量和能耗。
在高炉模型仿真的基础上,稳定燃烧控制是保证高炉正常运行和效益生产的重要手段。
稳定燃烧控制主要包括风量控制、煤气成分控制和温度控制等方面。
风量控制是通过调节鼓风机的转速和风门的开度等参数,使得高炉内的风量达到最佳状态。
适当的风量可以保证燃料和氧气的充分混合,提高燃烧效率,同时也能够控制高炉内部的温度和压力等参数。
煤气成分控制是指对高炉废气中的CO、CO2等气体成分进行监测和调节。
高炉废气中CO和CO2的比例对燃烧反应有重要影响,通过准确监测和控制煤气成分,可以实现高炉内部燃烧的稳定和高效。
温度控制是高炉稳定燃烧控制的核心内容。
高炉内部的温度分布直接影响到冶炼过程的进行,过高或过低的温度都会对高炉的正常运行造成不利影响。
高炉炉顶煤气循环及炼铁新工艺
高炉是炼铁的主要设备,其炉顶煤气是高炉内的重要热源之一。
传统的高炉炉顶煤气排放量大,热能利用率低,不仅浪费能源,还会对环境造成污染。
为了解决这一问题,炼铁企业开始采用炉顶煤气循环技术,将炉顶煤气回收利用,提高热能利用率,降低能源消耗和环境污染。
炉顶煤气循环技术是指将高炉炉顶煤气经过净化处理后,再通过管道输送回高炉内部,用于加热炉料和燃烧。
这种技术可以有效地提高高炉的热能利用率,降低炉顶煤气的排放量,减少环境污染。
同时,炉顶煤气循环技术还可以降低炉料的热损失,提高炉料的还原效率,从而提高炼铁的产量和质量。
除了炉顶煤气循环技术,炼铁企业还在不断探索新的炼铁工艺,以提高炼铁的效率和质量。
其中,一种新的炼铁工艺是采用高炉炉顶煤气直接还原铁矿石,称为炉顶煤气直接还原工艺。
这种工艺可以将炉顶煤气直接用于还原铁矿石,不需要再加入焦炭等还原剂,从而降低了炼铁成本,提高了炼铁效率。
炉顶煤气直接还原工艺还可以减少炼铁过程中的二氧化碳排放量,对环境保护具有积极意义。
同时,这种工艺还可以提高炼铁的产量和质量,使得炼铁企业更加具有竞争力。
高炉炉顶煤气循环技术和炉顶煤气直接还原工艺是炼铁企业不断探
索的新工艺,它们可以提高炼铁的效率和质量,降低能源消耗和环境污染,具有重要的经济和社会意义。
冶金学考试重点东北大学铁第1章现代高炉炼铁工艺习题一、名词解释1、有效容积利用系数?答:每昼夜每立方米高炉生产的生铁量,P/t.d。
焦比?答:生产1吨生铁所消耗的干焦炭重量。
燃料比?答:每吨生铁耗用各种入炉燃料之总和。
K燃=(焦炭+煤粉+重油+…)。
综合焦比?答:喷吹燃料按对置换比折算为相应的干焦(K`)与实际耗用的焦炭量(焦比K)之和称为综合焦比(K综)。
矿石焙烧?答:焙烧是在适当的气氛中,使铁矿石加热到低于其熔点的温度,在固态下发生的物理化学过程。
主要的焙烧方法?答:焙烧的方法有:氧化焙烧、还原焙烧和氯化焙烧。
选矿?答:选矿是依据矿石的性质,采用适当的方法,把有用矿物和脉石机械地分开,从而使有用矿物富集的过程。
精选铁矿石的主要选矿方法?答:(1)重选;(2)磁选;(3)浮选。
焦炭负荷?答:每批炉料中铁、锰矿石的总重量与焦炭重量之比,高炉一代寿命(炉龄)?答:(1)指从高炉点火开炉到停炉大修,或高炉相邻两次大修之间的冶炼时间;(2)每m3炉容在一代炉龄期内的累计产铁量。
三、简答题1、高炉炼铁生产流程及附属系统?答:高炉炼铁生产除了高炉本体以外,还包括有原燃料系统、上料系统、送风系统、渣铁处理系统、煤气处理系统。
2、高炉内型及有效容积?答:高炉内型从下往上分为炉缸、炉腹、炉腰、炉身和炉喉五个部分,五部分容积总和为高炉的有效容积。
根据物料存在形态的不同,高炉分为几个区域?答:可将高炉划分为五个区域:块状带、软熔带、滴落带、风口前回旋区、渣铁聚集区。
生铁的种类?答:生铁可分为炼钢生铁、铸造生铁、铁合金三种。
天然铁矿石的分类?答:天然铁矿石按其主要矿物分为磁铁矿、赤铁矿、褐铁矿和菱铁矿。
褐铁矿的化学成分及含铁量?答:褐铁矿的化学成分是nFe2O3·mH2O,含铁量55~66%。
铁矿石的焙烧主要有几种方法?答:铁矿石的焙烧主要有氧化焙烧和还原焙烧。
焦炭在高炉冶炼过程中具有的作用?答:焦炭在高炉冶炼过程中具有(1)燃料,燃烧后发热,产生冶炼所需热量。